Performance Problems of Forecasting Systems *

Haitang Feng
Supervised by: Nicolas Lumineau and Mohand-Said Hacid

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622; France
{haitang.feng, nicolas.lumineau, mohand-said.hacid}@liris.cnrs.fr

Abstract. Forecasting systems usually use historical data and specific
methods (typically statistical models) to derive decisional information.
To be accurate, the volume of historical data is often very large and the
calculation and the exploration processes are complex. Anticipeo is one
of the forecasting systems which is devoted to the prediction of sales
based on collected sales over a “long” period of time. Even if it provides
quite a reliable prediction, the query evaluation stays a costly process
with high latency.

So far, we have investigated the latency provenance and we have pro-
posed some solutions to improve query response time for the exploration
process. Our design principles can be reused in any application context
that displays similar requirements.

Keywords: Query optimization, performance, DBMS Tuning, OLAP

1 Introduction

Forecasting systems are based on historical information and use specific methods
(typically statistical models) to derive decisional information and present them
in an understandable way. These systems are an important issue in an industrial
context because strategic decisions partly depend on forecasting. The features of
a good forecasting system are: economy, availability, plausibility, simplicity and
accuracy[1]. These features require forecasting systems to consider some different
design properties from other information systems.

Our work reports on Anticipeo, a forecasting system which uses historical data
to derive decisional sales information. Results are displayed in hierarchies and
OLAP operations are employed to navigate the results. Performance issues exist
both in the calculation stage and the exploration stage. We present these two
stages and their problems in detail in the following of this paper.

So far, we have investigated the exploration stage. To solve the problem, we
diagnose its latency provenance, provide benchmarks on the actual system and
propose some preliminary solutions. The paper is organized as follows : Section
2 presents the problem and our motivation, Section 3 describes the related works

* Research partially supported by the French Agency ANRT (www.anrt.asso.fr) and
Anticipeo (www.anticipeo.com).



and the solutions we consider. In Section 4, we show the experimental results.
We conclude and present our future work in Section 5.

2 Problem Statement and Motivation

By comparison with other information systems, the design of forecasting systems
should comply with some requirements:

— Limited life duration
Forecasting calculation is periodically triggered and once the period passed,
the forecasts are no longer exploitable. For example, the weather or the traffic
forecasts predicted for yesterday are not useful today.

— Non-reusable
The forecasting work is a global calculation and it is almost impossible to
reuse the former results for reducing future forecasting calculation. This
means that partial recomputation of precomputed results is not easy.

— Few updates
As forecasting information result from a computation process, there is often
no need for updates. However, in some exceptional cases, the system needs
some corrections for some unpredictable situations: e.g., the impact of a car
accident for a traffic forecasting system.

— Timeliness
Forecasting systems should be able to provide just in time responses for users.
Decision makers devise corresponding plans of purchasing, productions, lo-
gistics, etc., according to sales forecasting. The delay between achieved data
entering and new data forecasting should be as short as possible.

Anticipeo is one of the forecasting systems which uses statistical models to de-
rive forecasting sales from historical sales. It helps enterprise decision makers or
executives to adapt their business plan to future trends of the market.

Every month, customers provide Anticipeo with their new achieved sales. An-
ticipeo integrates the data into the system, calculates forecasting data and pre-
pares information for analysis. Customers can then navigate the forecasting sales
via user interface. If they want to perform some modifications on the forecast, the
visualization generator will be relaunched to produce updated presentations.
Two issues regarding the manipulation of very large tables at the calculation
stage and at the visualization stage constitute the main problems that we tackle.
To achieve a reliable result!, the calculation engine treats each sale individually
with a corresponding statistical model (e.g., standard model, seasonal model,
occasional model, etc.). The treatment relies on 36-month historical data in
addition to tens of parameters (e.g., weighting coefficient, serial correlation, sea-
sonal coefficient, etc.) used in statistical models. Even if sales are grouped by
month, the number of monthly sales is still high. As a consequence, the calcula-
tion stage is quite time-consuming.

! Here, reliable stands for good quality and good approximation.



Regarding the navigation part, results are displayed in form of hierarchies. To
show the sales trend, we display both 36-month historical data and 24-month
predictive data. This means 60-month aggregations should be generated for
hierarchies when displaying. In addition, we need some meta-data to under-
stand /interpret the displayed data. As the number of sales could be very high,
the tables used to display the results can easily reach gigabyte scale.

In the first time, we mainly consider the optimization regarding the second issue,
that is, the navigation part.

2.1 Features of Anticipeo Data

Sales are organized in hierarchies according to the needs of end users. Anticipeo
uses a relational database to store data. The main problem in this case can thus
be summarized as a visualization issue of a multidimensional decision support
application using a relational database.

In this application, three dimensions are defined: customer dimension, product
dimension and time dimension. Since the sales are grouped by month, the time
dimension is implicit. Only two dimensions are explored: customer dimension
and product dimension. Each of these two dimensions is composed of several
hierarchies such as geographical distribution and purchasing store organization
for the customer dimension. Regarding the navigation of sales, a materialized
view containing all display or relation information about customer, product,
hierarchy, purchase date and sales volume is created (called MVezgmple in the
rest of this paper). Actually, we have three materialized views for three metrics:
turnover, quantity and price. They serve to guarantee a quick data access and
avoid frequent joins between tables containing this information.

2.2 Typical Queries

There are three kinds of operations that users perform : simple querying on one
hierarchical tree, cross-hierarchy querying and data updates. In the following,
we talk about these three operations with the most significant queries linked to
them.

Simple Querying

We name this type of operation “Simple querying” because the queries require
directly the visualization of sales on only one level of a hierarchical tree even
if this level can be no matter which level of no matter which hierarchical tree
from no matter which dimension. Usually, in an analytical system, we present an
element’s information with its direct successors for further exploration. So this
operation of simple retrieving can be considered as the retrieving of a required
element with the corresponding elements from the inferior level.

The principal query of this operation constructs aggregations using “GROUP
BY”. Because this “Simple querying” operation is the most frequent one exer-
cised by users, the response time should be immediate. All levels of hierarchical
trees are pre-computed and materialized.



Cross-hierarchy Querying

The second type of operations is the cross-hierarchy querying. These queries refer
to information retrieval from two hierarchies: one of them is from the customer
dimension and the other one is from the product dimension. The time dimension
is implicit in this operation.

Technically, the principal query constructs aggregations for a certain level of one
of the dimensions using “GROUP BY” and the other dimension acts as the filter
condition in this query.

Unlike the precedent operation, we cannot pre-compute all the possible combi-
nations. Another solution should be used to accelerate this operation.

Data updating

Previous two types of operations have many similar points with classical data
warehouses. But this third operation is something unusual for data warehouses.
The sales forecasting system allows users to modify future projections to simu-
late future scenarios, which means, data stored in the pre-computed data cube
will be modified. This is against the main characteristic according to the original
design of data warehouse: non-volatile, “Data in the data warehouse are never
over-written or deleted once committed, the data are static, read-only, and re-
tained for future reporting”[7]. However, this is a real need for decision makers
to prepare for different future situations by using forecasting systems.

When users of the application query the data cube, they may decide to modify a
future projection. They can do this operation on any level of any hierarchy (even
in the cross-hierarchy mode). Once the modification is executed, the result with
updated data should be presented to users for their analysis and eventually fur-
ther simulating modifications. Technically, when users modify a data value, the
modification is proportionally distributed to corresponding elements on the ele-
mental sales level. Levels of different hierarchies aggregated by using these sales
must be updated consequently, including the level where users have performed
modifications. Then the level is displayed immediately following the modifica-
tion to users. During this operation, there are two important queries: update of
basic sales and displaying level reconstruction.

— Updating of basic sales
This query updates the elemental sales by which the aggregations of the
modified level are built. The update work is more time-consuming for it
concerns the write operation on the disk and in particular, when indexes
have to be updated at the same time.

— Reconstruction of corresponding level
Once an element is modified on the elemental sales level, all other levels
of the hierarchies need to be updated because they are aggregations using
the modified element. The rule after updates is that all superior levels are
destructed if an elemental sale is modified no matter whether the elements
are composed by the modified element. Then, we reconstruct the level.
The query of reconstruction is the same as the “simple querying” or the
“cross-hierarchy querying” depending on mode before the modification.



3 Optimization

Our purpose is to get better performance for forecasting systems similar to our
case. In the tuning, we should take into consideration not only the part of visu-
alization, but also the updates in data warehouses.

3.1 Hardware and Operating System

The first question we examine is whether our application is working in the ap-
propriate environment.

The main technical characteristics of the server are: two Intel Quad core Xeon-
based 2.4GHz, 16GB RAM and one SAS disk of 500GB. The operating system
is a 64-bit Linux Debian system using EXT3 file system. So, our focus in this
audit is to inspect the hardware for three criteria: CPU, memory and I/O.

3.2 DBMS Configuration

The application has some different characteristics compared to most of existing
web services. The most significant one is that there are only a few users logged
in the application (because users are often decision makers of an enterprise),
but every user can launch resource-consuming queries to the database. Some
“blind” tuning has been done based on existing experimental results on differ-
ent web services[12]. Since InnoDB is the main storage engine used, the main
MySQL system variables (see [9] for variable definition) manipulated are inn-
odb_buffer_pool_size, innodb_log._file_size, query_cache_size, innodb_flush_log_at_trz-
_commit, key_buffer_size, etc. The actual configuration sets these variables to
8GB, 800MB, 64MB, 0, and 512MB, respectively. Additional benchmarking will
be discussed in the following to determine whether the adopted configuration is
an efficient one and if not, we will propose an optimal configuration.

3.3 Additional Materialized views

The visualization of achieved and forecasting results in dimensions concerned this
application is a typical Data Warehouse problem using relational databases. In
this domain, one of the most used solutions is to select useful intermediate results
and store them as materialized views. Many approaches have been proposed for
the selection of materialized views.

The main idea is to use the greedy approaches[4,6,10]. These solutions pre-
process the most beneficial intermediate results in a limited-space hypothesis to
avoid complex computations so as to enhance data access. Extensions of these
solutions consider also the maintenance cost[2] or large scale databases[5, 8], or
else make the set of materialized views dynamic according to the workload|[3].
They have already been proved to bring significant improvements to data access.
So we would like to test the impact of these solutions in our case. For the
benchmark, we choose to implement the basic Greedy Algorithm.



3.4 Database Design

This application works on a large materialized view for result visualization. The
advantage is obvious: we can omit time-consuming joins over tables containing
millions of rows. However, it creates other problems, e.g., for queries which need
to make several joins on this view to derive aggregations for superior levels. Our
idea is to find a medium solution that can both avoid costly joins on different
tables and reduce the time of self join of this table.

The star schema or snowflake schema[l1] (which is the normalized version of
a star schema) could be a solution. We can break this view into two separate
ones, otherwise, we create two materialized views instead of one: one view con-
tains only the hierarchical information and the other one contains all remaining
information.

4 Experimental Results

All the following evaluations were carried out in the environment presented in
Section 3.1 and 3.2.

4.1 Observations on Existing Application

Some experiments have been conducted so to estimate the execution time of
the application for both the calculation and the navigation processes. Several
different size databases are compared.

The result shows that the calculation time and the query evaluation time is quasi
polynomial in respect to the sales number. This conclusion helps us to estimate
the execution of a new database if we know the number of sales that the company
deals with. The previous results also show the brake of the enterprise: in the
case of a 55-GB database, it takes more than 18 seconds to answer a user query.
If the application considers larger databases, the response time can hardly be
acceptable by the user.

4.2 Diagnosis of Latency Provenance

Two diagnoses are performed in this part. We first conduct an analysis on time
distribution. For the mathematical calculation, time spent on the application
server represents 30% of the total time and the remaining 70% is used to access
the database. During the navigation, the part of the time spent on the applica-
tion server represents less than 10% of the total time.

In a second time, we are interested in better knowing the system behavior. We
use SAR, one of Linux performance monitoring tools to collect and analyze sys-
tem activity information. CPU is idle during on average 89.42% of time. Memory
is normally used without swapping activities (0% during all the process time).
Disk I/O also shows a normal activity with rare occurrences of device saturation
according to the average number of read and written sectors.



The diagnosis shows that the latency observed on the application is not a ma-
terial problem, neither a program level issue. The performance issues of the
database may be the source of the performance problem.

4.3 DBMS configuration

We set values above and below the current settings of main variables presented
in 3.2 to see whether the current ones are optimized. The result is, for most of
variables, the current value is already the optimal one and only two variables
innodb_buffer_pool_size and innodb_log_file_size could do better if defined as 12GB
and 1GB, respectively.

We run an integral test with new DBMS settings on the whole system and we get
a better performance of 7.32% with innodb_log_file_size set to 1GB. The current
value of innodb_buffer_pool_size is already the most optimal one for a machine
that serves at the same time as a database and a web server. So, the system is
running with an almost optimal configuration.

4.4 Selection of Materialized Views

The classical greedy algorithm has been implemented on a 55-GB database with
some adaptation. We have noticed that the cardinality of nodes (# tuples of
views) is highly skewed among the nodes in the lattice. So, instead of limiting
the number of selected views, we limit the number of tuples to be material-
ized. The result reveals a significant interest in precomputing materialized view
candidates for this application. With only one quarter of materialized tuples,
279940 rows precisely, approximately 87.91% performance improvement can be
achieved.

Unfortunately, MySQL, the DBMS used by Anticipeo to implement and man-
age forecasting data, supports neither materialized views nor automatic query
rewriting by materialized views. Our results show the possibility of performance
improvement if we had used another DBMS that supports automatic query
rewriting. We could cite the Oracle relational database system.

4.5 Database Schema Modification

We trace queries whose execution time is more than 2 seconds while users per-
form actions on the interface. We obtain four query types on all the slow queries.
One instance of every query type is evaluated on both the actual data schema
and the new data schema. We have an interesting improvement: an average gain
of 8.083%, 4.034%, 17.126% and 12.088% respectively for the four query types.
With regard to the response time of a consultation based on precomputed data,
there is some degradation because an extra join has to be added to put the
hierarchical information and the rest together. However, the evaluation time is
still on the scale of tens of milliseconds. So, this newly created difference could
be ignored for a web service.



5 Conclusion and Future Work

We have presented four main optimization approaches that we consider in order
to improve the performance of a forecasting system: hardware, DBMS configura-
tion, DB design and selection of materialized views. In our context, we consider
a real world application, “Anticipeo”, and we prove that with our solutions, the
system presents a better performance. Further research work will include the
index improvement and the parallelization of databases.

Besides, we have not looked into the calculation performance improvement so
far. As said in the introduction, former forecasting results are not used for future
calculations. This means, at time t¢;, the database DB is at state S;. Once new
forecasting information at time ¢;45 has been derived, the database DB changes
to Sits, which is completely different from S;. There could be some repeating
intermediate results during the calculation and these intermediate results should
be kept and used for future needs. We are investigating this issue.

References

1. T. K. BAN. Features of a good forecasting system, Jan. 2011.
http://tankahban.blogspot.com/2011/01 /features-of-good-forecasting-
system.html.

2. E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a mul-
tidimensional database. In VLDB, pages 156-165, 1997.

3. S. Biren, R. Karthik, and R. Vijay. A hybrid approach for data warehouse view
selection. International Journal of Data Warehousing and Mining(IJDWM), 2:1—
37, 2006.

4. H. Gupta. Selection of views to materialize in a data warehouse. In ICDT, pages
98-112, 1997.

5. H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance
cost constraint. In ICDT, pages 453-470, 1999.

6. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. In SIGMOD Conference, pages 205216, 1996.

7. W. H. Inmon. Building the Data Warehouse (3rd Edition). Wiley, 2005.

8. Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic view management system
for data warehouses. In SIGMOD Conference, pages 371-382, 1999.

9. Oracle. Server system variables, Feb. 2011.
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html.

10. A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In VLDB, pages 488-499, 1998.

11. P. Vassiliadis and T. K. Sellis. A survey of logical models for olap databases.
SIGMOD Record, 28(4):64-69, 1999.

12. P. Zaitsev. Innodb performance optimization basics, Nov. 2007.
http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-
optimization-basics.



