
Answering Recursive Queries under Keys and

Foreign Keys is Undecidable

Diego Calvanese, Riccardo Rosati

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

{calvanese,rosati}@dis.uniroma1.it

Abstract

Query answering in the presence of integrity constraints is a fundamental
problem in several settings, such as information integration. Keys, foreign keys
and inclusion dependencies are the most common forms of constraints used in
databases. It has been established recently that, in the presence of such con-
straints, query answering is decidable for non-recursive queries. Obviously, in the
absence of constraints, query answering is also decidable for recursive queries,
which are a powerful querying mechanism that subsumes query languages for
semistructured data and the semantic web. It was open whether answering re-
cursive queries in the presence of the above classes of constraints is decidable.
In this paper we show that this is indeed not the case. In particular, we show
that answering recursive queries under keys and foreign keys or under inclusion
dependencies is undecidable, both for unrestricted and for finite databases.

1 Introduction

Integrity constraints are a fundamental modeling tool in databases [5, 2]. In many
application domains, integrity constraints may be violated by the data collected and
managed by the application. In principle, the issue of dealing with integrity constraint
violations is relevant in all applications involving the integration of heterogeneous
information (e.g., Semantic Web, Data Warehouses, Enterprise Resource Planning
Systems). For instance, in data integration [8, 7], integrity constraints enrich the
semantics of the global view of a set of autonomous information sources, while such
constraints may be violated by data at the sources [6].

In the general case of a database in which data violate integrity constraints, the
problem arises of how to interpret such a database. Traditionally, database theory
adopts an exact interpretation of data, based on the closed world assumption [10],
i.e., the interpretation of each relation r exactly corresponds to the extension of r in
the database instance. In order to cope with data inconsistencies, other assumptions
about data are adopted in the literature on information integration. In particular,
many studies propose to adopt in such a setting a sound semantics [8], in which the
interpretation of each relation r can be considered as a superset of the extension of r
in the database instance.



In this paper we focus our attention on some of the most common forms of con-
straints used in databases, namely (i) single primary keys and foreign keys, and (ii) in-
clusion dependencies, and study query answering under the sound semantics.

It has been established recently that, in the presence of such constraints, query an-
swering is decidable for conjunctive queries and for unions of conjunctive queries [3, 4].
Obviously, in the absence of integrity constraints (or in the presence of key depen-
dencies only), query answering is also decidable for recursive queries [2], which are
a powerful querying mechanism that subsumes query languages for semistructured
data and the semantic web. It was open whether answering recursive queries in the
presence of these classes of constraints is decidable.

We provide a negative answer to the above question. In particular, we develop our
analysis both under the assumption that a database must be a finite structure, and
under the assumption of unrestricted databases. We first prove that, in the presence
of either inclusion dependencies or key and foreign key dependencies, answers to re-
cursive queries over finite databases are in general different from the answers obtained
over unrestricted databases, i.e., finite controllability does not hold for recursive query
answering. Then, we prove that, both for unrestricted and for finite databases, recur-
sive query answering is undecidable in the presence of inclusion dependencies or in the
presence of key and foreign key dependencies. Finally, we extend our results to the
problem of query containment under integrity constraints. In particular, we show that
the problem of establishing whether a conjunctive query is contained into a recursive
query, which is decidable in the absence of integrity constraints, is undecidable when
either inclusion dependencies or key and foreign key dependencies are expressed over
the database schema.

The above results imply that, under the sound semantics, the presence of even
very simple forms of integrity constraints makes the problem of answering recursive
queries (and the problem of deciding query containment of a conjunctive query w.r.t. a
recursive query) undecidable. Conversely, in the same setting, conjunctive queries can
be effectively answered by sound and complete algorithms (and containment between
conjunctive queries can be effectively decided).

The paper is organized as follows. In Section 2 we recall the formal framework
of relational databases with integrity constraints. Then, in Section 3 we study finite
controllability of recursive query answering. In Section 4 we prove undecidability
of recursive query answering both under inclusion dependencies and under key and
foreign key dependencies. In Section 5 we extend the previous undecidability results
to the problem of query containment under integrity constraints. Section 6 concludes
the paper.

2 Framework

In this section we present the syntax and semantics of the relational model with
integrity constraints. We assume that the reader is familiar with the basic notions of
relational databases [2].



2.1 Syntax

We consider to have an infinite, fixed alphabet Γ of constants representing real world
objects, and we take into account only database instances having Γ as domain. More-
over, we assume that different constants in Γ denote different objects, i.e., we adopt
the so-called unique name assumption.

Basically, in the relational model we have to account for a set of relation symbols
and a set of integrity constraints, i.e., assertions on the relation symbols that express
conditions that are intended to be satisfied by database instances. In this paper we
focus our attention on inclusion and key dependencies. More formally, we indicate a
relational schema (or simply schema) S as a triple 〈R, I,K〉, where:

• R is a set of relations, each with an associated arity that indicates the number
of its attributes. The attributes of a relation r of arity n, are represented by the
integers 1, . . . , n. We use r/n to denote that a relation r has arity n.

• K is a set of key dependencies (KDs), i.e., a set of assertions of the form key(r) =
A, where r is a relation in the global schema, and A = A1, . . . , An is a sequence
of attributes of r. We assume that at most one key dependency is specified for
each relation.

• I is a set of inclusion dependencies (IDs), i.e., a set of assertions of the form
r1[A] ⊆ r2[B], where r1, r2 are relations in R, A = A1, . . . , An is a sequence of
distinct attributes of r1, and B = B1, . . . , Bn is a sequence of distinct attributes
of r2. Such an inclusion dependency is called a foreign key (FK) when there is
a key dependency on r2 with key(r2) = B.

In the following, we call ID-schema a schema of the form S = 〈R, I, ∅〉, i.e., a
schema containing only inclusion dependencies, while we call FK-schema a schema
containing key and foreign key dependencies, i.e., a schema of the form S = 〈R, I,K〉
where all inclusions in I are foreign key dependencies.

A relational query (or simply query) over S is a formula that is intended to extract
a set of tuples of constants of Γ. The language used to express queries over S is Datalog
(without inequality), which we now define formally.

An atom is an expression of the form r(x1, . . . , xn) where r is a relation symbol of
arity n and x1, . . . , xn are either variables or constants in Γ. A rule is an expression
of the form

r(~x)← r1(~y1), . . . , rk(~yk)

where r(~x), r1(~y1), . . . , rk(~yk) are atoms, and each variable in ~x appears among
the variables in ~y1, . . . , ~yk. The atom r(~x) is called the head of the rule, and
r1(~y1), . . . , rk(~yk) is called its body. All variables are implicitly universally quanti-
fied outside the rule. A Datalog query q is a set of rules where at least one rule has
q as relation symbol in the head. The arity n of the query is the arity of the relation
symbol q. A boolean query is a query of arity 0. The relation symbols that occur in
the heads of the rules are called intensional (IDB) symbols. The rest of the relation
symbols are called extensional (EDB) symbols and must be among the symbols in R.



Consider the graph Gq containing one node for each IDB symbol, and an edge from
symbol r to symbol r′ if r′ appears in the body of a rule that has r as predicate in
the head. The query q is said to be recursive if Gq contains a cycle.

2.2 Semantics

A database instance (or simply database) B for a schema S = 〈R, I,K〉 is a set of facts
of the form r(t) where r is a relation of arity n in R and t is an n-tuple of constants
from Γ. We denote as rB the set {t | r(t) ∈ B}. A database B for a schema S is
said to be consistent with S if it satisfies all the dependencies expressed on S. In our
framework, this means satisfying IDs in I and KDs in K. More formally:

• B satisfies an inclusion dependency r1[A] ⊆ r2[B] if for each tuple t1 in rB1 there
exists a tuple t2 in rB2 such that t1[A] = t2[B], where t[A] is the projection of
the tuple t over A. If B satisfies all inclusion dependencies expressed on S, then
we say that B is consistent with I;

• B satisfies a key dependency key(r) = A if for each t1, t2 ∈ rB with t1 6= t2 we
have t1[A] 6= t2[A]. If B satisfies all key dependencies expressed on S we say
that B is consistent with K.

Traditionally, in databases, the closed world assumption is made, i.e, given a
schema S and a database D, the set of tuples considered to be in a relation r are
exactly those that D assign to r. Hence, D has to satisfy S and, when answering a
query, one has to consider a single database only. On the other hand, one can adopt
an open world semantics, and consider the tuples that D assigns to relations in R as a
subset of the set of tuples that satisfy S. In other words, the database D is considered
to be a sound specification of the databases B for S. Such an assumption is typical
of settings with incomplete information, such as information integration, and it is the
one we adopt here.

Formally, given a finite database D for S = 〈R, I,K〉, the semantics of S with
respect to D, denoted sem(S,D), is the set of (possibly infinite) databases B for S
such that:

• B is consistent with S, i.e., it satisfies the integrity constraints in I and K;

• B ⊇ D.

It is easy to see that sem(S,D) contains several databases for S. Moreover, we denote
with semf (S,D) the subset of sem(S,D) constituted by all finite databases.

We give now the semantics of queries. For a rule

r(x1, . . . , xn)← r1(~y1), . . . , rk(~yk)

the facts that can be deduced by applying the rule to a database B are the n-tuples
〈c1, . . . , cn〉 of constants of Γ, such that there is a substitution of the variables in the
body of the rule with constants of Γ that assigns ci to xi and such that, after the
substitution, each atom of the body is in B.



For a Datalog query q, given a database B′ over both the extensional and the
intensional relation symbols, let τq(B

′) be the database obtained by adding to B′ all
the facts that are deduced by applying to B′ all the rules in q. Then, the evaluation
of q over a database B, denoted as ans(q,B), is the fixpoint of the application of τq(·)
starting from B. Formally, let

B0 = B
Bi+1 = τq(Bi)

Then ans(q,B) = qBh , where h is the least number such that Bh = Bh+1. Note that
such an h always exists [2].

Finally, given a schema S and a database D for S, we call certain answers to a
Datalog query q of arity n with respect to S and D, the set

cert(q,S,D) = {〈c1, . . . , cn〉 | 〈c1, . . . , cn〉 ∈ ans(q,B), for each B ∈ sem(S,D) }

Moreover, we consider also certain answers over finite databases, defined as follows:

certf (q,S,D) = {〈c1, . . . , cn〉 | 〈c1, . . . , cn〉 ∈ ans(q,B), for each B ∈ semf (S,D) }

Intuitively, the certain answers are the tuples that are answers to the query for ev-
ery (finite) database in the semantics of the schema, and hence consistent with the
available information [8].

3 Finite controllability

We start by studying finite controllability of the problem of answering recursive
queries, i.e., we ask whether the answers to recursive queries over finite databases
are in general different from the answers obtained over unrestricted databases.

The following theorem establishes that finite controllability does not hold for re-
cursive query answering in the presence of inclusion dependencies.

Theorem 1 There exist a Datalog query q, an ID-schema S = 〈R, I, ∅〉, and a
database D for S such that cert(q,S,D) 6= certf (q,S,D).

Proof. Without loss of generality, we assume that the domain of constants Γ is of the
form Γ = {n1, n2, . . . , nk, . . .}. Now let S and D be as follows:

R = { r/2 }

I = { r[2] ⊆ r[1] }

D = { r(n1, n2) }

and let q be the following boolean query:

q ← r′(X, X)

r′(X, Y ) ← r(X, Y )

r′(X, Z) ← r′(X, Y ), r(Y, Z)



One can easily verify that 〈〉 ∈ certf (q,S,D), i.e., the boolean query q is true in
all the databases belonging to semf (S,D). On the other hand, 〈〉 6∈ cert(q,S,D): in
fact, for the infinite database B in sem(S,D) of the form

B =
∞⋃

i=1

{ r(ni, ni+1) }

we have that q is false in B.

The above proof can be easily extended in order to show that finite controllability
does not hold for recursive query answering also in the presence of key and foreign
key dependencies. More precisely, we construct an FK-schema obtained from the
previous schema S by adding the key dependency K = { key(r) = 1 }, which makes
the inclusion in I a foreign key dependency. Under this new definition of S, it holds
that 〈〉 ∈ certf (q,S,D) while 〈〉 6∈ cert(q,S,D), which proves the following theorem.

Theorem 2 There exist a Datalog query q, an FK-schema S = 〈R, I,K〉, and a
database D for S such that cert(q,S,D) 6= certf (q,S,D).

4 Query answering

We now show that the problem of determining whether a tuple is a certain answer
(both over unrestricted and over finite databases) to a Datalog query with respect
to a schema containing key and foreign key dependencies is undecidable. To do so,
we exhibit a reduction from the halting problem for a deterministic Turing machine
(TM).

LetM = (Q, Σ, q0, δ, qh) be a deterministic TM, where:

• Q is the set of states of M;

• Σ is the tape alphabet of M, which contains a special blank symbol [;

• qo ∈ Q is the initial state of M;

• qh is the halting state of M;

• δ : Q× Σ −→ Q× Σ× {⇐,⇒,⇔} is the transition function of M.

We assume that the machine works on a left-bounded, right-unbounded tape, and
that initially all positions of the tape contain [.

Intuitively, the TM starts its computation in state q0, with its head on the leftmost
position of the tape. When the TM is in state q and its head is on a tape position
containing the symbol s, then the machine makes a move according to δ(q, s) =
(q′, s′, m), by switching to state q′, replacing the symbol under the head with s′, and
moving its head according to what specified by m (the head moves one position to
the left when m is⇐, one position to the right when m is⇒, and stays in place when
m is ⇔). We assume w.l.o.g. that M never moves past the leftmost position of the
tape (e.g., it may initially write a special symbol # on the leftmost position, and then



never move past #). We also assume that there are no transitions from the halting
state qh.

Formally, the state of the computation of M, i.e., the tape contents, the head
position, and the current state of M, is described by a configuration of M, which
we represent as a finite string of Σ∗·(Σ×Q)·Σ∗. The initial configuration is ε([, q0)ε.
Given a configuration w`(s1, q)s2wr, with w`, wr ∈ Σ∗, if δ(s1, q) = (s′, q′,⇒), then
the next configuration is w`s

′(s2, q
′)wr. Similarly for transitions that move the head

to the left or leave it in place.
We say that the TM halts when, started on the leftmost position of an initially

blank tape, it enters state qh, i.e., the computation reaches a configuration of the form
w`(s, qh)wr for some s ∈ Σ and w`, wr ∈ Σ∗. The halting problem consists in deciding
whether a given TM halts.

We encode TM computations following an idea in [9]. Specifically, given a TM
M = (Q, Σ, q0, δ, qh), we construct a schema Sint = 〈Rint , Iint , Kint〉 (which may be
either an ID-schema or an FK-schema), a database Dint , and a boolean Datalog query
qM such that cert(qM,Sint ,Dint) is nonempty if and only if M halts on the initially
blank tape. We first provide the reduction for query answering under keys and foreign
keys over unrestricted databases. We discuss then how it can be adapted also for the
other cases.

The set of relations is Rint = {int/1, succ/2}. The key dependencies Kint are

key(int) = {1}
key(succ) = {1}

The foreign key dependencies Iint are

int [1] ⊆ succ[1]
succ[2] ⊆ int [1]

The database Dint contains just the fact:

int(0)

The intention is that, in a database B ∈ sem(Sint ,Dint), the instances of int rep-
resent integers. We use such integers to identify both positions in a configuration
and configurations. Then, we encode the computation of M by means of the query
qM, making use of additional IDB predicate symbols tape/3 and lt/2. Intuitively,
tape(c, p, s) represents that, for the configuration identified by c, in the position iden-
tified by p, the symbol on the tape is s; instead lt(i1, i2) means that i1 represents an
integer “smaller than” i2, i.e., i1 precedes i2 according to the succ relation. Besides
the constant 0, we make use of one constant s for each tape symbol s in Σ, and of one
constant sq for each pair (s, q) ∈ Σ×Q.

We define qM by means of the following rules.

• Rules defining the predicate lt :

lt(I1, I2) ← succ(I1, I2)
lt(I1, I2) ← succ(I1, I3), lt(I3, I2)



• Rules encoding the initial configuration of M:

tape(0, 0, [q0
) ←

tape(0, P, [) ← lt(0, P )

• Rules for the transitions of M, which encode how the symbols in the various
positions of a configuration change whenM moves according to a certain tran-
sition:

– For each transition δ(q, s) = (q′, s′,⇔), the following rules:

tape(C ′, P, s′q′) ← tape(C, P, sq), succ(C, C ′)

tape(C ′, P ′′, S′′) ← tape(C, P ′′, S′′), tape(C, P, sq), succ(C, C ′), lt(P ′′, P )
tape(C ′, P ′′, S′′) ← tape(C, P ′′, S′′), tape(C, P, sq), succ(C, C ′), lt(P, P ′′)

Intuitively, the first rule takes into account the change of the symbol under
the head, while the second and third rules take into account that the re-
maining symbols, respectively to the left and the right of the head, do not
change.

– For each transition δ(q, s) = (q′, s′,⇐), the following rules:

tape(C ′, P, s) ← tape(C, P, sq), succ(C, C ′)
tape(C ′, P ′′, S′′) ← tape(C, P ′′, S′′), tape(C, P, sq), succ(C, C ′),

succ(P ′, P ), lt(P ′′, P ′)
tape(C ′, P ′′, S′′) ← tape(C, P ′′, S′′), tape(C, P, sq), succ(C, C ′), lt(P, P ′′)

and for each symbol s′′ ∈ Σ, the following rule:

tape(C ′, P ′, s′′q′) ← tape(C, P, sq), tape(C, P ′, s′′), succ(C, C ′), succ(P ′, P )

Intuitively, in this case, besides the change of the symbol under the head,
the rules also take into account that the head moves to the left. More
precisely, the first rule takes into account the change of the symbol under
the head, the last set of rules the change of the symbol immediately to
the left of the head (which becomes the symbol under the head in the new
configuration), and the second and third rules encode that the remaining
symbols, respectively to the left and to the right, do not change.

– For each transition δ(q, s) = (q′, s′,⇒), a set of rules analogous to the ones
of the previous case.

• Finally, to define the query predicate qM, for each symbol s ∈ Σ, the following
rule:

qM() ← tape(C, P, sqh
)

These rules make the query true when M has reached the halting state qh in
some configuration.



Theorem 3 The Turing machine M halts on the initially blank tape if and only if
〈〉 ∈ cert(qM,Sint ,Dint).

Proof (sketch). “⇒” Let C be a halting computation of M, and consider a
database B ∈ sem(Sint ,Dint). Due to the key and foreign key dependencies, it will
contain objects o0, o1, . . . ∈ intB such that 〈oi, oi+1〉 ∈ succB. Notice that, for B, we
have two possibilities:

1. The sequence o0, o1, . . . is infinite. In this case the domain of B is obviously
infinite, and each configuration/position can be identified by a distinct integer.
Hence, from the halting computation C of M, we can obtain an instantiation
of the rules in qM, which uses the objects o0, o1, . . . for the first and second
components of the tape predicate, and that correctly encodes C. From such an
instantiation we get that 〈〉 ∈ ans(qM,B).

2. There are h and k, with 0 ≤ h ≤ k, such that 〈oi, oi+1〉 ∈ succB, for 0 ≤
i < k, and 〈ok, oh〉 ∈ succB. In this case the domain of B is finite (at least
the part relevant for identifying configurations/positions), and, if k is smaller
than the number of configurations needed to reach the halting state, there will
be a successive configuration/position that is associated to the same integer as
the one associated to a preceding configuration/position. However, we still get
an instantiation of the rules of qM in such a way that 〈〉 ∈ ans(qM,B). In
some sense, the “conflicts” due to two facts tape(c, p, s1) and tape(c, p, s2), with
s1 6= s2, “facilitate” finding such an instantiation.

“⇐” Since 〈〉 ∈ cert(qM,Sint ,Dint), we have in particular that 〈〉 ∈ ans(qM,B),
where B is the database containing an infinite sequence o0, o1, . . . of objects in intB

such that 〈oi, oi+1〉 ∈ succB. When the rules of qM are instantiated using such objects
for the first and second components of tape, given that 〈〉 ∈ ans(qM,B), the tuples
instantiating tape actually encode a halting computation of M.

The proof of Theorem 3 actually goes through almost unchanged if we build an
ID-schema by removing from Sint the key dependencies in Kint , and just consider the
set Iint of inclusion dependencies (which, in this case, are not foreign keys):

int [1] ⊆ succ[1]
succ[2] ⊆ int [1]

The only difference is that, in this case, for an object o ∈ intB there may be more
than one object o′ such that (o, o′) ∈ succB. However, such objects do not influence
the line of reasoning in the proof above. Hence we get the following result.

Theorem 4 Let S be either an FK-schema or an ID-schema. Then, the problem of
computing the certain answers to a Datalog query over unrestricted databases with
respect to S and a database D is undecidable.

We now turn our attention to query answering over finite databases. Consider
again the encoding of M by means of qM. From the proof of Theorem 3 it follows



that, ifM halts, then 〈〉 ∈ ans(qM,B) for all finite databases B ∈ semf (Sint ,Dint). On
the other hand, even ifM does not halt, it may still be the case that 〈〉 ∈ ans(qM,B)
for all finite databases B ∈ semf (Sint ,Dint). This is due to the fact that, since B is
finite, we are always in case 2 in the proof of Theorem 3, and hence it may be that
a “conflict” in the encoding of configurations/positions always arises. To detect such
situations we proceed as follows.

1. We construct a new query qconf
M

, containing all rules of qM, except that the rules

defining the query predicate qM are replaced in qconf
M

by the following ones: for
each pair of symbols s1 and s2 with s1 6= s2, where si is either a symbol in Σ or
a symbol sq for some pair (s, q) ∈ Σ×Q, the following rule:

qconf
M

() ← tape(C, P, s1), tape(C, P, s2)

These rules make qconf
M

true when there is a conflict in the encoding of configu-
rations/positions.

2. We ask whether 〈〉 ∈ certf (qconf
M

,Sint ,Dint). If the answer is yes, then we can
conclude thatM does not halt on the empty input string. Indeed, ifM halted,
there would be some finite model Bg ∈ semf (Sint ,Dint) containing no conflict,

and hence we would have 〈〉 6∈ cert(qconf
M

,Sint ,Dint).

3. If the answer in the previous step was no, we can conclude that there is some
finite model Bg ∈ semf (Sint ,Dint) containing no conflict. Then we ask whether
〈〉 ∈ certf (qM,Sint ,Dint). If the answer is no again, we can conclude that M
does not halt. On the other hand, if the answer is yes, we can now conclude
thatM halts. Indeed, the evaluation of qM on the finite model Bg produces no
conflict, and hence correctly encodes a computation of M in which M reaches
the accepting state.

It follows that, if we had a means of establishing whether a tuple is in the certain
answer over finite databases, we could decide the halting problem. This leads us to
our second main result.

Theorem 5 Let S be either an FK-schema or an ID-schema. Then, the problem of
computing the certain answers to a Datalog query over finite databases with respect to
S and a database D is undecidable.

Finally, notice that, for simplicity, in our encoding we used constants in the queries.
We can easily remove constants from the query as follows:

1. introduce a new intensional predicate Pc for each constant c appearing in the
rules of the query;

2. replace each constant c in a rule with a new variable Xc, and add the atom
Pc(Xc) to the body of the rule;

3. add for each constant c the fact Pc(c) to the database D.

Hence, the undecidability results in Theorems 4 and 5 hold also when the query
contains no constants.



5 Query containment

In this section we analyze the problem of query containment under integrity con-
straints, and prove that the results for query answering obtained in the previous
sections also hold for query containment.

We study the problem of query containment with respect to ID-schemas and FK-
schemas, both over unrestricted databases and over finite databases. Formally, the
problem is the following: given a schema S, which may be either an ID-schema or
an FK-schema, a conjunctive query q1, and a Datalog query q2, we want to decide
whether:

1. q1 is contained in q2 w.r.t. S over unrestricted databases, denoted as q1 vS

q2, which corresponds to establish whether, for each database D for S,
cert(q1,S,D) ⊆ cert(q2,S,D);

2. q1 is contained in q2 w.r.t. S over finite databases, denoted as q1 v
f
S

q2,
which corresponds to establish whether, for each finite database D for S,
certf (q1,S,D) ⊆ certf (q2,S,D).

We now define a reduction of query answering to query containment. The re-
duction makes use of a well-known technique for reducing query answering to query
containment (see, e.g., [1]), and extends it to the case when integrity constraints are
expressed over the database schema.

Lemma 6 Given a schema S = 〈R, I,K〉, a database D = {f1, . . . , fk} containing k
facts, a Datalog query q, and a tuple t, let q1 be the following conjunctive query:

q1(t)← f1, . . . , fk

Then, t ∈ cert(q,S,D) if and only if q1 vS q, and t ∈ certf (q,S,D) if and only if

q1 v
f
S

q.

By the above lemma, it is immediate to extend the results obtained in the previous
sections to the query containment problem. In particular:

Theorem 7 There exist a conjunctive query q1, a Datalog query q2, and an ID-
schema (respectively, an FK-schema) S such that q1 v

f
S

q2 and q1 6vS q2.

Theorem 8 Let S be either an FK-schema or an ID-schema, let q1 be a conjunctive
query and let q2 be a Datalog query. Then, the problem of deciding whether q1 vS q2

is undecidable.

Theorem 9 Let S be either an FK-schema or an ID-schema, let q1 be a conjunctive
query and let q2 be a Datalog query. Then, the problem of deciding whether q1 v

f
S

q2

is undecidable.

The above results show that the problem of establishing whether a conjunctive
query is contained into a Datalog query, which is decidable in the absence of integrity
constraints, is undecidable when either inclusion dependencies or key and foreign key
dependencies are expressed over the database schema.



6 Conclusions

In this paper we have shown that, under the sound semantics, recursive query answer-
ing is undecidable in the presence of inclusion dependencies or in the presence of key
and foreign key dependencies, both over unrestricted and over finite databases. More-
over, we have shown that the problem of establishing whether a conjunctive query is
contained into a recursive query is undecidable when either inclusion dependencies or
key and foreign key dependencies are expressed over the database schema.

We point out that the reductions defined in Section 4 immediately imply that the
undecidability results stated by Theorems 4 and 5 still hold if we restrict to ID-schemas
with unary inclusion dependencies, i.e., inclusion dependencies that mention a single
attribute, or to FK-schemas where key dependencies are unary. In other words, the
presence of even extremely restricted forms of foreign keys and inclusion dependencies
makes answering recursive queries an undecidable problem.

References

[1] S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. of PODS’98, pages 254–265, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

[3] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. In Proc. of CAiSE 2002, volume 2348 of LNCS, pages
262–279. Springer, 2002.

[4] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In Proc. of PODS 2003,
pages 260–271, 2003.

[5] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. J. of Computer and System
Sciences, 28(1):29–59, 1984.

[6] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics
and query answering. In Proc. of ICDT 2003, pages 207–224, 2003.

[7] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[8] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002,
pages 233–246, 2002.

[9] A. Y. Levy and M.-C. Rousset. Verification of knowledge bases based on con-
tainment checking. Artificial Intelligence, 101(1-2):227–250, 1998.

[10] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors,
Logic and Databases, pages 119–140. Plenum Publ. Co., 1978.


