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Abstract. In this paper we introduce a set of operations for complex
manipulation with approximate queries represented by scoring functions.
We show correspondence of these operations to the user expectations
and applications needs. We evaluate the effectiveness of our techniques
in the context of content-based image retrieval task and compare it to
the known fusion methods.

1 Introduction

Both amount and complexity of stored data rapidly grow. The information is
presented in the form of complex objects with explicit or implicit structure. Ex-
amples may include complex hypermedia objects containing text, images, sound,
and video, and dynamic pages typically generated from structured data with at-
tributes of different types. Neither navigational link chasing nor simple keyword
queries cannot be sufficient for advanced search or complex object retrieval.

The reasons to evaluate complex structured queries are:

– A need to combine search criteria for different types of information;
– A query refinement, e.g. based on user profile or feedback;
– Advanced users may need query structuring.

Database query languages, e.g. relational, are nearly perfect when an ex-
act result is expected. However, in the world of similarity-based queries with
approximate results the behavior of logical operators does not always meet hu-
man expectations. For example, logical operators cannot capture the expected
increase in confidence due to multiple sources of support.

Approximate similarity-based search results are usually represented by scores
of objects. A concept of data fusion is suitable to combine results of several
similarity-based queries. Several data fusion methods were proposed and empir-
ically studied in different information retrieval environments and showed good
results. These methods require appropriate calibration of incoming scores.
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In this paper we introduce a systematic approach to construction of complex
similarity queries. We define a model for complex queries and proceed with spec-
ification of several calibration and fusion operations. We evaluate the proposed
techniques using content-based image retrieval environment and show how to use
these operations for semi-automatic calibration of incoming scores. The results
are comparable to the best ones obtained with empirical approaches.

The paper is structured as follows. The model overview in section 2 is followed
by its specification in section 3. The experiments and the analysis of their results
are presented in section 4. Section 5 outlines the related work.

2 Similarity Query Model

2.1 Similarities and Distances

Modern information retrieval models assume that relevance of an object to a
query is expressed as similarity. Typically an object and a query are represented
as feature vectors, while similarity is calculated as a similarity measure (e.g.
cosine measure) or via distance function (e.g. Euclidian, l1). Although both
feature extraction techniques and similarity functions are crucial for quality and
effectiveness of the retrieval systems, these issues are out of the scope of our
research.

In our work we define the similarity measure and distance function as follows.

Definition 1 Similarity measure on the set S is the function sim : S × S →
[0, 1): ∀a, b ∈ S sim(a, a) = 1 and sim(a, b) = sim(b, a).

Several similarity measures may be needed simultaneously on the same set.

Definition 2 Distance function on the set S is the function dist : S × S → R :
∀a, b ∈ S dist(a, b) ≥ 0, dist(a, b) = dist(b, a), dist(a, a) = 0; that is a semi-metric.

The notions of distance and similarity are closely related and similarity mea-
sure can be constructed from distance (similaring) and vice versa (distancing).
We use the following formula for this conversion: sim(a, b) = 1/(1 + dist(a, b)).

2.2 Queries and Result Sets

Any querying system might return either exact or approximate result. The for-
mer is usually is a set of objects satisfying the query, while the latter is typically
a ranked list based on objects’ scores. We describe a model which captures both
query paradigms and allows combining different types of subqueries in a single
request. The central concept of this model is a Q-set. It abstracts from query
language, nature of objects, or query evaluation technique, and encapsulates
both a query and the result of its evaluation. The notion of the Q-set essentially
coincides with the notion of the fuzzy set.



Definition 3 Q-set=(S,score), where S is a set of objects, score : S → [0, 1] is
a scoring function. Q(S) is the set of Q-sets defined on S.

Fuzzy set-theoretic operations can operate on Q-sets. However, these op-
erations do not possess certain desirable properties important for information
retrieval. Thus, we have to introduce additional operations in our model.

The concept of the Q-set can accommodate various types of queries, e.g.
exact database queries and queries in probabilistic data bases. For every object
in S we can construct a Q-set from a similarity function defined on S. Function
scoring by object q ∈ S and a similarity measure sim defines A ∈ Q(S) such that
A.score(x) = sim(q, x).

As soon as several Q-sets are constructed on the same set S using either sim-
ilarity measures based on objects’ features or exact queries, we can manipulate
with Q-sets regardless of how they were produced.

A generic operation which combines several Q-sets into one is known as
fusion. In this research we explore properties of different fusion techniques.

Intuitively expected fusion properties identified in [7] are the Chorus and
Skimming Effects. The former suggests that objects with high scores in both
arguments should be preferred in the result, while the latter promotes objects
with high scores in at least one argument. Depending on the application needs,
the fusion operation may take these effects into account differently. Thus, no
single implementation can be the best for all applications.

In our model an operation has the Chorus effect if the output score of an
object is higher than its scores in both argument Q-sets.

2.3 Operations

All operations introduced in our model are inside the class of Q-sets. Thus the
class of Q-sets is closed under the proposed set of operations.

The definition 4 lists the basic requirements for a generic fusion operation. In
addition, it may possess other desirable properties such as Chorus and Skimming
Effects.

Definition 4 The fusion operation is a function fusion : Q(S)×Q(S)→ Q(S):
fusion(A,B) = fusion(B,A); preserves order (A.score(x) < A.score(y),
B.score(x) < B.score(y)⇒fusion(A,B).score(x) < fusion(A,B).score(y)).

The fusion can be effective only if its arguments are comparable, obviously
not the case for arbitrary Q-sets. Scoring functions constructed from different
features and similarity measures may vary in range and distribution. Thus, the
incoming arguments must be calibrated to ensure their scores are comparable.

Informally, scoring functions are comparable if the scores of important objects
do not differ too much. Typically the objects with high scores are important.

We introduce two operations to be used in the calibration procedures: the
normalization and strengthening. The former re-scales the scores or distances
evenly, while the latter increases high scores and decreases low ones. We use
norm to denote the normalization operation.



Definition 5 The strengthen operation is a monotonic function
strengthen : Q(S)× [0, 1]→ Q(S): ∀l ∈ [0, 1], ∀x ∈ S, ∀A ∈ Q(S)

strengthen(A, l).score(x)
{
≥ A.score(x) , |y : A.score(y) ≥ A.score(x)| ≤ l ∗ |S|
≤ A.score(x) , |y : A.score(y) ≥ A.score(x)| ≥ l ∗ |S|

The inverse operation is called weaken.

The factors to be taken into account in the design of calibration algorithms
and underlying operations norm, strengthen, and weaken are:

Stability Outliers should not affect the calibration significantly.
Skew Higher scores should provide more impact.
Effectiveness Argument Q-sets of different quality should differ in the impact.

The last item suggests that a priori knowledge, such as relative precision of
different features, should be used to weaken or strengthen Q-sets appropriately.
For example, if texture features of an image result in high scores but less precision
than color ones, then the former should be weakened. Such a priori knowledge
may be obtained either from expert or from training data sets with machine
learning procedures.

3 Refinement

In this section several alternative implementations are specified for each op-
eration defined above. Algorithms and formulas which conform with intuitive
expectations are presented. Each implementation meets the requirements pre-
sented in the section 2 and provides some specific properties.

3.1 Unary Operations

Normalization Several alternatives of the norm operation are specified in ta-
ble 1. Each operation takes a Q-set A ∈ Q(S) as an argument.

Table 1. Implementations of calibration operations

Operation Formula

norm-maxmin A.score(e)−min(A.score(x))
max(A.score(x))−min(A.score(x)))

norm-avg similaring(
distancing(A.score(e))

avg(distancing(A.score(x)))
)

norm-dist(α) similaring(distancing(A.score(e)) ∗ α)

The first normalization algorithm (norm-maxmin) is usually applied in the
context of fusion. This algorithm is used to change the range of scoring functions’



values to [0,1]. According to definition 3 scoring functions already limited to such
range. Nevertheless the advantage of this normalization algorithm is that values
of scoring function always fill the whole range [0,1].

By definition the norm-avg operation brings the average value of distance
function to 1. This implementation of normalization operation is not sensitive to
the outliers contrary to norm-maxmin. The operation norm-dist provides simple
calibration technique which can be applied in more complex scenarios.

Calibration In order to support the skew property defined in section 2, we
developed a procedure enabling fine-tuned calibration of scoring functions to
make the distributions of scores in Q-sets comparable. Scoring functions are
normalized by making equal distances at certain level. The level represents the
threshold which splits the most important scores from others.

The parameter p ∈ [0, 1] defines a portion of objects with highest scores,
which are considered important. Procedure normalize-distp constructs A ∈ Q(S)
from A1, A2 ∈ Q(S):
∀e ∈ S A.score(e) = norm-dist(α)(A1).score(e), where norm-dist(α) is de-
fined in table 1, α = distancing(A2.score(x))/distancing(A1.score(y)), x, y:
|z : A2.score(z) ≥ A2.score(x)| = p ∗ |S| and |z : A1.score(z) ≥ A1.score(y)| =
p ∗ |S|.

Weaken and Strengthen Strengthen and weaken operations are needed dur-
ing the Q-sets fusion to exploit a priori knowledge regarding the quality of the
scoring functions.

Definition 6 Operation strengthen(n) by A ∈ Q(S) and parameter level ∈ [0, 1]
constructs A0 ∈ Q(S):
∀e ∈ S A0.score(e) = similaring((distancing(A.score(e))/M)n), where n > 1 is
parameter of procedure, and M : |y : distancing(A.score(y)) ≤M | = level ∗ |S|.

Operation weaken(n) is defined as strengthen(1/n).

By definition 6 high scores will decrease and low scores will increase in a
Q-set after application of weaken operation. Behavior of weaken and strengthen
operations essentially depends on distribution of distance function values with
respect to threshold level. For example, after normalization according to defi-
nition of norm-avg operation, strengthen operation with level such that M = 1
increases scores which values are higher than average value inside this Q-set.

3.2 Binary Operations

Several alternatives for the fusion operation (see definition 4) are specified in
table 2. Each operation takes two Q-sets A1, A2 ∈ Q(S) as arguments and con-
structs a new Q-set with scoring function defined in column Formula.

The advantage of super-union and super-intersect is the ability to capture
the probabilistic properties at least if the arguments are independent. However



Table 2. Implementations of fusion operations

Operation Formula Chorus Skimming
Effect Effect

intersect min(A1.score(e), A2.score(e)) - -

union max(A1.score(e), A2.score(e)) - +

super-intersect A1.score(e) ∗A2.score(e) - -

super-union 1 − (1 −A1.score(e)) ∗ (1 −A2.score(e)) + +

CombMNZ (A1.score(e) +A2.score(e)) ∗R + +

scores produced by super-intersect might be unreasonably low in the context of
fusion.

CombMNZ is reported as the best fusion algorithm in various IR environ-
ments and possesses nice properties, such as the Chorus Effect, especially in
fusion of several queries [3]. We use CombMNZ as a baseline in out experiments.

4 Experiments

To justify our model we conducted a series of experiments in the context of
content-based image retrieval task.

4.1 Experimental Environment and Setup

Experimental image database consists of 1087 images. It includes 101 images
from Corel Photo Set collection which are used as queries. The query images are
divided into 16 groups of similar images by 2 experts. During the experiments
images from the same group as the query-image are treated as relevant, while
others are not. Every image in the database is represented by a feature vector in
three different feature spaces: 1) color moments – moment based color distribu-
tion features and color metrics from [9]; 2) color histograms – color histogram
with spatial information encoded into color index with corresponded distance
function [10]; 3) texture – convolutions of image with ICA filters as a texture
feature and Kullback-Leibler divergence as a texture metrics [2].

The fusion technique CombMNZ is chosen as a baseline. The applicability and
accuracy of proposed fusion operations will be analyzed based on comparison of
results obtained by our model and this baseline algorithm. In all our experiments
we measure R-precision fusion results relative to R-precision of the input Q-sets.

4.2 Analysis of Experiments

The table 3 shows the range of distance values in our data set. These measure-
ments approve that distance functions corresponding to various types of Q-sets
differ from each other. Hence, a calibration is ultimately needed.



Table 3. Distance and precision for color and texture Q-sets

Type of Q-set min distance max distance R-precision

colour moments 0.02 6.79 0.48
colour histograms 0.22 199.50 0.40

texture 0.003 13.47 0.15

(a) Normalization by norm-maxmin (b) Normalization by norm-avg

Fig. 1. The distribution of scores

The figure 1 shows the score distributions in different Q-sets after normaliza-
tion by norm-maxmin (1(a)) and norm-avg (1(b)). Normalized by norm-maxmin
and unnormalized Q-sets do not differ significantly.

The figure 2(a) presents the distribution of scoring function values normalized
by procedure normalize-distp with p = 0.1. We assume that in our dataset top
10% of objects significantly influence the results selected after fusion.

We investigate the impact of strengthen and weaken operations in experiments
where we apply operation norm-avg to the Q-sets and then operation strengthen.
The value of parameter n in strengthen(n) is taken to make equal scores from pair
of Q-sets at the level 10%. We further refer to this procedure as norm&strenthen.
Histogram 2(b) shows the distributions of scores based on color moments and
texture after such processing.

We have measured the R-precision of results produced by separate Q-sets
without fusion to analyze the quality improvements obtained by our technique.
Table 3 outlines R-precision obtained by using Q-sets based on color moments,
color histograms and texture separately. Results presented in table 3 show that
texture based features expose poor precision. This a priori knowledge suggests
that texture should be weakened.

Table 4 demonstrates R-precision obtained by fusion of two Q-sets. It shows
that in most cases in spite of normalization operation super-union gives poor
R-precision in the fusion of Q-sets based on texture and color moments. The
reason is that one of the Q-sets is defined by non-effective scoring function itself
and which dominates even after normalization. The only case when super-union
appropriately takes into account scores is norm&strenthen. The histogram pre-



(a) Normalization by norm-prop0.1 (b) Normalization by
norm-avg&strengthen

Fig. 2. The distribution of values of color moments and texture scoring functions

sented on the figure 2(b) shows the dominance of high scores constructed by
color moments. Similar observations are the reason for poor results obtained
after application of normalize-dist(0.1) for all fusion techniques. The quality of
normalization highly depends on parameters and optional strengthen of those
Q-sets which are known to be good for specific retrieval task.

The results obtained by fusion of Q-sets based on texture and color his-
tograms show the sensitivity of operations CombMNZ and super-union to the
implementation of norm operation.

The third part of table 4 demonstrates R-precision obtained by fusion of two
Q-sets: based on color histograms and color moments. One may see that appro-
priate normalization technique can improve the retrieval performance. However
the obtained results dramatically depend on the quality of the initial Q-sets. In
case of the fusion of Q-sets constructed by color moments and color histograms
different implementations of fusion operation provide comparable R-precision.

5 Related Work

Our model for complex query processing is closely related to advanced ranking
techniques, query languages and data fusion.

Authors of [12] discuss the probability ranking principle proposed by Robert-
son in 1977, analyze its weakness in the task of multimedia retrieval. They
present ranking approach which provides the possibility to take into account
both the relevance probability and document transmission and inspection time.
Ranking for structured documents is introduced in [11]. An approach to results
ranking and weighting for the interactive retrieval is presented in [6]. Most of
the complex ranking algorithms rely on a data type.



Table 4. R-precision for fusion results

without norm-avg norm-mimmax norm-dist(0.1) norm&strenthen
norm

Texture and color moments

ComMNZ 0.45 0.44 0.46 0.38 0.45
Super-intersect 0.46 0.45 0.47 0.38 0.45

Super-union 0.32 0.33 0.31 0.37 0.46

Texture and color histograms

ComMNZ 0.20 0.41 0.20 0.37 0.43
Super-intersect 0.45 0.41 0.45 0.37 0.43

Super-union 0.16 0.35 0.16 0.37 0.44

Color moments and histograms

ComMNZ 0.50 0.53 0.49 0.53 0.53
Super-intersect 0.50 0.53 0.50 0.53 0.53

Super-union 0.49 0.52 0.50 0.53 0.52

The expressiveness and simplicity of the query language influence the quality
of search. An extension of relational algebra close to our model and supporting
similarity queries is presented in [4].

A discussion of fundamentals of retrieval results’ fusion, e.g. the “Chorus
Effect”, the “Skimming Effect”, and the “Dark Horse Effect” are outlined and
described in [7]. In [1] a meta search model based on an optimal democratic
voting procedure is described and investigated. Authors of [3] consider several
algorithms for fusion of multiple document lists. CombMNZ have shown better
results on selected experimental data set.

The authors of [5] analyze effective fusion technique for video retrieval. Sev-
eral fusion strategies based on ranks and scores are compared. The experiments
show that appropriateness of fusion technique highly depends on the specific
task. In general, the choice of fusion techniques depends on specific collection of
data [7, 5, 3]. Fusion algorithms which enable accounting hierarchical structure
of retrieved documents are presented in [8].

A probabilistic approach to data fusion called probeFuse is presented in [7].
Authors show that the performance of fusion algorithm can be significantly im-
proved with calibration based on ranges and the reliability of data sources.

The normalization of scores is critical for the quality of any fusion technique
and was studied intensively. A normalization by deflection of a score from the
minimum one is discussed in [3, 5]. Several alternative normalization techniques
are discussed in [13].

6 Conclusions

In this paper we introduced a systematic approach to construction of approxi-
mate complex queries represented as scoring functions. We define query calibra-



tion and fusion algorithms which meet the high-level semantic expectations and
provide for consistent probabilistic interpretation of resulting scores.

The experiments clearly show that proposed techniques can be configured
to provide predictable results. The effectiveness of our techniques is comparable
to known algorithms. The proposed techniques are useful for querying complex
objects against their structure, textual and multimedia content. Our operations
provide a base for modeling complex querying scenarios such as relevance feed-
back, shuttle search, and combination of structured and unstructured retrieval.
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