
Entity Resolution with Heavy Indexing?

Csaba István Sidló

Data Mining and Web Search Group, Informatics Laboratory
Institute for Computer Science and Control, Hungarian Academy of Sciences

sidlo@ilab.sztaki.hu

Abstract. Entity resolution (ER), or deduplication is a computation-
ally hard problem with O(n2) time complexity. We reformulate ER as
a search problem, and develop algorithms using efficient indices. Indices
can enhance algorithm scalability, facilitate distributed processing, but
require additional storage space. We study the performance and trade-
offs between index update and search in ER algorithms, and show that
significant performance gain can be obtained by using indices. We also
demonstrate the strength of our algorithms in the real-world scenario of
an insurance customer master data creation procedure.

1 Introduction and Related Work

Entity Resolution (ER) is the process of identifying groups of records that refer
to the same real-world entity (eg. [2, 9]). The first description of the record link-
age problem appears in Fellegi and Sunter [5] in 1969 who use a probabilistic
model. Since then, the process was described in many different contexts un-
der many different names including duplicate detection, instance identification,
merge/purge, reference reconciliation, etc. Entity resolution can be formulated in
many different ways and appears in a wide range of applications. In [4] a survey
is given on duplicate record detection, who describes supervised, unsupervised
and active learning, and summarizes statistical and machine learning solutions
based on various text similarity and matching measures.

Generic entity resolution with black-box match and merge functions was
first described in [1], where resolution means the closure of the original entity
set according to these functions. Simple feature indices are also used. We give
generic ER algorithms for relational databases in [10]. Entity resolution as a
hypergraph clustering problem can be found in [2], under the name of relational
clustering.

When building a client database, companies typically face the entity reso-
lution problem. Clients may appear multiple times in multiple source systems,
e.g. the same person may appear in several marketing databases obtained by
different means.

ER is the key step in producing sound and clean client master data. Client
records may consist of attributes, both of persons (birth data, tax and social

? This work was supported by the EU FP7 Project SCIIMS (Strategic Crime and
Immigration Management System).



security numbers, postal address, etc.) and of organizations (client ID, contract
number). Attribute values are often missing or erroneous, and some attributes
change in time (name, postal address).

By resolving the record set, simple but fundamental as well as more complex
questions can be answered: How many clients we actually have? Can a given
client be addressed in a marketing campaign, or we just made an offer a few
days ago? Does a new client have ever contacted, or had any transaction with
our company?

Several new results were published recently. A new approach can be found in
[13]: entity behavior is recorded as transactional log. Common patterns of these
transactions are used to identify similar or identical entities. Measuring the qual-
ity of entity resolution results is a crucial problem: the possible quality metrics
are considered in [9]. As an algorithmic aspect, core ER algorithms are enhanced
by combining the results of different blocking strategies in [12]. Our formal model
of entity resolution is similar to the model used in [12] when forming dominated
record partitions. When finding duplicates, the role of constraints is exploited
in [6]. Whang and Garcia-Molina [11] deals with the effect of match/merge rule
evolution, and gives methods to preserve results when rules change. In [3], spe-
cial inverted indices are built to speed up ER with blocking. Entity resolution
frameworks are developed, like SERF, MTB, DDUpe and MARLIN (see [7]). A
practical comparison of ER approaches can be found in [8] using the FEVER
framework.

Our main contributions are as follows. First, we define a model suited to a
search-based resolution process and practical aspects. Second, we give efficient
algorithms with different indexing schemes and a blocking method capable of
improving scalability. Third, we demonstrate usability and scalability of our
algorithms.

2 Problem Formulation

Entities of the real world are typically hidden and only indirect observations
are recorded in a database. This intuition is formalized in the ER framework as
follows. Let a set of records be R = {r1, r2, ...rm}, where each rj consists of a
set of attributes. The goal is to partition records according to the entities they
belong: let E = {e1, e2, ...en} be a set of entities, each ei consisting of a subset of
records ei ⊆ R such that the union of the entities covers all records, ∪n

i=1ei = R,
and no record belongs to more than one entity: r ∈ ei ∧ r ∈ ej ⇒ i = j.

To give an example, consider records and attributes in a client database
stating that “the name of the client is John Doe” or “the date of birth is January
1, 1977”. An entity can have more than one attribute values, for example multiple
names may exist for a real-world client. Features form a set of functions F =
{f1, f2, ...fm}, each fi mapping entities to feature subsets. In an ER algorithm,
entities e1 and e2 are merged if a matching feature fi is found, denoted by
fi(e1) ∼ fi(e2). The notion of two entities matching along feature fi is defined
depending on the application as a function of the two attribute subsets fi(e1)



and fi(e2). For example, we may require fi(e1) ∩ fi(e2) 6= ∅ but the definition
may involve distance functions over the attribute space as well.

Use of merged, representative records as entities is a common practice. Merged
records can be however impractical and hard to construct. Deciding feature
matches is sometimes impossible without referring to all the feature values, not
only a representative value. We think that ER models representing an entity
with record sets are favorable.

Definition 1. Let the entity resolution of an entity set E be another set of
entities ER(E), where

∀e1, e2 ∈ E, e1 ∼ e2 ⇒ ∃e′ ∈ ER(E) : e1 ⊆ e′ ∧ e2 ⊆ e′,

∀e ∈ E ⇒ ∃e′ ∈ ER(E) : e ⊆ e′.

Thus, the entity resolution is a refined partitioning of the original entity set,
where no more separate but matching entities can be found.

We use feature indices to identify possible entity matchings. A feature index
provides candidates for a given entity: if there exists an entity with matching
feature, the feature index must include it in the result.

Definition 2. For feature f and entity e ∈ E, let the feature index indexf (e)
be the subset of entities E such that

if f(e1) ∼ f(e2), then e2 ∈ indexf (e1) and e1 ∈ indexf (e2).

Given two entities e1 and e2 and features f1, f2, . . . , fn, the match condition
is f1(e1) ∼ f1(e2)∨f2(e1) ∼ f2(e2)∨ ...∨fn(e1) ∼ fn(e2). The next completeness
property formalizes if a set of feature indices can be used to find all matching
candidates:

Definition 3. A feature index set {indexi|i = 1, ...,m} is a complete index
set for fj (j = 1, ..., n) features and for E entities, if

∀e1, e2 ∈ E, k ∈ [1, n] : fk(e1) ∼ fk(e2) ⇒

∃l ∈ [1,m] : e2 ∈ indexl(e1) ∧ e1 ∈ indexl(e2).

The completeness property for given entities states that there exists at least
one feature index candidate for all possible match. A trivial complete index set
contains only one index, returning the whole E as candidates.

3 Algorithms

The following algorithms all solve the ER problem. They differ how they build
and use indices. Indexing solutions are not necessary faster than non-indexing
variants: we investigate the efficiency of different index realizations later.

In what follows, we consider the input of the ER algorithms to be the set
of records as entities, with each record corresponding to its unique own entity;
as the output, some records will be merged to form a smaller size entity set E′.
The algorithms may also work with partially merged records as entities, as long
as only matching records are merged.



Algorithm 1 Index-ER

input: Entity set E such that each record corresponds to a unique entity.
output: E′ = ER(E)

1: E′ ← ∅
2: merged← null
3: while E 6= ∅ ∨merged 6= null do
4: if merged 6= null then
5: e← merged
6: else
7: e← an element from E
8: remove e from E
9: candidates← ∪f indexf (e)
10: merged← null
11: if candidates = ∅ then
12: E′ ← E′ ∪ {e}
13: for all indices: add e to indexf

14: else
15: for all c ∈ candidates do
16: if c ∼ e then
17: merged← merged ∪ {c} ∪ {e}
18: remove c from E′

19: remove c from all indexf

3.1 Basic Feature Indexing

IndexER (Algorithm 1) is our basic indexing solution to the ER problem where
feature indices are handled as search data structures. IndexER maintains a result
set E′ containing no unexplored matches and extends this set by entities from the
input. Feature indices contain only entities of E′, therefore have to be updated
when E′ changes.

E′ always contains the resolution of the processed entities, and while E dimin-
ishes, IndexER solves the ER(E) problem. Efficiency of the algorithm depends
both on the indexing tools used, and on properties of the input data set (eg. how
many matching records it contains), as well as on the match logic (how many
features there are, are they similarity-based etc.). We explore some aspects of
performance later.

Entities may usually have feature values that cannot be matched. If for exam-
ple the telephone number of a given person in a customer database is unknown,
then it is not possible to find any matching entity based on this feature.

Definition 4. Let satisfactoryf (e) be a true or false valued function for entities
e ∈ E and features f such that

satisfactoryf (e) = false if 6 ∃e′ ∈ E : f(e) ∼ f(e′).

A satisfactory function can be defined based on heuristics of the given feature
and match logic, for example by filtering incomplete or empty attribute values.



Algorithm 2 Pre-Index-ER

input: Entity set E such that each record corresponds to a unique entity.
output: E′ = ER(E)

1: E′ ← ∅
2: merged← null
3: prepare all indexf with E
4: while E 6= ∅ or merged 6= null do
5: if merged 6= null then
6: e← merged
7: else
8: e← an element from E
9: remove e from E
10: candidates ← ∪

f :satisfactoryf (e)
{e′ ∈ E′ : e′ originates from an indexf (e)

entity }
11: merged← null
12: if candidates = ∅ then
13: E′ ← E′ ∪ {e}
14: else
15: for all c ∈ candidates do
16: if c ∼ e then
17: merged← merged ∪ {c} ∪ {e}
18: remove c from E′

Using satisfactory index lookup and update (Line 9 and 13) become conditional,
dealing only with satisfactoryf (e) features.

3.2 Feature Pre-indexing

Index updates are usually expensive. Note that records do not change during the
resolution process: Algorithms only re-partition records when merging entities.
If we build feature indices in a batch for all records before the resolution process,
we can save index maintenance costs.

Definition 5. Feature f is a stable feature for an entity set E, if

∀e1, e2 ∈ E with f(e1) ∼ f(e2) satisfies f(e1) ∼ f(e1∪e2) and f(e2) ∼ f(e1∪e2).

We can build the index for a stable feature preliminary. At the beginning each
entity consists of a single record, and feature indices refer to that initial entity.
Additional data structures are needed to track entity merges, and to record if
an entity belongs to the resolved set. Pre-Index-ER (Algorithm 2) implements
this indexing scheme.

3.3 Feature-based Blocking

Blocking is a proven method to speed up ER algorithms. Blocking divide records
into smaller subsets based on expert heuristics including ZIP code, first letter of



Algorithm 3 Block-Index-ER

input: Entity set E such that each record corresponds to a unique entity.
output: E′ = ER(E)

1: E′ ← ∅
2: for all f feature do
3: Bf ← partition E′ according to f
4: for all Bi

f partition in Bf do
5: update E′ with ER(Bi

f )

family names, etc. ER is performed on the smaller subsets more easily, especially
when they fit in the memory. We speed up processing, but may miss potential
matching pairs between different blocks. One solution is to use multiple blocking
criteria, and combine the results. Another potential solution is iterative blocking
[12], where merged entities are delegated to other affected blocks.

Block-Index-ER (Algorithm 3) implements a new partitioning scheme differ-
ent from both multiple and iterative blocking. We iterate through all features,
partition the input set in every round, and solve the sub-problem with an ar-
bitrary ER algorithm, e.g. Index-ER. In Line 3 a feature-based partitioning is
performed. We form up blocks according to feature boundaries:

Definition 6. Bi
f (i = 1..n) is a feature-based blocking of E entity set with

f feature, if

∀i ∈ [1..n] : e ∈ Bi
f ⇒6 ∃e′ ∈ Bj

f , j ∈ [1..n], j 6= i : f(e) ∼ f(e′),

∪i∈[1..n]B
i
f = E

In Line 5 the algorithm applies all entity merges to E′. If an entity does not exists
in E′, it is appended. The algorithm iterates through all blocks of a feature-
based blocking and applies every merge. Matching entities always fall into a
common block for some of the stable features, therefore at the end Block-Index-
ER produces ER(E). We have to process all partitions for all features, but the
number of these partitions is relatively small for real-world problems.

4 Index Realizations

Efficiency of Index-ER algorithms depends on properties of the input entity set,
the features used and the indexing methods and tools chosen. Next we briefly
examine a few alternatives.

The most useful and simplest algorithm variations handle features as at-
tribute value sets, match operators as equality tests. For example, two clients
match if they share a birth date, a birth name and a postal address. Conven-
tional search structures are applicable in this scenario. B-trees for example are
proven to be optimal and useful general search constructs.



For features based on multiple attributes an index can be built for an arbi-
trary attribute with good selectivity. Eg. for a complicated birth data feature a
birth name B-tree index may be used, if birth name is always known. An other
possibility is to use multidimensional indices, eg. R-trees. With R-trees we can
use multiple attributes as search key.

Scalability can be improved by relying on external memory indexes that be-
come slower when running out of cache memory, but keep serving the algorithm.
Another possibile enhancement is the use of various distributed key-value stores
or indexes.

When using similarity-based or probabilistic features and match conditions,
the indices provide entities with similar feature value beyond a given similar-
ity threshold. Examples include finding duplicated web pages, using features
based on geographic location and distance, features with name similarities etc.
Similarity-based indices are useful in this case, and are exhaustively investigated
topics. Document Q-gram and TF-IDF indices for example have multiple efficient
standalone implementations, for distributed environments as well.

5 Experiments

Experiments were performed on a Linux server containing an AMD 2 GHz
Opteron CPU, 7 GB of main memory and a 7200 RPM disk without RAID.
We used PostgreSQL 8.4 using 1GB memory, Berkeley DB Java Edition (BDB)
4.1 using 500 MB cache, Sun JDK 1.6 with 3 GB maximum heap size. A rel-
atively weak hardware architecture was chosen intentionally: behavior of the
algorithms and indexing schemes become problematic and therefore interesting
when reaching the given constraints (eg. the memory limit).

Algorithms were implemented using Java, input and output were stored in
PostgreSQL. We note that our solution works also based on various other index-
ing tools not covered in this paper, including Project Voldemort, Kyoto Cabi-
net, ScalienDB, etc. We performed repeated executions and averaged the results.
Time needed for input read and output write are not included.

For exeriments, we choose the data set of the AEGON Hungary Insurance
Ltd.1 containing approximately 20 million client records. Records consist of
both personal attributes (names, birth data, tax number, etc.) and company-
dependent identifiers. According to preliminary estimates and experimental re-
sults each client has 1.95 records in average. We used random sampling to obtain
smaller subsets and selection heuristics to influence the average record count per
user (eg. selecting records for the family name ’Smith’).

Match logic provided by experts included simple attribute-equality testing,
e.g. “two entities match, if they have common tax numbers”, and more compli-
cated ones. For example, the birth data feature used 5 attributes, with multiple
attribute-value equality testing.

1 The AEGON Hungary has been a member of the AEGON Group since 1992, one
of the world’s largest life insurance and pension groups, and a strong provider of
investment products.



Fig. 1. Execution times against input size

We used two previously known algorithms for comparison. DB-GER is an
SQL-based ER algorithm for relational databases (see [10]). Java F-Swoosh is
a basic Java in-memory F-Swoosh implementation of [1]. Both DB-GER and
Java F-Swoosh experiments were performed with Oracle 10g database. Index-
ER-BDB and Pre-Index-ER-BDB used Berkeley DB B-trees for feature indices
and also to store records. Pre-Index-ER-Pg used standard PostgreSQL indices.
Block-Index-ER-Pg used feature-based blocking and in-memory algorithms for
feature indices. Feature block construction and the update operation with block
results is done by PostgreSQL.

Figure 1 plots execution times against input size. Java F-Swoosh showed
poor performance without proper indexing. Performance of Block-Index-ER-Pg
was still inferior: PostgreSQL through JDBC handles batch updates slow on the
whole entity set. In-memory processing and Index-ER variation on blocks costs
negligible time. So Block-Index-ER stays promising, supposing that a better
entity store can be found with faster updates. Interestingly Pre-Index-ER-Pg
also performed poor: feature index lookups were much slower than by BDB.

Both Pre-Index-ER-BDB and Index-ER-BDB outperform previous solutions.
Figure 2 shows how the number of records processed changes for a smaller record
set. Index-ER-BDB slows down as the size of the feature indices increase. With
Pre-Index-ER-BDB processing becomes faster as more and more merges were
performed.

The reason why Index-ER-BDB outperforms Pre-Index-ER-BDB variation
is depicted in Figure 3. At around 3.5 M records, Index-ER-BDB slows down
since at this point, BDB runs out of cache memory. However, Pre-Index-ER-
BDB builds the whole index at the beginning, runs out of cache memory right
away, and runs slow all along.

The additional space cost to store feature indices depends both on the number
of features and on the distribution of feature values. In our experiments 5 features
were used, using diverse attributes with more or less values. Index size varied



Fig. 2. Processing speed change for 1.1 M records

Fig. 3. Processing speed change for 7.2 M records

from 2 to 3 times the original database size. For PostgreSQL this realized as
around 6.9 GB index size compared to the 2.4 GB full database size.

6 Conclusion and Future Work

We described algorithms to solve the ER problem based on feature indices.
We showed that feature indexing is costly but beneficial, while the constructs
used for indices, features and blocking enable solving a wide range of practical
problems. We believe that appropriate selection of indexing tools and algorithms
can further improve performance. Our algorithms may include arbitrary indexing
and search solutions, both for exact and for similarity-based matching. The class
of suitable tools depends on the data set, on the features, on the match logic
and on the architectural environment as well.

In future work our algorithms and index alternatives should be tested in other
settings, e.g. on conceptually different data sets, or with similarity-based feature
matching. Feature-based blocking also enables distributing our algorithms in a
parallel environment, a next step to overcome scalability problems. The selec-
tion of appropriate data structures for merging partial results needs however



further investigation. Human supervision is unavoidable: probabilistic models
with uncertain statements should also be worked out.

Acknowledgments

To András Vereczki and Zoltán Hans as domain experts on the AEGON Hun-
gary side for discussion on the problem formulation and clarification of the user
requirements.

References

1. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom. Swoosh: a generic approach to entity resolution. VLDB J., 18(1):255–
276, 2009.

2. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data.
ACM Trans. Knowl. Discov. Data, 1(1):5, 2007.

3. P. Christen, R. Gayler, and D. Hawking. Similarity-aware indexing for real-time
entity resolution. In Proc. of the 18th ACM conference on Information and knowl-
edge management, CIKM ’09, pages 1565–1568, New York, NY, USA, 2009. ACM.

4. A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate Record Detection: A
Survey. IEEE Transactions on Knowledge and Data Engineering, pages 1–16,
2007.

5. I. Fellegi and A. Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969.

6. S. Guo, X. L. Dong, D. Srivastava, and R. Zajac. Record linkage with uniqueness
constraints and erroneous values. Proc. VLDB Endow., 3:417–428, September 2010.

7. H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data
Knowl. Eng., 69:197–210, February 2010.

8. H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on
real-world match problems. Proc. VLDB Endow., 3:484–493, September 2010.

9. D. Menestrina, S. E. Whang, and H. Garcia-Molina. Evaluating entity resolution
results. Proc. VLDB Endow., 3:208–219, September 2010.

10. C. Sidló. Generic entity resolution in relational databases. In J. Grundspenkis,
T. Morzy, and G. Vossen, editors, Advances in Databases and Information Systems,
volume 5739 of LNCS, pages 59–73. Springer, 2009.

11. S. E. Whang and H. Garcia-Molina. Entity resolution with evolving rules. Proc.
VLDB Endow., 3:1326–1337, September 2010.

12. S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.
Entity resolution with iterative blocking. In Proc. of the 35th SIGMOD int. conf.
on Management of data, pages 219–232, New York, NY, USA, 2009. ACM.

13. M. Yakout, A. K. Elmagarmid, H. Elmeleegy, M. Ouzzani, and A. Qi. Behavior
based record linkage. Proc. VLDB Endow., 3:439–448, September 2010.


