
Description Logic Systems with Concrete Domains:

Applications for the Semantic Web

Volker Haarslev† and Ralf Möller‡

†Concordia University, Montreal
‡University of Applied Sciences, Wedel

Abstract

The Semantic Web initiative defines important challenges for knowledge rep-
resentation and database systems. Recently, several standards for representation
languages have been proposed (RDF, DAML+OIL, OWL). We briefly discuss
the logical basis of these representation languages by referring to description
logic (DL) inferences systems. By introducing the DL inference system Racer
we demonstrate that practically usable query engines for Semantic Web repre-
sentation languages are available. Then, we argue that current representation
languages for the Semantic Web are not sufficient for simple and well-defined
representation problems that naturally arise in the context of Semantic Web ap-
plications. In particular, we mention different kinds of algebraic constraints over
various domains such as the reals or the natural numbers. We report on practi-
cal experiences with DL reasoning systems (e.g., Racer) already supporting these
representation means and argue for extensions to DAML+OIL or OWL.

1 Introduction

The Semantic Web initiative defines important challenges for knowledge representation
and database systems. Recently, one of the main standards for the Semantic Web
has been proposed: the Resource Description Format (RDF [15]). Since RDF is
based on XML it shares its document-oriented view of grouping sets of declarations or
statements. With RDF’s triple-oriented style of data modeling, it provides means for
expressing graph-structured data over multiple documents (whereas XML can only
express graph structures within a specific document). As a design decision, RDF
can talk about everything. Hence, in principle, statements in documents can also be
referred to as resources. In particular, conceptual domain models can be represented
as RDF resources. Conceptual domain models are referred to as “vocabularies” or
“ontologies”. Specific languages are provided for defining ontologies. An extension
of RDF for defining ontologies is RDF Schema (RDFS [6]) which only can express
conceptual modeling notions such as generalization between classes (aka concepts)
and properties (aka roles). For properties, domain and range restrictions can be
specified. Thus, the expressiveness of RDFS is very limited. Much more expressive
representation languages are DAML+OIL [17] and OWL [16].

1



In recent research efforts, these languages are mainly considered as ontology repre-
sentation languages (see e.g. [2] for an overview). The languages are used for defining
classes of so-called abstract objects. In this paper we argue that OWL can also be
practically used for representing information about specific abstract objects of a cer-
tain domain as well because OWL is based on RDF. All information about specific
objects (or entities) refers to an ontology (expressed in DAML+OIL or OWL). Thus,
in contrast to, for instance, simple relational databases, queries for retrieving abstract
objects described in RDF documents have to be answered w.r.t. to a conceptual do-
main model (the ontology). In this paper we demonstrate the main query answering
services of the OWL inference system Racer, and discuss its relevance for practical
applications.

It is common sense that dealing with abstract objects is not enough in the context
of the Semantic Web. Although still in a very weak way, based on XML-Schema,
OWL and DAML+OIL also provide means for dealing with data types known from
programming languages. Data types describe sets of so-called data objects (also called
data values) and encompass integer, short, long, boolean, string etc. For a
Semantic Web representation language, a semantic characterization for data types
might have been more appropriate in our opinion. Thus natural numbers, integers,
reals, or complex numbers might have been selected as data types rather than, for
example, long or short because for knowledge representation languages the storage
format should not be of topmost concern. In addition, DAML+OIL and OWL do not
support so-called constraints between data values. In many practical applications, for
instance, linear polynomial inequations with order relations are required for expressing
adequate domain models. This paper argues that Semantic Web languages such as
DAML+OIL or OWL must be extended to meet practical concerns. In addition, we
show that practical systems such as Racer exist that already cope with important
representation techniques missing in contemporary languages for the Semantic Web.

2 DL Systems as Query Engines for the Semantic Web

The representation languages mentioned above are defined with a model-theoretic se-
mantics. In particular, for the language OWL, a semantics was defined such that very
large fragments of the language can be directly expressed using so-called description
logics (DLs, see [1]). The fragment is called OWL DL. With some restrictions that are
discussed below one can state that the logical basis of OWL or DAML+OIL can be
characterized with the description logic SHIQ(Dn)− [2] (DAML+OIL documents are
assumed to be interpreted in the spirit of OWL DL). For those readers not familiar
with description logics it suffices to know that SHIQ(Dn)− is a decidable subset of
first order predicate logic. Sets of formulae for expressing conceptual domain models
(ontologies) are called T-boxes in the tradition of description logics. Sets of formulae
for expressing information about specific abstract objects (aka individuals) are called
A-boxes. A tuple consisting of a T-box and an A-box is also referred to as a knowledge
base (KB).

With some restrictions, DAML+OIL documents can be automatically translated

2



to SHIQ(Dn)− T-boxes. The restrictions can be summarized as follows. DAML+OIL
and OWL also allow for so-called individuals in concepts (and T-boxes). For exam-
ple, expressing the fact that all humans stem from a single human called ADAM re-
quires an individual in a concept (and a T-box): (implies HUMAN (some has-ancestor
{ADAM}). This cannot be expressed in SHIQ(Dn)−. However, a straightforward
approximation exists (see [9]) such that in practice suitable SHIQ(Dn)− T-boxes can
be generated from a DAML+OIL documents. It should be noted that, unfortunately,
in a sense OWL is less expressive than its predecessor DAML+OIL because so-called
qualifying number restrictions (e.g., for representing concepts such as “at least four
related companies which are customers and are also international companies”) are
missing from OWL 1.0. This will probably be solved in OWL 1.1 since qualified
number restrictions are already covered by SHIQ(Dn)− and are very important in
particular for querying knowledge bases.

The RDF-Part of DAML+OIL documents can be translated to SHIQ(Dn)− A-
boxes. The logic SHIQ(Dn)− is interesting for practical applications because highly
optimized inference systems are available (e.g., Racer). Neglecting the well-known
restrictions mentioned above, state of the art description logic systems such as Racer
[7] can directly read DAML-OIL or OWL documents from local files or from remote
web servers and represent the information contained in these documents as knowledge
bases. Once the information in DAML+OIL documents is represented as a description
logic knowledge base, description logic inference systems such as Racer can be used
for practically answering queries (an XML-based query language is described in [4]).

• Concept consistency w.r.t. a T-box: Is the set of objects described by a concept
empty?

• Concept subsumption w.r.t. a T-box: Is there a subset relationship between the
set of objects described by two concepts?

• Find all inconsistent concepts mentioned in a T-box. Inconsistent concepts might
be the result of modeling errors.

• Determine the parents and children of a concept w.r.t. a T-box: The parents of
a concept are the most specific concept names mentioned in a T-box which sub-
sume the concept. The children of a concept are the most general concept names
mentioned in a T-box that the concept subsumes. Considering all concept names
in a T-box the parent (or children) relation defines a graph structure which is
often referred to as taxonomy. Note that some authors use the name taxonomy
as a synonym for ontology. Computing the taxonomy is called classifying the
T-box.

Note that whenever a concept is needed as an argument for a query, not only
predefined names are possible. Rather, concepts can be composed to adequately
describe the domain objects involved. For details see [1].

If also an A-box is given, among others, the following types of queries are possible:

3



• Check the consistency of an A-box w.r.t. a T-box: Are the restrictions given in
an A-box w.r.t. a T-box too strong, i.e., do they contradict each other? Other
queries are only possible w.r.t. consistent A-boxes.

• Instance testing w.r.t. an A-box and a T-box: Is the object for which an individ-
ual stands a member of the set of objects described by a certain query concept?
The individual is then called an instance of the query concept.

• Instance retrieval w.r.t. an A-box and a T-box: Find all individuals from an
A-box such that the objects they stand for can be proven to be a member of a
set of objects described by a certain query concept.

• Computation of the direct types of an individual w.r.t. an A-box and a T-box:
Find the most specific concept names from a T-box of which a given individual
is an instance.

• Computation of the fillers of a role with reference to an individual.

Given the description logic background of Semantic Web representation languages
it becomes clear that many application papers1 demonstrate how these inference ser-
vices can be used to solve actual problems with DAML+OIL or OWL knowledge
bases. In particular, the instance retrieval inference service can be used in the Seman-
tic Web scenario (see [12] for expressivity results). Before we discuss some examples,
we consider an extension of DAML+OIL or OWL: constraints on data objects.

3 Concrete Domains

In description logics and data bases, representation techniques for expressing con-
straints on data objects have a long tradition (see [1, 14]). In the following we will
adopt the description logic perspective: concrete domains. Racer supports reasoning
over natural numbers (N), integers (Z), reals (R), complex numbers (C), and strings.
For different sets, different kinds of predicates are supported.

N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients
C nonlinear multivariate inequations with integer coefficients

Strings equality and inequality

3.1 An Example

The following example uses the concrete domains Z and R. For convenience reasons,
rational coefficients can be specified in floating point notation. They are automatically
transformed into their rational equivalents (e.g., 0.75 is transformed into 3/4).

1See e.g. the workshops on Applications of Description Logics (http://dl.kr.org/adl2001/,
http://dl.kr.org/adl2002/).

4



(in-tbox family)
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
...

Asking for the children of teenager reveals that old-teenager is a teenager. A
further extension demonstrates the usage of reals as a concrete domain.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)

(real temperature-celsius)
(real temperature-fahrenheit)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
(equivalent human-with-fever

(and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human

(and human (>= temperature-celsius 42.0)))
...

Obviously, Racer determines that the concept seriously-ill-human is subsumed
by human-with-fever. For the reals, Racer supports linear equations and inequa-
tions. Thus, we could add the following statement to the knowledge base in order
to make sure the relation between the two attributes temperature-fahrenheit and
temperature-celsius is properly represented.

(implies top (= temperature-fahrenheit
(+ (* 1.8 temperature-celsius) 32)))

While constraints such as (min age 18) can indeed be represented in OWL us-
ing datatypes and range restrictions, the latter constraint cannot be represented in
OWL because it involves constraints based on linear equations. Note that for read-
ability reasons we did not use the OWL syntax here even for those parts that can be
represented in OWL (or RDF).

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

5



Racer recognizes the subsumption relationship with human-with-fever and the syn-
onym relationship with seriously-ill-human.

In an A-box, it is possible to set up constraints between single individuals. This
is illustrated with the following examples.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

...
(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5))

For instance, these declarations state that the individual eve is related via the
attribute temperature-fahrenheit to the object temp-eve. The initial constraint
(= temp-eve 102.56) specifies that the object temp-eve is equal to 102.56. Now,
asking for the direct types of eve and doris reveals that both individuals are instances
of human-with-fever.

In the following A-box there is an inconsistency since the temperature of 102.56
Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5)
(> temp-eve temp-doris))

We assume that the assertion (> temp-eve temp-doris) is removed from the
knowledge base. Then, various kinds of queries involving concrete domains are pos-
sible. For instance: Check if certain concrete domain constraints are entailed by an
A-box and a T-box. The following query returns true.

(constraint-entailed? (= temp-eve temp-doris))

One can also use the instance retrieval inference service and ask for the instances of
human-with-fever: (concept-instances human-with-fever). Both individuals,
doris and eve are included in the answer set.

The example demonstrates the importance of reasoning for query answering in the
context of the Semantic Web. The temperatures of doris and eve are given using

6



different measures. Nevertheless, a DL system such as Racer can compute adequate
answers by supporting concrete domains.

We present another example that might be important for the Semantic Web: deal-
ing with dates. The following declarations can be processed with Racer. The predi-
cates divisible and not-divisible are defined for natural numbers and are reduced
to linear inequations internally.

(define-concrete-domain-attribute year :type cardinal)
(define-concrete-domain-attribute days-in-month :type cardinal)

(implies Month (and (>= days-in-month 28) (<= days-in-month 31)))

(equivalent month-inleapyear
(and Month

(divisible year 4)
(or (not-divisible year 100)

(divisible year 400))))

(equivalent February
(and Month

(<= days-in-month 29)
(or (not month-inleapyear)

(= days-in-month 29))
(or month-inleapyear

(= days-in-month 28))))

Next, we assume some instances of February are declared.

(instance feb-2003 February)
(constrained feb-2003 year-1 year)
(constrained feb-2003 days-in-feb-2003 days-in-month)
(constraints (= year-1 2003))

(instance feb-2000 February)
(constrained feb-2000 year-2 year)
(constrained feb-2000 days-in-feb-2000 days-in-month)
(constraints (= year-2 2000))

Note that the number of days for both months is not given explicitly. Nevertheless,
asking (concept-instances month-inleapyear) yields (feb-2000) whereas asking
for (concept-instances (not month-inleapyear)) returns (feb-2003). In addi-
tion, one could check the number of days:

(constraint-entailed? (<> days-in-feb-2003 29))
(constraint-entailed? (= days-in-feb-2000 29))

In both cases, the answer is true. In the context of the Semantic Web reasoning over
implicit information will become more and more important.

7



3.2 Concrete Domains for Ontology Languages

The logic for DAML+OIL or OWL was called SHIQ(Dn)−. The minus sign is mo-
tivated by some important restrictions to the original approach for concrete domains
(to ensure decidability of consistency problem, see [1]). The net effect of the imposed
restrictions is that at the conceptual level (i.e., in the T-box) constraints on concrete
domain values can be imposed only for a single individual. It should be emphasized
however, that at the A-box level, i.e., for named individuals, no such restrictions
apply, i.e., general constraint systems can be expressed by the description logic that
Racer supports. Thus, decidability results for languages that are more expressive than
DAML+OIL or OWL exist. Although decidability is an important issue, another issue
that is important for practical applications concerns implementation technology and
optimizations such that practical problems can indeed be solved.

Besides evaluating Racer’s concrete domain reasoning with various tricky but small
examples, a first study was conducted that uses a very complex KB derived from a
real-world application. A SHIQ version of the Tambis KB (for further details see [3])
was extended resulting in the logic SHIQ(Dn)−. It contains ∼400 named concepts
and over 50 general axioms. For our experiments, concrete domain constructs were
added to the KB. All Tambis T-boxes can be classified within seconds.

In order to classify KBs of this type of complexity with sufficient runtime per-
formance, various tableau optimization techniques are required, especially two main
techniques, dependency-directed backtracking [11] and pseudo-model merging [11, 10].
For instance, if pseudo-model merging is switched off for classifying the Tambis KB,
Racer’s runtime is increased by a factor of ∼20. The adaptation of these techniques
to concrete domain reasoning is discussed in detail in [8].

Given the examples discussed above, it seems obvious that ontology languages and
the Semantic Web can profit from concrete domains and corresponding constraints.
However, the examples discussed above indicate that DAML+OIL and OWL sup-
port only a subset of what is required for practical applications. Evaluation results
obtained with Racer indicate that adequate average case performance for answering
queries involving linear inequation with order constraints can be achieved. Nonlinear
multivariate inequations over complex numbers and linear inequations over natural
numbers are also supported by Racer.

4 Accessing the Retrieval Inference Service: A Systems
Perspective

The main examples for the Semantic Web use information retrieval applications in-
volving one or more agents [5]. In a full-fledged information retrieval scenario, an
agent might consult a document management system provided by an agent host en-
vironment. The agent can ask for documents that match a certain query in a similar
way as discussed above. This scenario can also be realized with Racer if documents
are annotated with meta data formalized with RDF [13]. Information about docu-
ments can be represented using A-boxes. RDF annotations for documents are read by
Racer and corresponding assertions are added to an A-box. Concrete domains play

8



an important role for describing documents (e.g., year, ISBN number etc.). Agents
can retrieve documents by posing retrieval queries to these A-boxes w.r.t. to specific
T-boxes in the way exemplified above.

4.1 Publish/Subscribe Interface

If we consider an instance retrieval query Q w.r.t. an A-box A, then it is clear that the
solution set for Q could be extended if more information is added to A over time (who-
ever is responsible for that, another agent or the agent host environment). It would
be a waste of resources to frequently poll the host environment with the same query
(and repeated migration operations). Therefore, Racer supports the registration of
queries at some server w.r.t. to some A-box (Publish/Subscribe Interface). With the
registration, the agent specifies an IP address and a port number. The corresponding
Racer Server passes a message to the agent if the solution set of a previously registered
instance retrieval query is extended. The message specifies the new individuals found
to be instances of the query concept Q. We call the registration of a query, a subscrip-
tion to a channel on which Racer informs applications about new query results. For
details see the Racer manual [9].

Rather than considering a single query in isolation, a practical system should be
able to consider query sets (as database systems do in many applications). With
the publish/subscribe interface, multiple queries can be optimized by Racer. Instance
retrieval queries can be answered in a faster way if the set of candidates can be reduced.
In a similar way as for databases, the idea is to exploit results computed for previous
instance retrieval queries by considering query subsumption (which is decidable in the
case of the query language that Racer supports). However, this requires computing
index structures for the T-box (the process is known as T-box classification) and,
therefore, query subsumption is enabled on demand only. On the one hand, there
are some applications, in which A-boxes are generated on the fly with few queries
referring to a single A-box. On the other hand, there are applications which pose
many queries to more or less “static” T-boxes and A-boxes (which are maybe part of
the agent host environment). The Racer Server supports both application scenarios.
As a design decision, Racer computes answers for queries with as few resources as
possible. Nevertheless, a Racer Server can be instructed to compute index structures
in advance if appropriate to support multiple queries.

4.2 Realizing Local Closed World Assumptions in Applications

Feedback from many users of the Racer system indicates that, for instance, instance
retrieval queries could profit from possibilities to “close” a knowledge base in one way
or another. Due to the non-monotonic nature of the closed-world assumption and the
ambiguities about what closing should actually mean, in description logic inference
systems usually there is no support for the closed-world assumption. However, with
the publish and subscribe interface of Racer, users can achieve a similar effect. Con-
sider, for instance, a query for a book which does not have an author. Because of the
open-world assumption, subscribing to a channel for Book & (≤ 0 has author) does

9



not make much sense. Nevertheless the agent can subscribe to a channel for Book
and a channel for (≥ 1 has author). It can accumulate the results returned by Racer
into two variables A and B, respectively, and, in order to compute the set of books for
which there does not exist an author, it can consider the complement of B wrt. A. We
see this strategy as an implementation of a local closed-world (LCW) assumption.

However, as time evolves, authors for documents determined by the above-mentioned
query indeed might become known. In other words, the set B will probably be ex-
tended. In this case, the agent is responsible for implementing appropriate backtrack-
ing strategies, of course.

The LCW example demonstrates that the Racer publish and subscribe interface is
a very general mechanism, which can also be used to solve other problems in knowledge
representation. Due to space restrictions, we can only give ideas for applications and
services which can be implemented using logic. The examples we have given here
should stimulate developers of agent systems and agent host environments to use the
facilities of state of the art description logic inference engines. As a summary we
discuss additional features of the Racer System in the next section.

4.3 Additional Features of the Racer System

Optimizations: Various optimization techniques for ontology-based query answering
with respect to T-boxes, A-boxes, and concrete values have been developed, imple-
mented, and investigated with the Racer System. One of the design goals of Racer is
to automatically select state of the art optimization techniques that are applicable to
the current input.

Persistency: In a similar way as in database systems, for query answering w.r.t.
T-boxes and A-boxes complex data structures are computed and used internally by
Racer. Internal structures of T-boxes and A-boxes being processed for query answering
can be saved to disk for quick access and later reuse if the Racer Server is restarted.

Multi-User Support, Thread Safeness, Locking, Load Balancing: In a distributed
systems context, there can be multiple agents connecting the a server at the same
time. If they refer to the same A-boxes and T-boxes (which is very likely in the
scenarios presented above), requests must be synchronized. Thus similar problems as
with databases such as thread safeness, locking, and load balancing have to be dealt
with. For instance, if multiple Racer Servers are started, queries can be automatically
directed to “free” Racer Servers. These problems are tackled by the Racer Proxy,
which is supplied as part of the Racer System distribution.

5 Summary

This paper states that description logic systems can be used as query engines for
DAML+OIL or OWL ontologies. In particular, we argue that some aspects of indi-
viduals in concept terms can be adequately represented using A-boxes. The remaining
aspects have to be approximated if current description logic inference systems are to
be used for practical applications.

10



Then, we pointed out that from a knowledge representation point of view, the lan-
guages DAML+OIL and OWL are rather weak w.r.t. data constraints since simple and
well-understood algebraic representation techniques are not supported – surprisingly.

Third, we demonstrated that an inference system for the Semantic Web comprises
more than just a concept consistency tester or subsumption computation algorithm.
A highly optimized architecture is required for dealing with practical application prob-
lems. As the evaluation results indicate, it seems that Racer is on the right way, but it
definitely needs more research for many of the upcoming Semantic Web applications.

Acknowledgments

We are grateful to numerous users of the Racer system who used Racer to solve many
different kinds of application problems. Detailed comments from our users helped to
reach the level of maturity that Racer currently has. We hope that all answers to
questions arrived in time although the delay might get larger due to high workload.
Nevertheless, not all complaints, in particular those concerning performance, could be
easily answered and solved, some application problems are simply hard to deal with.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2002. In print.

[2] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages
for the semantic web. In D. Hutter and W. Stephan, editors, Festschrift in honor
of J”org Siekmann. LNAI. Springer-Verlag, 2003.

[3] S. Bechhofer, Ian Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able on-
tology editor for the semantic web. In T. Eiter F. Baader, G. Brewka, editor, Pro-
ceedings of KI 2001: Advances in Artificial Intelligence Joint German/Austrian
Conference on AI, volume 2174 of LNAI, page 396 ff., 2001.

[4] S. Bechhofer, R. Möller, and P. Crowther. The DIG description interface. In
Proc. International Workshop on Description Logics – DL’03, 2003.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific Amer-
ican, May 2001.

[6] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
Schema, http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002.

[7] V. Haarslev and R. Möller. Racer system description. In International Joint
Conference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena,
Italy., 2001.

[8] V. Haarslev and R. Möller. Practical reasoning in RACER with a concrete domain
for linear inequations. In I. Horrocks and S. Tessaris, editors, Proceedings of

11



the International Workshop on Description Logics (DL’2002), Apr. 19-21, 2002,
Toulouse, France, pages 91–98, August 2002.

[9] V. Haarslev and R. Möller. The Racer user’s guide and reference manual, 2003.

[10] V. Haarslev, R. Möller, and A.-Y. Turhan. Exploiting pseudo models for TBox
and ABox reasoning in expressive description logics. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of the International Joint Conference on Auto-
mated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, Lecture Notes in
Computer Science, pages 61–75. Springer-Verlag, June 2001.

[11] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[12] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int. Semantic Web
Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages
177–191. Springer-Verlag, 2002.

[13] Adobe Systems Inc. Embedding XMP metadata in application files, 2002.

[14] G. Kuper, L. Libkin, and J. Paredaens (Eds.). Constraint Databases. Springer-
Verlag, 1998.

[15] O. Lassila and R.R. Swick. Resource description framework (RDF)
model and syntax specification. recommendation, W3C, february 1999.
http://www.w3.org/tr/1999/rec-rdf-syntax-19990222, 1999.

[16] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL web ontology language reference,
http://www.w3.org/tr/owl-guide/, 2003.

[17] F. van Harmelen, P.F. Patel-Schneider, and I. Horrocks (Editors). Refer-
ence description of the DAML+OIL (march 2001) ontology markup language,
http://www.daml.org/2001/03/reference, 2001.

12


