
Binding of programming languages with subject

mediators for scientific problems solving

Alexey Vovchenko1,
Supervisor: Leonid Kalinichenko1,

1 Institute of Informatics Problems of the Russian Academy of Science

itsnein@gmail.com

Abstract. Definition of an adequate architecture of a procedural programming

language (PL) binding to the declarative language used for specification of

mediators discussed in the paper. A set of features to be used for

characterization and evaluation of different approaches of PL bindings to

information resource management systems is proposed. It is shown how a set of

supported features should be selected to solve impedance mismatch problems.

Keywords: Subject mediators, problems solving, impedance mismatch,

language binding.

1 Introduction

This paper1 has been prepared in frame of the PhD research that is being performed in

accordance with the conception of scientific problems formulation in the subject

mediation environment [1]. The subject mediators are defined in terms of a subject

domain independently of existing information resources (databases, services,

processes). Heterogeneous distributed information resources relevant to a problem are

registered in a mediator in a form of bidirectional mappings between resource classes

and mediator classes. Such mappings are expressed in a declarative way by means of

GLAV views [2]. Subject mediator specifications and views are defined by frame

based, object-oriented language [3] combined with the typed first order logic used for

expression of formulae, assertions and rule-based programs over the mediator classes

and functions. Problem solving support in the mediation environment is provided by

its various components – mediators, information resources (IR), programmable

wrappers, transformers defined by the mappings between resource and mediator

classes, application programs over the mediators. The PhD research is devoted to the

issues of efficient planning and organization of problem solving in the mediation

environment designed as a dispersed composition of the interoperable heterogeneous

components. The PhD research may be divided into three separate issues. The first

one is the problem of dispersed organization of the problem solving itself. The second

one is the issue of information resource wrappers semi-automatic generation. The last

one is the main topic of this paper and consists in the definition of an adequate

architecture of a procedural programming language (PL) binding with the declarative

language used for specification of mediators. The paper is structured as follows. In

1 This research has been done under the support of the RFBR (projects 10-07-00342-а) and the

Program for fundamental research of the Presidium of RAS 15P (project 4.2).

mailto:itsnein@gmail.com

section 2 the PhD research outline is presented. Characterization of binding issues is

considered in section 3. Brief characterization of impedance mismatch problem and

its solving approaches are considered in section 4. In section 5 the related works are

considered. In conclusion the contribution of the work is summarized.

2 PhD research outline

The issues of dispersed organization of problem solving in the mediation environment

arise from the fact that various components of the environment (such as the mediator

declarative program, mappings between resource classes and mediator classes

expressed in the view definitions, programs in procedural language, resource

wrappers taking into account capabilities of the resources, resources themselves) can

be assigned for implementation of various parts of the problem solving algorithm.

Main task of the PhD research consists in selection of an efficient variant of dispersed

implementation of the algorithm. A set of possible variants forms a dispersed

implementation model (DIM). Each state of the model is characterized by assignment

of the mediation environment components for all parts of the algorithm. Two

accompanying tasks are also studied in frame of the PhD work. One of them is an

approach for semi-automatic development of the resource wrappers with an

architecture that supports adaptive planning and permits efficient capability-based

operation execution. Another one is associated with the development of an adequate

architecture of a procedural programming language (PL) binding with the declarative

mediator specification language.

In spite of the numerous research and development in the areas of interoperable

architectures, PL bindings with databases and existing standards (e.g., ODMG 3.0

standard [4], C++ binding with Oracle (OCCI) [5], Java interface to a DB (JDBC) [6],

standard SQLJ for embedded SQL in Java [7], Sun Java Data Objects (JDO) standard

[8], Microsoft LINQ [9]), up to now there was no attempt to make systematic analysis

of approaches to the design and development of various bindings. Such state of the art

creates difficulties for comparison of capabilities of various binding approaches as

well as for creation of bindings for new languages and systems. This paper is aimed at

the definition of the set of features for characterization and evaluation of various

bindings of PL with the systems for management of various information resources.

Development of such systematization is motivated by the need for the well-grounded

definition of an adequate architecture of binding of the subject mediator support

facilities with the programming languages. Proposing such systematization, we shall

narrow the discussion with the class of object-oriented languages.

3 Characterization of binding issues in terms of PL and databases

Though this paper discusses a binding between PL and subject mediation support

facilities, in this section we consider the binding issue in the context of PL and

databases. Due to the overwhelming number of researches, standards and

implementations of bindings in database area, such selection of context is reasonable.

At the same time the generality of considerations is preserved since subject mediator

environment can be treated as a virtual resource management system.

Mapping of DDL types to PL types, including type functions and invariants, should

be commutative. Preserving of type relations (e.g., subtyping) is also assumed.

Respect of the commutativity requirement leads to preserving of information and

operations of a source data model (determined by DDL) in a target data model

(determined by PL). The commutativity is reached if the mapping diagram for DDL is

commutative [10]. In particular, type mapping commutativity justification is based on

a proof that the type operations of source model are refined by target model [11].

Another important binding issue is the mapping of a query language (QL) into PL.

A query containment property [12] should be satisfied for such mapping. To make

static type checking support possible, PL should be extended with query language

constructs. For dynamic checking considering a query just as a string is enough.

Database object manipulation in PL can be carried out either by means of

modification of persistent type values, or by means of special DML operations. For

static type checking support, PL should be extended with DML constructs. This is not

required in dynamics, therefore the DML operations can be passed to DBMS just in a

string form.

Providing of a distinction between persistent and transient types (and their

instances) in PL is also an important binding issue. Database DDL classes mapping to

PL collections requires semantic modification of such collections in PL giving to

them meaning of persistence. Modification of PL itself is actually required for that.

Static type checking requires query result collections to be generic (Set <Type>).

Under such assumptions, a set of possible PL to DBMS binding architectures can

be characterized by the following orthogonal features.

DDL Mapping (LM):

Type2Type (T2T): Type (class) specification in DDL is mapped to a type

(persistent collection) specification in PL

//Specification in DDL (SQL)

CREATE TYPE emp UNDER person AS (EMP_ID INTEGER, SALARY REAL)

 INSTANIABLE NOT FINAL REF (EMP_ID)

INSTANCE METHOD GIVE_RAISE(AMOUNT REAL) RETURNS REAL;

CREATE TABLE empls OF emp;

//Type specification in PL(Java)
Class Emp extends Person implements PersistentObject {

 private int emp_id;

 private float salary;

 public float give_raise(float amount);}

DBCollection<Emp> empls = new DBCollection<Emp>();

Type2TypePattern (T2P): Type (class) specification in DDL is presented as value

(object) in PL. This value is formed according to the respective type specification

//Specification in DDL (SQL)

CREATE TABLE customer (Name char(50), Birth_Date date)

//Type specification in PL(Java)

Class Attribute {String attName; String attType;}

Class DBTable {String tableName; List<Attribute> atts;}

//PL Object

table = {“customer”, atts = {

 {“Name”,”char(50)”}, {“Birth_Date”,”date”}}}

PL-Type2DDLType (PL2T): Type specification in PL(Java)

//Specification in C#

[Table(Name="People")]

public class Person {

[Column(DbType="nvarchar(32)",Id=true)] public string Name;

[Column] public int Age; }

//In DataBase the following table is created:

create table People (Name nvarchar(32) primary key, Age int)

Query Mapping (QM):

Query2String (Q2S): Query is represented as a string in PL

//QL – SQL, Programming Language - Java

OQLQuery query = impl.newOQLQuery();

query.create("select t.assists.taughtBy from t in TA where

t.salary > $1 and t in $2 ");

Query2QueryPattern (Q2P): Query is represented as a parameterized object in PL

//QL - Declarative JDOQL, Programming Language - Java

Query q = pm.newQuery(org.jpox.Person.class, "lastName ==

\"Jones\" && age < age_limit");

q.declareParameters("double age_limit");

List results = (List)q.execute(20.0);

Query2PL-Query (Q2PLQ): PL is extended with QL constructs

//QL – SQLJ, Programming language - Java

#sql ordIdIter = { SELECT OrderId FROM otn_deliverydetail };

while (ordIdIter.next()) {

 id = ordIdIter.orderid();

 gui.addToList(id);}

Completeness of Query Support (QS):

ClassCompositionQuery (CCQ): Query language is mapped completely. User is

provided with a possibility to express any query in PL expressible in the native QL.

OneClasslQuery (OCQ): Query language is strictly limited. User is provided with

a possibility to retrieve only a collection of objects of one particular type

(compositions of classes are not possible) satisfying some condition.

Object Manipulation by DML (OM):

DMLoperator2String (DML2S): DML operator is represented as a string in PL

DMLoperator2PL-operator (DML2O): PL is extended with DML constructs

Object Manipulation by Object Persistence:

PersistentObjects (PO): Persistent data is supported, modifying of persistent

objects in PL causes changes in DB.

TransientObjects (TO): Only transient data is supported, modifying of objects in

PL is not reflected in DB.

Generic Collections (C):

Generic-SetType (GST): Generic collections with a type as parameter (Set<Type>)

are supported.

Strict-SetType(SST): Generic collections are not supported.

Usability of the binding features introduced will be shown applying them to the

definition of a set of features sufficient for support of static or dynamic type checking.

For a static type checking support it is enough to realize the following set of features:

Type2Type, Query2PL-Query, DMLoperator2PL-operator or PersistentObjects,

Generic-SetType. For dynamic (runtime) type checking support it is enough to realize

the following set of features: Type2TypePattern, Query2String, DMLoperator2String,

Strict-SetType.

The table of characterization of the known binding approaches by the features

offered is presented below. The binding approach proposed by the author for PL to

subject mediators binding is included in the table as the row denoted by «Synthesis».

Table 1. Characterization of well-known approaches

 LM QM OM QS C

ODMG 3.0 T2T Q2S TO CCQ SST

JDO PL2T Q2S, Q2P PO OCQ GST

JDBC T2P Q2S DML2S, TO CCQ SST

SQLJ T2P Q2PLQ DML2O, PO CCQ GST

OCCI T2T Q2S DML2S, TO OCQ SST

LINQ PL2T Q2PLQ DML2O, TO, PO CCQ GST

Synthesis T2T, T2P Q2S, Q2PLQ TO, PO CCQ GST

4 Brief characterization of impedance mismatch between

DDL/DML and PL

To characterize the impedance mismatch problem in terms of the mapping features

proposed we use a list of the basic respective problems extracted from the Kazimierz

Subieta paper [13]:

 Syntax (S): Programmer must work in two languages simultaneously. Same

concepts may mean different things(for example, “=” in Java means assignment,

while in SQL “=” means comparison).

 Typing (T): Types in PL and types in QL may differ. Commutative mapping

between types may be impossible or cause serious overhead. PL introduces static

(compile time) type checking, but QL is based on dynamic type checking.

 Binding phases and mechanisms (B): QL is based on dynamic (run-time)

binding for names occurred in a query, while PL is based on static (compile and

linking time) binding.

 Name spaces and scope rules (N): PL and QL have different name spaces, for

example from PL we can’t use names occurring in queries and v/v. But usually

program variables may parameterize queries and result of a query may be used as

PL variable.

 Collections (C): Semantics of DB collections and PL collections are different.

DB collections are processed by queries and result is stored not in DB but in PL

collection with its own syntax and semantics.

 Persistence (P): QL processes persistent data (stored on a disc), while PL

processes transient data (stored in memory). Objects in PL received from DB

commute with objects in DB. So changes in PL objects must be reflected to DB.

 Queries and expressions (Q): Some queries and expressions syntactically may

be similar but they have different semantics. For example, in QL 2+2 is a query,

but it is also an expression of PL. A query cannot be a parameter to a procedure,

but an expression can.

 References (Ref): To update, insert or delete data in DB some references to

stored data are required. QL returns not references but collections (data). So

DML references support (or some another facilities) are required in PL to

manipulate data (e.g. Persistent Objects).

 Refactoring (R): Refactoring names can’t be automatically applied to queries if

they are represented as strings.

Table below shows which features of the binding characterization introduced are

required to solve the impedance mismatch problems.

Table 2. Covering of the impedance mismatch problems by the features introduced

 S T B N C P Q Ref R

Type2Type (T2T) Y Y(w) Y(w)

Type2TypePattern (T2P)

PL-Type2DDLType (PL2T)

Query2PL-Query (Q2PLQ) Y Y(w) Y Y Y

Query2String (Q2S)

Query2QueryPattern (Q2P) Y Y

DMLoperator2PL-operator (DML2O) Y

DMLoperator2String (DML2S) Y

PersistentObjects (PO) Y Y

TransientObjects (TO)

Generic-SetType (GST) Y(w)

Strict-SetTypet (SST)

Yes – means that a binding approach supporting this feature completely solves

impedance mismatch problem. Yes(w) – means that impedance mismatch problem is

solved if both features are supported. As it is shown in the table, to solve all

impedance mismatch problems listed above a approach should respect the following

set of features: Type2Type, Query2PL-Query, Persistent Objects, Generic-SetType.

5 Related work

The problem of binding programming languages with declarative languages

(databases, subject mediators) is not new. Several well-known approaches are

presented in Table 1. It’s clearly seen that none of the projects solves all impedance

mismatch problems.

ODMG 3.0 solves only Typing problem. OCCI solves Typing and Reference

problems. JDBC solves only Reference problem. SQLJ does not solve Typing,

Binding and Collection. JDO solves Syntax, Persistent, Reference and Refactoring

problems. LINQ as SQLJ does not solve Typing, Binding and Collection problems.

Several papers were devoted to the comparison of various binding projects. For

example, in [14] a qualitative evaluation criteria are presented that are quite similar to

the characterization presented in section 3. The characteristics related to the

impedance mismatch are a subset of the features considered in section3.

There are also several approaches which claimed that impedance mismatch

problem is completely solved.

Main idea of the Sather approach [15] consists in using of the basic data structures

of programming language to represent entities of the relational data model. It is

assumed that by using one and the same type system for programming language and

database, the impedance mismatch problem will be solved. This approach solves

Syntax, Persistent, Reference and Refactoring problems.

In ARARAT project [16] authors eliminates impedance mismatch problem by

offering template library whose objective is type safe generation of SQL. This

template library is statically generated by database schema. Template library contains

classes for query design, not for database type representation. Persistent objects and

generic collections are not supported. As Query2QueryPattern approach ARARAT

solves Syntax and Refactoring Impedance mismatch problems.

In Stack Base Approach (SBA) [17] all impedance mismatch problems are

eliminating by means of inventing new self-contained query/programming language.

Such imperative object-oriented programming language, in which there is no

distinction between PL expressions and queries called SBQL. SBQL rejects any type

checking mechanisms that originate from type theory, so the problem of static type

checking is still actual.

In PhD thesis [18] author investigates the integration problem of programming and

query languages for distributed object databases. Author uses the SBA for developing

the database programming and query language called iDBPQL. Author extends SBQL

approach by means of persistent objects, transactions, distribution, support of large

amount of data (as the stacks are main memory based), type system support.

SBA and its implementations (SBQL, iDBPQL) constitute a promising technique

providing a new foundation of QL-centric programming language instead of applying

conventional programming language paradigms. It solves most (SBQL) or all

(iDBPQL) impedance mismatch problems. In contrast to the approach presented in

this paper, SBA invents a new query/programming language instead of solving

impedance mismatch problem in terms of standard PL and QL (e.g. SQL).

6 Conclusion

A set of features to be used for characterization and evaluation of different approaches

of PL bindings to information resource management systems is proposed. In terms of

the features introduced, a characterization of well-known approaches to PL with

DBMS binding is given. It is shown how a set of supported features should be

selected to solve impedance mismatch problems. An adequate set of features was

selected for an advanced approach for binding of a procedural PL with a subject

mediators declarative specification language (row of Table 1 denoted by “Synthesis”).

The set of features selected provides for complete representation of information

model of subject mediators in PL as well as for overcoming of the most of impedance

mismatch problems. The problems considered in the paper arise in the context of PhD

work on the efficient organization of dispersed implementation of applications using

various components of the mediation environment.

References

1. Kalinichenko L.A., Briukhov D.O., Martynov D.O., Skvortsov N.A., Stupnikov S.A.
Mediation Framework for Enterprise Information System Infrastructures. Proc. of the

ICEIS 2007. Volume Databases and Information Systems Integration. -- P. 246--251.

2. Friedman M., Levy A., Millstein T. Navigational plans for data integration // National

Conference on Artificial Intelligence (AAAI) Proceedings, 1999.

3. Kalinichenko L.A., Stupnikov S.A., Martynov D.O. SYNTHESIS: a Language for

Canonical Information Modeling and Mediator Definition for Problem Solving in

Heterogeneous Information Resource Environments. Moscow: IPI RAN, 2007. - 171 p.

4. R.G.G. Cattell, Douglas K. Barry, et. al. The Object Data Standard: ODMG 3.0. Morgan

Kaufmann Publishers, San Francisco, California

5. OCCI User Guide,

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28390/toc.htm

6. Oracle Java SE Technologies - Database,

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

7. Jim Melton, (ISO-ANSI Working Draft) Object Language Bindings (SQL/OLB),

American National Standard, Information technology — Database languages — SQL —

Part 10: Object Language Bindings (SQL/OLB), August 2003

8. JDO documentation, http://java.sun.com/jdo/

9. LINQ to SQL User Guide, http://msdn.microsoft.com/ru-ru/library/bb386976.aspx

10. Kalinichenko L.A. Methods and tools for equivalent data model mapping construction.

Proc. of the International Conference on Extending Database Technology EDBT'90.

LNCS 416. -- Berlin-Heidelberg: Springer-Verlag, 1990. -- P. 92-119.

11. Kalinichenko L.A., Stupnikov S.A. Constructing of Mappings of Heterogeneous

Information Models into the Canonical Models of Integrated Information Systems. Proc.

of the ADBIS 2008. -- Pori: Tampere University of Technology, 2008. -- P. 106-122.

12. Todd Millstein, Alon Halevy, Marc Friedman, Query containment for data integration

systems, Journal of Computer and System Sciences, Vol.66, Issue 1, 02/2003, Pages 20-39

13. Kazimierz Subieta, Impedance mismatch,

http://www.ipipan.waw.pl/~subieta/SBA_SBQL/Topics/ImpedanceMismatch.html

14. William R. Cook, Ali H. Ibrahim. Integrating Programming Languages & Databases:

What's the Problem? www.cs.utexas.edu/~wcook/Drafts/2005/PLDBProblem.pdf

15. Jian Chen , Qiming Huang. Eliminating the Impedance Mismatch Between Relational

Systems and Object-Oriented Programming Languages. in Proce. the 6th International

Hong Kong Database Workshop, 1995.

16. Joseph (Yossi) Gil, Keren Lenz. Eliminating Impedance Mismatch in C++. VLDB, 2007.

17. Michał Lentner, Kazimierz Subieta. ODRA: A Next Generation Object-Oriented

Environment for Rapid Database Application Development. ADBIS 2007, p. 130-140.

18. Markus Kirchberg. Integration of Database Programming and Query Languages for

Distributed Object Bases. PhD thesis for the degree of Doctor of Philosophy in

Information Systems at Massey University, 2007.

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28390/toc.htm
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://java.sun.com/jdo/
http://msdn.microsoft.com/ru-ru/library/bb386976.aspx
http://www.ipipan.waw.pl/~subieta/SBA_SBQL/Topics/ImpedanceMismatch.html
http://www.cs.utexas.edu/~wcook/Drafts/2005/PLDBProblem.pdf

