
Answering Queries over OWL Ontologies with SPARQL

Ilianna Kollia1, Birte Glimm2, and Ian Horrocks2

1 ECE School, National Technical University of Athens, Greece
2 Oxford University Computing Laboratory, UK

Abstract. The SPARQL query language is currently being extended by W3C
with so-called entailment regimes, which define how queries are evaluated un-
der more expressive semantics than SPARQL’s standard simple entailment. We
describe a sound and complete algorithm for the OWL Direct Semantics entail-
ment regime. The queries of the regime are very expressive since variables can
occur within complex class expressions and can also bind to class or property
names. We propose several novel optimizations such as strategies for determining
a good query execution order, query rewriting techniques, and show how special-
ized OWL reasoning tasks and the class and property hierarchy can be used to
reduce the query execution time. We provide a prototypical implementation and
evaluate the efficiency of the proposed optimizations. For standard conjunctive
queries our system performs comparably to already deployed systems. For com-
plex queries an improvement of up to three orders of magnitude can be observed.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides a
mechanism via which users and applications can interact with ontologies and data. Sev-
eral query languages have been designed for this purpose, including RDQL, SeRQL
and, most recently, SPARQL. In this paper, we consider the SPARQL [8] query lan-
guage, which was standardized in 2008 by the World Wide Web Consortium (W3C).
The standard query evaluation mechanism is based on subgraph matching and is called
simple entailment since it can equally be defined in terms of the simple entailment re-
lation between RDF graphs. In order to use more elaborate entailment relations such
as RDFS or OWL entailment [3], SPARQL 1.1 includes several entailment regimes.
While several methods and implementations for SPARQL under RDFS semantics are
available, methods that use OWL semantics have not yet been well-studied.

For some OWL 2 profiles, an implementation of the entailment regime can make use
of materialization techniques (e.g., for the OWL RL profile) or of query rewriting tech-
niques (e.g., for the OWL QL profile). These techniques are, however, not applicable
in general, and may not deal directly with all kinds of SPARQL queries. In this paper,
we present a sound and complete algorithm for answering SPARQL queries under the
OWL 2 Direct Semantics entailment regime (from now on, SPARQL-OWL), describe
a prototypical implementation based on the HermiT reasoner, and use this implemen-
tation to investigate a range of optimization techniques that improve query answering
performance for different kinds of SPARQL-OWL queries.

SPARQL-OWL allows only distinguished variables (for compatibility with SPARQL
1.0), but it poses significant challenges for implementations, e.g., by allowing variables

that bind to classes or properties and which can even occur within complex class expres-
sions. Amongst the query languages already supported by OWL reasoners, the closest
in spirit to SPARQL-OWL is SPARQL-DL, which is implemented in the Pellet OWL
reasoner [9]. SPARQL-DL is a subset of SPARQL-OWL that is designed such that
queries can be mapped to standard reasoning tasks, such as retrieval of subclasses of
a given class. In our algorithm, we extend the techniques used for conjunctive query
answering to deal with arbitrary SPARQL-OWL queries and propose a range of novel
optimizations in particular for SPARQL-OWL queries that go beyond SPARQL-DL.

We have implemented the optimized algorithm in a prototypical system, which is
the first to fully support SPARQL-OWL, and we have performed a preliminary evalua-
tion in order to investigate the feasibility of our algorithm and the effectiveness of the
proposed optimizations. This evaluation suggests that, in the case of standard conjunc-
tive queries, our system performs comparably to existing ones. It also shows that a naive
implementation of our algorithm behaves badly for some non-standard queries, but that
the proposed optimizations can dramatically improve performance, in some cases by as
much as three orders of magnitude.

An extended version of this paper is accepted at ESWC’11 [6].

2 SPARQL-OWL Query Answering

We first give a brief introduction to the SPARQL-OWL entailment regime and then de-
scribe an algorithm that finds answers to queries under this regime. We abbreviate IRIs
using the empty prefix, rdfs, and owl to refer to an imaginary example, the RDFS, and
the OWL namespace, respectively. An example of a SPARQL query is

SELECT ?d WHERE { :op rdfs:domain ?d }

where the triple in the WHERE clause is called a basic graph pattern (BGP) and is
written in Turtle [1]. Since the direct semantics of OWL is defined in terms of OWL
structural objects, such a BGP is mapped into structural objects, which can have vari-
ables in place of class, object property, data property, or individual names or literals.
For example, the above BGP is mapped to ObjectPropertyDomain(:op ?d) if :op is
declared as an object property in the queried ontology. For brevity, we directly write
BGPs in OWL’s functional-style syntax (FSS) [7] in the remainder extended to allow
for variables. We call such OWL axioms with variables axiom templates and a set of
axiom templates a template ontology. In the absence of a FROM clause, the query is
evaluated over the default ontology of the system. Evaluating a template ontology re-
sults in a sequence of solutions that lists possible (atomic) bindings for the variables.
More complex WHERE clauses can be built by combining ontology templates using
SPARQL operators such as UNION for alternative selection criteria or OPTIONAL to
query for optional bindings [8, 4]. Since entailment regimes only change the evaluation
of template ontologies (BGPs), whereas complex clauses are evaluated by combining
already computed solutions, we focus here on the case where the WHERE clause con-
sists of a single template ontology. We use O to denote the queried ontology and Oq for
the template ontology.

Definition 1. Let V be a countably infinite set of variables. The set of variables in a
template ontology Oq is denoted by V(Oq). Let O be an ontology with signature S (O),
i.e., S (O) consists of all class, object property, data property, and individual names
and literals occurring in O. We assume that S (O) also contains OWL’s special classes
and properties such as owl:Thing and owl:BottomObjectProperty. A solution mapping
over S (O) is a partial function µ : V → S (O) from variables to entities in S (O). For a
solution mapping µ the set of elements on which µ is defined is the domain dom(µ) of
µ, and the set ran(µ) B {µ(x) | x ∈ dom(µ)} is the range of µ. With µ(Oq) we denote the
result of replacing each variable in Oq with a value specified by the mapping µ.

Anonymous individuals in the template ontology are treated as variables whose
bindings do not appear in the query’s result sequence. This is in contrast to conjunctive
queries where they are treated as existential variables. Anonymous individuals in the
queried ontology are treated as (Skolem) constants, i.e., they can be returned in a query
answer. For brevity, we assume here that neither the template ontology nor the queried
ontology contains anonymous individuals. We further assume that all axiom templates
that are evaluated by our algorithm can be instantiated into logical axioms since non-
logical axioms (e.g., type declarations) do not affect the consequences of an ontology.

Definition 2. Let O be an OWL 2 DL ontology with signature S (O). The evaluation
of Oq over O under OWL 2 Direct Semantics entailment is defined as the solution set
{µ | O |= µ(Oq),O∪µ(Oq) is an OWL 2 DL ontology, dom(µ) = V(Oq), ran(µ) ⊆ S (O)}.
We call µ compatible with Oq and O if dom(µ) = V(Oq), ran(µ) ⊆ S (O), and µ(Oq) is
such that O ∪ µ(Oq) is an OWL 2 DL ontology.

Given an OWL 2 DL ontology O and a template ontology Oq for O, a straight-
forward algorithm to realize the entailment regime simply tests, for each compatible
mapping µ, whether O |= µ(Oq). The notion of compatible mappings already reduces
the number of possible solutions that have to be tested, but in the worst case, the number
of distinct compatible mappings µ is exponential in the number of variables in the query.
Such an algorithm is sound and complete if the reasoner used to decide entailment is
sound and complete since we check all mappings for variables that can constitute actual
solution mappings.

2.1 General Query Evaluation Algorithm

Optimizations cannot easily be integrated in the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated template ontology as a
whole and, hence, does not take advantage of relations that may exist between axiom
templates. For a more optimized evaluation, we evaluate the axiom templates sequen-
tially. Initially, our solution set contains only the identity mapping, which does not
map any variable to a value. We then pick our first axiom template, extend the iden-
tity mapping to cover the variables of the chosen axiom template and use the reasoner
to check which of the mappings instantiate the axiom template into an entailed ax-
iom. We then pick the next axiom template and again extend the mappings from the
previous round to cover all variables and check which of those mappings lead to an
entailed axiom. Thus, axiom templates which are very selective and are only satisfied

by very few solutions reduce the number of intermediate solutions. Choosing a good
execution order, therefore, can significantly affect the performance. For example, let
Oq = {ClassAssertion(:A ?x) ObjectPropertyAssertion(:op ?x ?y)} with :op an ob-
ject property and :A a class. The query belongs to the class of conjunctive queries, i.e.,
we only query for class and property instances. We assume that the queried ontology
contains 100 individuals, only 1 of which belongs to the class :A. This :A instance has
1 :op-successor, while we have overall 200 pairs of individuals related with the prop-
erty :op. If we first evaluate ClassAssertion(:A ?x), we test 100 mappings (since x is
an individual variable), of which only 1 mapping satisfies the axiom template. We then
evaluate ObjectPropertyAssertion(:op ?x ?y) by extending the mapping with all 100
possible mappings for y. Again only 1 mapping yields a solution. For the reverse axiom
template order, the first axiom template requires the test of 100 ∗ 100 mappings. Out of
those, 200 remain to be checked for the second axiom template and we perform 10, 200
tests instead of just 200.

The importance of the execution order is well known in relational databases and cost
based optimization techniques are used to find good execution orders. Ordering strate-
gies as implemented in databases or triple stores are, however, not directly applicable
in our setting. In the presence of expressive schema level axioms, we cannot rely on
counting the number of occurrences of triples. We also cannot, in general, precompute
all relevant inferences to base our statistics on materialized inferences. Furthermore,
we should not only aim at decreasing the number of intermediate results, but also take
into account the cost of checking or computing the solutions. This cost can be very
significant with OWL reasoning.

Instead of checking entailment, we can, for several axiom templates, directly re-
trieve the solutions from the reasoner. For example, to evaluate a query with Oq =

{SubClassOf(?x :C)}, we can use standard reasoner methods to retrieve the subclasses.
Most methods of reasoners are highly optimized, which can significantly reduce the
number of tests that are performed. Furthermore, if the class hierarchy is precomputed,
the reasoner can find the answers simply with a cache lookup. Thus, the actual execution
cost might vary significantly. Notably, we do not have a straight correlation between the
number of results for an axiom template and the actual cost of retrieving the solutions
as is typically the case in triple stores or databases. This requires cost models that take
into account the cost of the specific reasoning operations (depending on the state of the
reasoner) as well as the number of results.

As motivated above, we distinguish between simple and complex axiom templates,
where simple axiom templates are those that correspond to dedicated reasoning tasks.
Complex axiom templates are, in contrast, evaluated by iterating over the compatible
mappings and by checking entailment for each instantiated axiom template. An example
of a complex axiom template is:

ClassAssertion(ObjectSomeValuesFrom(:op ?x) ?y)
Algorithm 1 shows how we evaluate template ontologies. We first explain the gen-

eral outline of the algorithm and leave the details of the used submethods for the fol-
lowing section. We first simplify axiom templates where possible (rewrite, line 1). Next,
the method connectedComponents (line 2) partitions the axiom templates into sets of
connected components, i.e., within a component the templates share common variables,

Algorithm 1 Query Evaluation Procedure
Input: O: the queried ontology, which is an OWL 2 DL ontology

Oq: an OWL 2 DL template ontology
Output: a set of solutions for evaluating Oq over O under OWL 2 Direct Semantics
1: Axt := rewrite(Oq) {create a list Axt of simplified axiom templates from Oq}
2: Axt1, . . . ,Axtm:=connectedComponents(Axt)
3: for j=1, . . . , m do
4: R j := {µ0 | dom(µ0) = ∅}

5: axt1, . . . , axtn := reorder(Axtj)
6: for i = 1, . . . , n do
7: Rnew := ∅
8: for µ ∈ R j do
9: if isSimple(axti) and V(axti) \ dom(µ) , ∅ then

10: Rnew := Rnew ∪ {(µ ∪ µ′) | µ′ ∈ callReasoner(µ(axti))}
11: else
12: B := {(µ ∪ µ′) | dom(µ′) = V(µ(axti)), (µ ∪ µ′) is compatible with axti and O}
13: B := prune(B, axti, O)
14: while B , ∅ do
15: µ′ := removeNext(B)
16: if O |= µ′(axti) then Rnew := Rnew ∪ {µ

′}

17: else B := prune(B, axti, µ′)
18: end while
19: end if
20: end for
21: R j := Rnew

22: end for
23: end for
24: R := {µ1 ∪ . . . ∪ µm | µ j ∈ R j, 1 ≤ j ≤ m}
25: return R

whereas between components there are no shared variables. Unconnected components
unnecessarily increase the amount of intermediate results and, instead, we can simply
combine the results for the components in the end (line 24). For each component, we
first determine an order (method reorder in line 5). For a simple axiom template, which
contains so far unbound variables, we then call a specialized reasoner method to retrieve
entailed results (callReasoner in line 10). Otherwise, we check which compatible so-
lutions yield an entailed axiom (lines 11 to 19). The method prune (lines 13 and 17)
excludes or includes other solutions, based on easily available information, e.g., from
the pre-computed class hierarchy.

2.2 Optimized Query Evaluation

Axiom Template Reordering We now explain how we order the axiom templates in
the method reorder (line 5). Since complex axiom templates can only be evaluated
with costly entailment checks, our aim is to reduce the number of bindings before we
check the complex templates. Thus, we evaluate simple axiom templates first ordered by
their cost, which is computed as the weighted sum of the estimated number of required

Table 1. Axiom templates and their equivalent simpler ones, where C(i) are class expressions
(possibly containing variables), a is an individual or variable, and r is an object property expres-
sion (possibly containing a variable)

ClassAssertion(ObjectIntersectionOf(:C1 . . . :Cn) :a) ≡ {ClassAssertion(:Ci :a) | 1 ≤ i ≤ n}
SubClassOf(:C ObjectIntersectionOf(:C1 . . . :Cn)) ≡ {SubClassOf(:C :Ci) | 1 ≤ i ≤ n}

SubClassOf(ObjectUnionOf(:C1 . . . :Cn) :C) ≡ {SubClassOf(:Ci :C) | 1 ≤ i ≤ n}
SubClassOf(ObjectSomeValuesFrom(:op owl:Thing) :C) ≡ ObjectPropertyDomain(:op :C)

SubClassOf(owl:Thing ObjectAllValuesFrom(:op :C)) ≡ ObjectPropertyRange(:op :C)

consistency checks and the estimated result size. These estimates are based on statistics
provided by the reasoner and this is the only part where our algorithm depends on the
specific reasoner that is used. In case the reasoner cannot give estimates, one can still
work with statistics computed from explicitly stated information. Since the result sizes
for complex templates are difficult to estimate using either the reasoner or the explicitly
stated information in O, we order complex templates based only on the number of
bindings that need to be tested. For example, the number of bindings for a class variable
is the number of the classes appearing in O. It is obvious that the reordering of axiom
templates does not affect soundness and completeness of Algorithm 1.

Axiom Template Rewriting Some costly to evaluate axiom templates can be rewritten
into axiom templates that can be evaluated more efficiently and yield an equivalent re-
sult. Such axiom templates are shown on the left-hand side of Table 1 and their equiva-
lent simplified form is shown on the right-hand side. To understand the intuition behind
such transformation, we consider a query with only the axiom template:

SubClassOf(?x ObjectIntersectionOf(ObjectSomeValuesFrom(:op ?y) :C))

Its evaluation requires a quadratic number of consistency checks in the number of
classes (since ?x and ?y are class variables). The rewriting yields:

SubClassOf(?x :C) and SubClassOf(?x ObjectSomeValuesFrom(:op ?y))

The first axiom template is now evaluated with a cheap cache lookup (assuming that the
class hierarchy has been precomputed). For the second one, we only have to check the
usually few resulting bindings for x combined with all other class names for y. For a
complex axiom template such as the one in the last row of Table 1, the rewritten axiom
template can be mapped to a specialized task of an OWL reasoner, which internally uses
the class hierarchy to compute the domains and ranges with significantly fewer tests.
We apply the rewriting in the method rewrite in line 1 of our algorithm. Soundness
and completeness is preserved since instantiated rewritten templates are semantically
equivalent to the corresponding instantiated complex ones.

Class-Property Hierarchy Exploitation The number of consistency checks needed to
evaluate a template ontology can be further reduced by taking the class and property
hierarchies into account. Once the classes and properties are classified (this can ideally
be done before a system accepts queries), the hierarchies are stored in the reasoner’s
internal structures. We further use the hierarchies to prune the search space of solutions

in the evaluation of certain axiom templates. We illustrate the intuition with an example:

SubClassOf(:Infection ObjectSomeValuesFrom(:hasCausalLinkTo ?x))

If :C is not a solution and SubClassOf(:B :C) holds, then :B is also not a solution.
Thus, when searching for solutions for x, the method removeNext (line 15) chooses the
next binding to test by traversing the class hierarchy topdown. When we find a non-
solution :C, the subtree rooted in :C of the class hierarchy can safely be pruned, which
we do in the method prune in line 17. Queries over ontologies with a large number of
classes and a deep class hierarchy can, therefore, gain the maximum advantage from
this optimization. We employ similar optimizations using the property hierarchies. It is
obvious that we only prune mappings that cannot constitute actual solution mappings,
hence, soundness and completeness of Algorithm 1 is preserved.

Exploiting the Domain and Range Restrictions The implicit domains and ranges of the
properties in O (in case the reasoner precomputes and stores them) and/or the explicit
ones can be exploited to reduce the number of entailment checks that are needed. Let
us assume that O contains Axiom (1) and Oq contains Axiom Template (2).

ObjectPropertyRange(:takesCourse :Course) (1)
SubClassOf(:GraduateStudent ObjectSomeValuesFrom(:takesCourse ?x)) (2)

In case at least one solution mapping exists for ?x, the class :Course and its super-
classes can immediately be considered solution mappings for ?x. This is done in the
method prune (line 13), which again preserves soundness and completeness.

3 System Evaluation

Since entailment regimes only change the evaluation of the template ontologies, stan-
dard SPARQL algebra processors can be used to combine the intermediate results, e.g.,
in unions or joins. Furthermore, standard OWL reasoners can be used to perform the
required reasoning tasks.

3.1 The System Architecture

In our system, the queried ontology is loaded into an OWL reasoner and the reasoner
performs initial tasks such as class classification before the system accepts queries. We
use the ARQ library3 of the Jena Semantic Web Toolkit for parsing the query and for the
SPARQL algebra operations apart from template ontology evaluation. The template on-
tology is represented in a custom extension of the OWL API [5], which uses the queried
ontology for type disambiguation. The resulting axiom templates are then passed to a
query optimizer, which applies the axiom template rewriting and then searches for a
good query execution plan based on statistics provided by the reasoner. We use the Her-
miT reasoner4 for OWL reasoning, but only the module that generates statistics and
provides cost estimations is HermiT specific.

3 http://jena.sourceforge.net/ARQ/
4 http://www.hermit-reasoner.com/

Table 2. Query answering times in milliseconds for LUBM(1,0) and in seconds for the queries
of Table 3 with and without optimizations

LUBM(1, 0) GALEN queries from Table 3
Query Time Query Reordering Hierarchy Rewriting Time

Exploitation
1 20 1 2.1
2 46 1 x 0.1
3 19 2 780.6
4 19 2 x 4.4
5 32 3 >30 min
6 58 3 x 119.6
7 42 3 x 204.7
8 353 3 x x 4.9
9 4,475 4 x x >30 min

10 23 4 x x 361.9
11 19 4 x x >30 min
12 28 4 x x x 68.2
13 16 5 x >30 min
14 45 5 x >30 min

5 x x 5.6

3.2 Experimental Results

We tested our system with the Lehigh University Benchmark (LUBM) [2] and a range
of custom queries that test complex axiom template evaluation over the more expressive
GALEN ontology. All experiments were performed on a Windows Vista machine with a
double core 2.2 GHz Intel x86 32 bit processor and Java 1.6 allowing 1GB of Java heap
space. We measure the time for one-off tasks such as classification separately since such
tasks are usually performed before the system accepts queries. Whether more costly
operations such as the realization of the ABox are done in the beginning, depends on
the setting and the reasoner. Since realization is relatively quick in HermiT for LUBM
(GALEN has no individuals), we also performed this task upfront. The given results are
averages from executing each query three times. The ontologies and all code required
to perform the experiments are available online.5

We first evaluate the 14 LUBM queries. These queries are simple ones and have vari-
ables only in place of individuals and literals. The LUBM ontology contains 43 classes,
25 object properties, and 7 data properties. We tested the queries on LUBM(1,0), which
contains data for one university starting from index 0, and which contains 16,283 indi-
viduals and 8,839 literals. The ontology took 3.8 s to load and 22.7 s for classification
and realization. Table 2 shows the execution time for each of the queries. The reorder-
ing optimization has the biggest impact on queries 2, 7, 8, and 9. These queries require
much more time or are not answered at all within the time limit of 30 min without this
optimization (758.9 s, 14.7 s, >30 min, >30 min, respectively).

Conjunctive queries are supported by a range of OWL reasoners. SPARQL-OWL
allows, however, the creation of very powerful queries, which are not currently sup-

5 http://www.hermit-reasoner.com/2010/sparqlowl/sparqlowl.zip

Table 3. Sample complex queries for the GALEN ontology

1 SubClassOf(:Infection ObjectSomeValuesFrom(:hasCausalLinkTo ?x))
2 SubClassOf(:Infection ObjectSomeValuesFrom(?y ?x))
3 SubClassOf(?x ObjectIntersectionOf(:Infection

ObjectSomeValuesFrom(:hasCausalAgent ?y)))
4 SubClassOf(:NAMEDLigament ObjectIntersectionOf(:NAMEDInternalBodyPart ?x)

SubClassOf(?x ObjectSomeValuesFrom(:hasShapeAnalagousTo
ObjectIntersectionOf(?y ObjectSomeValuesFrom(?z :linear))))

5 SubClassOf(?x :NonNormalCondition)
SubObjectPropertyOf(?z :ModifierAttribute)
SubClassOf(:Bacterium ObjectSomeValuesFrom(?z ?w))
SubObjectProperty(?y :StatusAttribute)
SubClassOf(?w :AbstractStatus)
SubClassOf(?x ObjectSomeValuesFrom(?y :Status))

ported by any other system. In the absence of suitable standard benchmarks, we created
a custom set of queries as shown in Table 3. Since the complex queries are mostly based
on complex schema queries, we switched from the very simple LUBM ontology to the
GALEN ontology. GALEN consists of 2,748 classes and 413 object properties. The
ontology took 1.6 s to load and 4.8 s to classify the classes and properties. The execu-
tion time for these queries is shown on the right-hand side of Table 2. For each query,
we tested the execution once without optimizations and once for each combination of
applicable optimizations from Section 2.

As expected, an increase in the number of variables within an axiom template leads
to a significant increase in the query execution time because the number of mappings
that have to be checked grows exponentially in the number of variables. This can, in
particular, be observed from the difference in execution time between Query 1 and 2.
From Queries 1, 2, and 3 it is evident that the use of the hierarchy exploitation opti-
mization leads to a decrease in execution time of up to two orders of magnitude and, in
combination with the query rewriting optimization, we can get an improvement of up
to three orders of magnitude as seen in Query 3. Query 4 can only be completed in the
given time limit if at least reordering and hierarchy exploitation is enabled. Rewriting
splits the first axiom template into the following two simple axiom templates, which are
evaluated much more efficiently:

SubClassOf(NAMEDLigament NAMEDInternalBodyPart)
SubClassOf(NAMEDLigament ?x)

After the rewriting, the reordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache lookup.
Without reordering, the complex axiom template could be executed before the simple
ones, which leads to the inability to answer the query within the time limit of 30 min.
Without a good ordering, Query 5 can also not be answered, but the additional use of
the class and property hierarchy further improves the execution time by three orders of
magnitude.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates for query variables as possible. For example, the addition of
SubClassOf(?y Shape) to Query 4 reduces the runtime from 68.2 s to 1.6 s.

4 Discussion

We have presented a sound and complete query answering algorithm and novel op-
timizations for SPARQL’s OWL Direct Semantics entailment regime. Our prototypi-
cal query answering system combines existing tools such as ARQ, the OWL API, and
the HermiT OWL reasoner. Apart from the query reordering optimization—which uses
(reasoner dependent) statistics provided by HermiT—the system is independent of the
reasoner used, and could employ any reasoner that supports the OWL API.

We evaluated the algorithm and the proposed optimizations on the LUBM bench-
mark and on a custom benchmark that contains queries that make use of the very expres-
sive features of the entailment regime. We showed that the optimizations can improve
query execution time by up to three orders of magnitude.
Acknowledgements This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies.

References

1. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(14 January 2008), available at http://www.w3.org/TeamSubmission/turtle/

2. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Semantics 3(2-3), 158–182 (2005)

3. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer. W3C Recommendation (27 October 2009), available at http:
//www.w3.org/TR/owl2-primer/

4. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

5. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2 ontolo-
gies. In: Patel-Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL:
Experiences and Directions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

6. Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontologies. In:
Proc. 8th Extended Semantic Web Conf. (ESWC’11) (2011), to appear

7. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (27 October 2009),
available at http://www.w3.org/TR/owl2-syntax/

8. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

9. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Directions.
CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)

