
Hibernate the Recursive Queries - Defining the
Recursive Queries Using Hibernate ORM

Aneta Szumowska, Aleksandra Boniewicz, Marta Burzańska, Piotr Wiśniewski?

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Toruń, Poland

Abstract. The following paper presents results of combining two inten-
sively developed technologies used to build database applications - SQL’s
recursive queries and object-relational mapping. Recursive queries are ef-
ficient tools for querying graph and hierarchical structures. They are very
useful in solving problems such as searching for connections between two
cities or calculating bill-of-material. Object-relational mapping allows for
separation of business logic from database layer and more efficient im-
plementation of computer software. However, modern mapping systems
still lack support for many advanced SQL techniques. In order to per-
form a recursive calculation a programmer has to either write a recursive
function in a language supported by the target database or implement a
native function in the main software code that recursively sends queries
to the database. The authors propose an enhancement enabling the use
of recursive queries in one of the most popular ORM systems - Hibernate
for Java language. With this enhancement a programmer will be able to
take a full advantage of the support for the recursive queries offered by
various object-relational database management systems and write a code
fully compliant with Hibernate standard. The proposed solution works
with IBM DB2, Oracle and PostgreSQL DBMS and proved to be many
times faster than the approaches currently used.

1 Introduction

Recursion is one of the fundamental concepts of the computer science. It may
be applied to problems dealing with corporate hierarchy, bill-of-material, travel
connections or study classes organization. Data representing those problems is
sometimes called recursive data because of its close relation with recursion. Ven-
dors of Database Management Systems (DBMS) have long realized that recursive
data need a separate approach. To meet the needs of object-relational database
users SQL:99 standard introduced a special type of queries, whose computa-
tion was based on recursion. Those were recursive views and recursive common
table expressions (RCTE). Even before the introduction of this standard, some
database management systems supported proprietary recursive query constructs.

? emails: {iriz,grusia,quintria, pikonrad}@mat.uni.torun.pl

2

More about history of recursive queries, their availability and efficiency of eval-
uation in modern DBMSs may be found in [1, 2]. Despite the fact that recursive
queries appeared quite a long time ago, intensive research is still being con-
ducted on their optimization [3–5]. The time that has passed allowed the field of
recursive queries to mature and now they become increasingly popular among
software developers.

Parallel to the development of relational databases, the field of object-oriented
programming languages and data modeling methods evolved as well. Modeling
of relational data structures resembles more and more the modeling process of
objects and classes. The issue has inspired the research on techniques of mapping
objects to relations and relations to objects [6, 7]. The data transformations re-
quired in such mappings can be very complex, especially since they often involve
advanced joins, nested queries and support for data update operations.

Object Relational Mapping tools allow the programmer to focus on the code
development without the need for advanced knowledge of SQL nuances. This
results in reduction of the time needed to develop software and an increased
readability of the source code. Additional benefit of using object-relational map-
ping tools is the increased source code maintainability and portability between
different DBMSs. The number of supported DBMSs depends on the actual ORM
framework used - from one particular vendor to a full support of all major
DBMSs.

Nowadays object-relational mapping tools are available for most of the pop-
ular programming languages. Due to the popularity of their base languages the
most noteworthy are Hibernate and JDO for Java [8], LinQ and ADO .NET for
.NET platform and SQLObject for Python. Because nowadays Java is the most
popular language for software development we will restrict our discussion to it.

So far, recursive queries and ORM systems were two separate worlds. In order
to query recursive data structures, the Java programmers had three alternative
approaches to choose from. Firstly they could write a recursive stored function
in a language supported by the target database. Secondly they could write an
SQL query and send it directly through the ODBC/JDBC connections. The last
possibility would be to write a recursive function in Java. Each of those solu-
tions results in a number of problems. First two approaches result in a decreased
maintainability, mainly due to the departure from the requirements of the ORM
philosophy. The usage of ODBC/JDBC driver enforces implementation of ad-
ditional safeguards from data types mismatch and unwanted side effects. On
the other hand a function that recursively sends basic queries to the database
in order to gather data generates unnecessary traffic which may have a nega-
tive impact on the general functionality of the application. It also lacks possible
benefits from optimization of recursion that could be performed by the DBMS.

The first connection between ORM systems and a recursive queries technique
has been made for a SQLObject - an ORM system for Python language, and a
PostgreSQL DBMS [10].

After careful analysis of the current trends in software development, espe-
cially in the usage of ORM frameworks, the authors of this paper decided to base

3

their research on the Hibernate ORM [8, 11, 12]. Among the reasons behind this
decision is Hibernate’s current stage of development and wide-spread popularity.
This tool is used in many projects, and although it was originally designed for
Java language, it has been ported to other platforms including C#/.Net. An-
other important reason is that Hibernate is an open-source tool which enabled
full integration of the proposed extension. Although Hibernate can be used with
many different programming languages, the authors decided to implement dis-
cussed extension in Java language. However, this solution can easily be ported
to other object programming languages.

2 Contribution

The algorithms for generating recursive queries and its implementation for IBM
DB2, Oracle and PostgreSQL database management systems are the main con-
tribution of the following work. An algorithm for generating recursive query
for PostgreSQL widely extends the algorithm presented in [10]. The difference
between them will be presented in Features section. Because of the differences
between SQL dialects supported by mentioned database systems and the SQL:99
standard the authors had to carefully analyze different scenarios and establish
standardized query generation methodologies.

The second equally important result is the development and implementation
of interfaces for recursive query definitions for Hibernate ORM. These interfaces
have been designed to retain maximum compatibility with standard mapping
interfaces used in Hibernate. The key issue is to design them according to the
Hibernate philosophy of the XML documents storing configuration data.

3 Hierarchical and Graph Data Structures

Development of computer science allowed for computer representation of math-
ematical structures such as graphs and trees. It soon became obvious that due
to such representation many practical problems became easily solvable.

Well known and thoroughly discussed problems based on such structures deal
with finding a path between two nodes, for example finding the communications
links between the two cities or finding routes based on information provided by
GPS systems. A particular type of graphs, called the trees, proved to be a very
convenient scheme for hierarchies representation. Hierarchical data may be found
at every step in everyday life. Every man is a part of their family tree. People
working in large companies are part of the corporate hierarchy. Hierarchical data
with a different nature are scoreboards at sporting championships. In graph
and hierarchical data individual cells of information are linked together forming
dependencies, which usually require recursive algorithms for analysis. Therefore,
in this paper graph and hierarchical structures are commonly called the recursive
structures.

4

The following section presents two natural examples of recursive data. Exam-
ple 1 present data concerning corporate hierarchy with special focus on employees
hierarchy. Example 2 describes a network of flight connections between cites.

The example data are presented tables 1 and 2

Table 1. Hierarchical data, table Emp

empId bossId sname fname salary
7369 7902 Green John 100
7499 7698 Brown George 210
7521 7698 Christie Andrew 210
7566 7839 Jones Brandon 360
7654 7698 Ford Carl 210
7698 7839 Blake Ernest 360
7782 7839 Bell Gordon 360
7788 7839 Willis James 360
7839 Smith John 500
7844 7698 Turner Johnathan 210
7902 7698 Adams Trevor 210
7900 7566 Miller Kyle 150

Table 2. Graph data, table Conns

departure arrival flightId price travelTime
Paris Phoenix TW 123 120 6h 15min
Paris Houston TW 120 130 8h 30min

Phoenix Huston PW 230 100 3h 10min
Huston Chicago RW 121 90 2h 45min
Huston Dallas RW 122 80 3h
Dallas Chicago DW 80 110 2h 30min

Chicago Atlanta CH 542 220 2h 45min
Chicago Berlin CH 543 360 7h 15min

Paris Berlin TW 118 300 1h 10min
Dallas Berlin DW 90 350 5h 45 min
Berlin Boston YW 421 100 6h

Chicago Boston CH 544 250 2h 15min

4 Data Representation in Object-Relational Mapping

Object-relational mapping systems are the result of intersection of two worlds
- object-oriented programming languages and relational databases. They allow
for separation of the business logic layer from database layer and as a result -

5

increased portability and maintainability of software’s source code. Additional
feature of ORM frameworks which has a big impact on their popularity is the
speed of source code developments during which only minimal knowledge is
needed about the advanced aspects of SQL language. There are many kinds of
object relational mapping tools currently available on the market. They differ
among themselves as to the programming language they are designed for and the
scope of supported databases management systems. Some of them are available
as commercial products, while others have a fully open source code. One of the
most popular ORM frameworks is Hibernate for Java language.

Hibernate supports most of the major relational DBMSs. In accordance with
JPA [9] standard it offers two methods of defining an object-relational mapping.
To map Java classes to database tables, developer may choose to define a map-
ping configuration in an XML document or to define it using Java Annotations.
Most of the programmers decide to use XML files choosing automatic genera-
tion of the corresponding Java classes performed by Hibernate. Than presented
solution correspond to this method. Sample objects generated using Hibernate
framework may resemble the classes form listings 1.1, 1.2.

Listing 1.1. Emp class representation

public class Emp {
public long empId ;
public long boss Id ;
public St r ing sname ;
public St r ing fname ;
public long s a l a r y ;
. . .

Listing 1.2. Connections class representation

public class Connections {
public St r ing departure ;
public St r ing a r r i v a l ;
public St r ing f l i g h t I d ;
public St r ing p r i c e ;
public double travelTime ;
. . .

Mapping system defines how the objects of those classes are mapped onto
corresponding database tables. However, recursive querying of such defined data
may case some problems. Source code written in Java that accomplishes this
task is presented in listing 1.3. This is a straightforward code, but its evaluation
time is not acceptable.

Listing 1.3. Recursive data retrieval using traditional tools

List<Empl> f i r s t = s e s s i o n . c r e a t e C r i t e r i a (Empl . class) .
add (R e s t r i c t i o n s . eq (”sname” , ”Smith”)) . l i s t () ;

Empl f i rstEmp = f i r s t . get (0) ;

6

while (! s tack . isEmpty ()) {
Empl emp = (Empl) s tack . f i r s t E l e m e n t () ;
L i s t<Empl> emps = s e s s i o n . c r e a t e C r i t e r i a (Empl . class) .

add (R e s t r i c t i o n s . eq (” boss Id ” , emp . get Id ())) . l i s t () ;
for (int i = 0 ; i < emps . s i z e () ; i++)

stack . push (emps . get (i)) ;
s tack . remove (0) ;

}

The problem with long evaluation times comes from the fact that for each
returned object, database server has to check if there are object with ”subordi-
nate” relation to that object. As a result, this query is being sent to the database
as many times as there are employees in a sought structure. The solution pro-
posed in this paper tested on a sample of 900 employees completed the evaluation
process more than 20-times faster. The observed increase in evaluation speed has
been achieved due to the usage of SQL’s query type called recursive common
table expression or in short recursive query.

5 Recursive Query

When browsing through recursive structures in a database management system
that supports recursive queries, a user may use a special query type - a recursive
common table expression. Such expression adjusted to query for Smith’s direct
and indirect subordinates is presented on listing 1.4

Listing 1.4. List of Smith’s Subordinates

WITH RECURSIVE r c t e (
SELECT sname , fname , empId , False as i sSub
FROM Emp
WHERE sname = ’ Smith ’

UNION
SELECT e . sname , e . fname , e . empId , True as i sSub
FROM Emp e JOIN r c t e r ON (e . boss Id = r . empId)

)
SELECT sname , fname
FROM r c t e
WHERE r c t e . i sSub = True

Each recursive CTE consists of three parts: seed query, recursive query com-
prising references to the CTE being defined and an outer query that utilizes
recursively generated data. Each of those queries may have their own selection
predicates and have different tables declared in the FROM clause. More infor-
mation on recursive SQL queries may be found in [1, 2].

7

6 Recursive Query in Hibenate

The authors have developed recursive query generators with automatic mapping
of results onto objects. The author also provide interfaces for these generators.
Listing 1.5 presents a configuration defined in XML document which allows for
recursive querying of employees hierarchy. Using this configuration a programmer
would gain access to the same set of results as when directly running the query
from Listing 1.3

Listing 1.5. Mapping configuration for employees hierarchy

<r c t e>
<rc teTable name=” subord inate s ” max−l e v e l=”4”/>
<t a b l e s>

<t a b l e>Emp</ t a b l e>
</ t a b l e s>
<r e c u r s i v e−cond i t i on>

<on>Emp. boss Id</on>
<to>Emp. empId</ to>

</ r e c u r s i v e−cond i t i on>
<summands>

<conc>Emp. empId</ conc>
<conc>Emp. sname</ conc>

</summand>
< f i l t e r s e c t i o n=” seed ”>

Emp. sname = $Param(sname)
</ f i l t e r>

</ r c t e>

Just like basic Hibernate configurations our XML documents are used to
generate special classes and objects that provide access to the specified set of
results. Listing 1.6 presents an example of usage of object generated this way.
This code gathers information about Smith’s subordinates. The usage of newly
generated objects is the same as standard objects generated by Hibernate thus
it will not be discussed here.

Listing 1.6. Usage of rcte

try {
Sess ionFactory s e s s i o n = HibernateUt i l . g e t S e s s i o n () ;
S e s s i on s = s e s s i o n . openSess ion () ;
Ent ity e = s . prepareRcte (” subord inate ”) ;
L i s t<Map> r c t e L i s t = e . ge tRecurs iveObjec t s () ;
I t e r a t o r <Map> i t e r = r c t e L i s t . i t e r a t o r () ;
while (i t e r . hasNext ()) {

Map obj = i t e r . next () ;
System . out . p r i n t l n (obj) ;

}
s . c l o s e () ;

8

} catch (Exception e) {
e . pr intStackTrace () ;

}

7 Features

Configuration of a given query should specify the tables used to collect data.
It also should comprise the joining predicates for those tables and, in particu-
lar, recursion predicate. Besides those information the construction the authors
propose includes parameters helpful in specifying additional options. Listing 1.7
presents an XML configuration document for travel connections problem. It con-
tains most of the parameter nodes available for the programmer.

The root of the configuration document is called rcte. Its first child node is
used to specify the name of the output RCTE table (lines 2 and 3 of provided
listing). This node is called rcteTable and has up to three attributes: name used
to define the actual name of the RCTE, max-level specifying recursion depth
and an optional cycle attribute used to enable cycle protection if it is provided
by DBMS vendor. The next node of the configuration document is called tables.
Its child nodes called table are used to specify which database tables will be used
to generate the result. Names of those tables are passed as character elements. In
the following example the only table needed to generate the result is Connections.
It is represented by <table>Connections</table> code. As mentioned earlier,
besides defining source tables, the programmer should supply information which
table columns will be used in a recursion predicate. This information is stored
in the recursive-condition node. This node has two child nodes: on and to
which use character data to store corresponding column names. In the provided
listing those nodes are placed in lines 7-10.

In addition to the required nodes describing source tables, developer may
choose to specify additional options. Those include fields used to collect data
such as sums or concatenations. The main node for such information is summands.
It allows for specification of unlimited amount of two types of child nodes: sum
and conc. The conc node is used to specify column which will be used to create
a concatenated string. Concatenated values are separated by default using single
white space. However, a programmer may choose to specify optional attribute
using of the conc node to overwrite this character with a chosen string. Besides
collection fields a programmer may also specify a constant field if needed. An
example of such definition is <const>Connections.arrival</const> (line 17
of the listing 1.7). This field may be used by the presented generator to optimize
resulting query using predicate push in technique described in [5].

To specify additional filtering predicates a programmer may use filter
nodes. Depending on the target subquery this node may have three values if
it section attribute: seed, recursive and outer. The programmer provides given
predicates as character elements using $Param() function that enables passing of
parameters in the Java source code. One last node supported by the generator
is the outer node. Its contents define additional properties of the outer SQL

9

query that uses the rcte. This node may additionally contain property tags,
which have the same meaning as identical elements in classical Hibernate con-
figuration files. For example, they may be used to select only relevant columns
instead of all generated ones.

Listing 1.7. Mapping configuration for travel connections

<r c t e>
<rc teTable name=” t r a v e l ” max−l e v e l=”4” c y c l e=” f a l s e ”/>
<t a b l e s>

<t a b l e>Connections</ t a b l e>
</ t a b l e s>
<r e c u r s i v e−cond i t i on>

<on>Connections . departure</on>
<to>Connections . a r r i v a l</ to>

</ r e c u r s i v e−cond i t i on>
<summands>

<sum>Connections . travelTime</sum>
<conc>Connections . f l i g h t I d</ conc>
<conc us ing=” ; ”>Connections . a r r i v a l</ conc>

</summands>
<cons tant s>

<const>Connections . a r r i v a l</ const>
</ cons tant s>
< f i l t e r s e c t i o n=” seed ”>

Connections . departure = $Param(departure)
</ f i l t e r>
< f i l t e r s e c t i o n=” outer ”>

Connections . a r r i v a l = $Param(a r r i v a l)
</ f i l t e r>

</ r c t e>

At first glance, this configuration may seem very complex. However there are
clearly distinguished sections corresponding to the elements described. Names of
the configuration nodes have been chosen so that they would be self-explaining
in most cases. Based on such configuration the query generator will construct
a corresponding recursive SQL query. For the configuration presented in listing
1.7 the output query with already defined filtering parameters is about one page
huge. This query shows the transparency of the configuration presented in listing
1.7 in comparison with a generated query.

The first algorithm for generating recursive queries presented by the authors
in [10] has a series of constraints. First it works only with PostgreSQL. Second
it works only with one source table. Third it has no filter clauses. Fourth it
determines the names for summands, concats etc., then fields in generated class
sometime have complicated names. The algorithms presented in this paper fulfill
these features, thus they are much more useful than the previous one.

In the paper [2] authors have shown that the performance of recursive queries
in DB2 database system highly depends on existing indexes placed on the fields

10

from recurrence predicate. Thus the authors of the following paper have decided
to add a special attribute indexed = True/False in the recurrence condition
definition. If it is set to True the configurator checks if the proper fields are
indexed and if not - inserts missing indexes into the database. With accordance
to [2] this attribute is ignored by configurator for database systems other than
DB2.

8 Conclusions and future work

In conclusion, the results of the tests show that the solution proposed by the
authors allows for benefiting from the advantages of Object Relational Mapping
in applications using recursive data. As it has been described both presented
configuration methods preserve the original Hibernate’s configuration style which
makes them easily accessible for the user.

Next the authors plan to continue the research on providing support for
another features implemented in database management systems at the level of
Object Relational Mapping.

References

1. Brandon, D. 2005. Recursive database structures. J. Comput. Small Coll. 21, 2 (Dec.
2005), 295-304

2. Boniewicz A., Burzanska M., Przymus P.: Recursive query facilities in relational
databases: a survey, In DTA(2010), CCIS series, Volume 118, 89-99

3. Ghazal, A., Crolotte, A., Seid, D.Y.: Recursive SQL Query Optimization with k-
Iteration Lookahead. In DEXA(2006) 348-357

4. Ordonez, C.: Optimization of Linear Recursive Queries in SQL. IEEE Trans. Knowl.
Data Eng.(2010) 264-277

5. Burzańska, M., Stencel, K., Wiśniewski, P.: Pushing Predicates into Recursive SQL
Common Table Expressions. In ADBIS(2009) 194-205.

6. Melnik, S., Adya, A., Bernstein, P. A.: Compiling mappings to bridge applications
and databases. ACM Transactions on Database Systems (TODS), v.33 n.4, p.1-50,
2008

7. Keller, W.:Mapping objects to tables: A pattern language. In EuroPLoP (2007)
8. Hibernate, http://www.hibernate.org
9. DeMichiel, L.: Java Specification Requests JSR 317: JavaTM Persistence 2.0.

http://jcp.org/en/jsr/detail?id=317, 2009.
10. Burzańska M., Stencel K., Suchomska P., Szumowska A., Wiśniewski P.: Recursive

Queries Using Object Relational Mapping. FGIT(2010) LNCS, Volume 6485/2010,
42-50

11. Christian Bauer , Gavin King, Java Persistence with Hibernate, Manning Publi-
cations Co., Greenwich, CT, 2006

12. Elizabeth J. O’Neil. 2008. Object/relational mapping 2008: hibernate and the en-
tity data model (edm). In Proc. ACM SIGMOD (2008), 1351-1356.

