
An SBVR Editor with Highlighting and Auto-completion

Alexandros Marinos1, Pagan Gazzard1, Paul Krause2

Rulemotion Ltd., Surrey Technology Centre,
30 Occam Rd., Surrey Research Park,

GU2 7YG, Guildford, Surrey, United Kingdom
{pagan, alexandros}@surrey.ac.uk

Department of Computing, FEPS, University of Surrey,

GU2 7XH, Guildford, Surrey, United Kingdom
p.krause@surrey.ac.uk

Abstract. This paper presents the implementation of an SBVR editor. Our
editor supports automatic highlighting and offers auto-completion suggestions
as the model is being typed. These capabilities have been designed to reduce the
overhead in the writing of SBVR models as much as possible. The editor has
been built with web technologies, and can run in any browser.

Keywords: SBVR, editor, OMeta, highlighting

1 Introduction

Semantics of Business Vocabulary and Rules (SBVR) [1] is a modeling language
standardised by Object Management Group and is the result of many years of research
by the Business Rules Group. SBVR holds a lot of promise due to its being
completely declarative, having a solid logical foundation, and the possibility of
representing its rules in a subset of English, readable by an untrained user. The
standard has been in development for several years; however the tooling support
seems to be lagging.

Anyone wanting to write rules as they are seen in the standard is expected to type
them and highlight them by hand, possibly using Microsoft Word templates or
something of that kind. This means that highlighting is left up to the human mind to
determine, which becomes less and less reliable a method the more complex a
vocabulary becomes. Even in the standard itself [1], highlighting inconsistencies can
readily be noticed, for instance by searching for the string ‘the set of’. The authors of
this paper have been researching potential use cases for SBVR [2][3], but these use
cases cannot be fully exploited without the proper environment for writing SBVR. For
this reason we have invested effort in developing an editor that can infer the correct
highlighting and offer auto-completion suggestions for models that are written in
SBVR Structured English. These models can then feed into our parser which

2 Pagan Gazzard, Alexandros Marinos, Paul Krause

generates SBVR Logical Formulation. The result is SBVR in its native representation
and a whole range of possible use cases opens up, unhindered by the difficulties of
attaining properly formatted SBVR-LF.

1.1 Related Work

Saying that tooling is lagging is not intended to mean that there are no tools
whatsoever. But the range and capabilities they offer are limited. The earliest project
that appeared in this space was an Eclipse IDE add-on called SBeaVeR [4].
Unfortunately SBeaVeR has not been updated since 2006 and the only release was
marked as an alpha prototype. SBeaVeR did do some highlighting, but that was
predicated upon adding an inelegant requirement for those writing SBVR models.
Any term or verb that consisted of multiple nouns had to be joined by a dash. So a
fact type that pertained to a student’s registration for a study programme would have
to be written as follows:

student is-registered-for study-programme

This adds unnecessary cognitive overhead for the modeler and the reader of the

model, for the benefit of making the parsing significantly easier. We found it
preferable to invest additional time in the one-off task of writing a parser rather than
roll-over the difficulty to the modeler, which the tool was supposed to help.
Additionally SBeaVeR did not offer a path to extract SBVR Logical Formulation
from the rules. One can imagine that this was on the developers’ roadmap, but the
project has never been continued.

Another tool for writing SBVR models is RuleXpress by RuleArts [5]. RuleXpress
offers impressive options in terms of vocabulary management, but only highlights
terms, not verbs or keywords. Besides the reduced functionality, this simple string-
matching approach may lead to errors if a word that can be used both as a verb and a
noun is declared as a term (e.g. conduct, digest, escort, insult, produce, record, set).

2 Features

2.1 SBVR coverage

Our parser does not implement the full breadth of the SBVR specification yet, but
rather a large and usable subset with a focus on expressing complex rules. The parser
can be extended to include less common features of SBVR and indeed this is part of
the future work planned. The features currently implemented are: declaration of terms
and fact types, all modalities for rules, all quantifiers, and the keyword ‘that’ as a
means of introducing atomic formulations that constrain variables.

With this subset of SBVR, even complex rules such as the following can be
highlighted appropriately and parsed into their logical formulation:

An SBVR Editor with Highlighting and Auto-completion 3

It is necessary that each student that is registered for a module is enrolled in a study

programme that the module is available for

We also support attributes for terms and fact types, although only definitions are
highlighted at the moment. Finally, the editor can recognise fact types of any arity.

There exist in the literature mentions of ambiguities in SBVR-SE[10], but the
paper mentions that using a lexicon should solve the problem for the example given.
Our parser uses the vocabulary to inform the parsing of rules and therefore is not
vulnerable to that kind of ambiguity presented. Using this setup, we have not come
across any other ambiguous formulations, although we are open to the fact that they
may appear. We take an engineering approach instead of a formal approach to this
problem and have not attempted to prove that SBVR-SE as we parse it is completely
impervious to contradictions.

2.2 Pluralisation

One of the more interesting aspects of our system is the automatic recognition of
plurals. With a term such as student declared, any rule that uses the plural form
students will be highlighted correctly. This also follows in the auto-complete
suggestions. This recognition is accomplished with the help of an inflection
component from the library Active Support for JavaScript [6]. This tool uses a
number of well-known patterns of English for determining the plural of a given
singular noun, and also includes a list of exceptions.

This of course does not mean all possible exceptions can be included. Even if it
included every single irregular pluralisation in the largest available corpus of English
nouns, new terms are coined continuously, and in the case of businesses, product
names are often terms borrowed from other languages or coined de novo, which may
have plurals that don't conform to obvious patterns. In these cases it would be useful
for the modeler to have a way of declaring the plural of the relevant term, with this
declaration overriding the judgment of the inflector.

The SBVR specification is the most authoritative document on SBVR Structured
English, even though it does not claim to be a normative specification for it. While we
have not reached a point where the guidance of the standard does not suffice for
implementation, if we were to try plural parsing an exception as mentioned above, the
best way would be to have available a 'Plural' attribute that can be defined for any
term. This may not make sense for the original conception of SBVR which didn't
necessarily anticipate support for tooling, however the ease of use that such tools
offer may be worth accommodating in the standard. It is important to note that such
an attribute would have no effect on the logical formulation. Its influence would be
limited in assisting the automated parsing of models into logical formulation (which
applies to highlighting and auto-completion as well) and stop there.

This extension of the SBVR attributes would not be something that would only be
used in English. In fact, the grammar of English has in a way obscured this problem
which would be much more obvious if another language was used as the basis for the

4 Pagan Gazzard, Alexandros Marinos, Paul Krause

specification. While nouns in English can only be in singular and plural forms (and
perhaps their possessive), nouns in other languages have many more cases, each of
which dictates a different form for the noun, and is subject to much the same
difficulties with regard to exception handling.

2.3 Highlighting

During the development of this editor, we considered the automatic highlighting of
SBVR Structured English to be of great importance, as the writing of SBVR can be
quite an ordeal otherwise, which can turn potential users away from SBVR. The
editor highlights the SBVR features it implements as one would expect, recognising
keywords, terms, and verbs according to the specification. One novel feature is that
because we use the complete SBVR parser for the highlighting functionality, any
input that cannot be highlighted, is input that cannot be parsed. This gives instant
feedback to the modeler, which indicates that there is either some error in the rule, or
the feature being used is not supported.

2.4 Auto-completion

At any point during the process of writing a fact type or rule, a user can press
Ctrl+Space to get options for the next tokens.

Requesting auto-completion at the start of a blank line gives the only 3 options

which are to choose between a term, a fact and a rule.

At the start of a fact, the only allowed options are terms so only terms are

displayed, however these terms are all in their singular form as showing both singular
and plural versions could make the number of options unwieldy.

An SBVR Editor with Highlighting and Auto-completion 5

At the start of a rule, the only options available are the predefined modalities.

After a modifier there has to be a quantifier so a list of available quantifiers are
given.

We are now offered a simple list of quantities as the ‘at least n’ quantifier requires.

Although any number is allowed only the numbers from 1-9 are listed to keep it
manageable and to give the user the idea that a number is necessary here. Any other
number can simply be typed in and will be highlighted and accepted.

6 Pagan Gazzard, Alexandros Marinos, Paul Krause

If a quantifier that can join into another is chosen, we are given a list of the

available joining quantifiers as well as the terms.

After the term we are offered available verbs which are in their plural form due to

following a plural term. Unfortunately all verbs are given even though only a subset
of verbs applies to the chosen term.

3 Implementation

To accomplish editing SBVR in the browser, we needed to build on an editing
component, intended for writing editors for programming languages. This came at the
benefit of reusing mature code for complex functionality, even if the intended
purposes were slightly different (modeling vs. programming), which led to a number
of issues during the development process.

To choose the appropriate editing component, we reviewed a number of available
ones, such as Ace [7], CodeTextArea [8], EditArea [9]. We ended up using
CodeMirror2 [11], as it represents an optimal mix of features, simplicity, and project
activity for our purposes.

3.1 Implementing in CodeMirror

The system needs to be able to highlight SBVR text and to provide auto-
completion. To implement a syntax in highlighter in CodeMirror 2 you must provide
a JavaScript closure which contains a member function called “token”, with 3

An SBVR Editor with Highlighting and Auto-completion 7

optional functions, “startState”, “indent” and “copyState” as well as one
optional variable “electricChars”.

The token function takes two arguments, the first being a StringStream as
defined in codemirror.js and the second being a state object, which starts as either true
or whatever is returned by startState if it is implemented. The state object will
stay consistent throughout the document and reflect changes made during previous
token operations. The function returns the style that should be used for all text that
has been read from the stream object during the execution of this function.

The startState function is available to return an initialised state variable if
required, we will use this to return an object containing empty arrays for storing terms
and verbs we have encountered during tokenising of the document.

The indent function takes two arguments, the state and the text of the line and
returns the appropriate indentation level. As SBVR does not use indentation we can
override this to always return a level of 0.

The copyState function takes one argument, the state, and returns a copy of the
state, if this function is not implemented then the state object is just copied as-is, since
we do not need any specific copying functionality we can safely ignore this function.

The electricChars string contains characters which when found in the string
will trigger indentation to be performed; as we have no need for indentation we can
safely ignore this.

3.2 Patching OMeta

Initially to enable highlighting we modified OMeta, the language the grammar is
written in, to store a rule token which included the rule name, starting index, and
length for each OMeta rule that was successfully matched. Within the highlighting
wrapper we then picked out the rule names we were interested in highlighting and
were able to generate a list of highlighting tokens using the starting indices and
lengths.

Whilst this solution worked, it meant storing an absolute minimum of one rule
token per character of the string (and generally a lot more, e.g. char, exactly, seq,
token, etc.), most of which we were never interested in. So to get around this we
modified OMeta to accept a list of rule names we are interested in tokens for and for
OMeta to only store tokens for rules that match this list, this reduced the number of
rule tokens stored dramatically and also meant that the highlighting wrapper did not
need to check through for only the rules it was interested in and so could have its
complexity reduced.

Due to the nature of the highlighting being a one to one mapping with the rules that
we store it becomes necessary for the parser to use separate rules for parsing each
token that needs to be highlighted differently, so some modification may be
necessary. However the result of these modifications being required seems to be one
of enforcing a good code style rather than one of creating an annoyance, similar to the
use of significant white-space for block indentation like in python.

For auto-completion we modified OMeta to store the rule name and starting index
for every attempt to match a rule, this way we can find all possible branches that

8 Pagan Gazzard, Alexandros Marinos, Paul Krause

OMeta attempted to take at a given point. This is only guaranteed to be a complete list
of branches at the point the match fails, so for our purposes we take the point in the
line at which the user requested auto-completion hints and tell OMeta to parse up
until that point, as such we know that the parsing will fail so we will get all possible
branches that can be taken. The auto-completer then looks at the map of rule names to
possibilities provided by the OMeta based parser and offers those possibilities.

4 Conclusion & Future Work

We have found using the SBVR editor useful and intend to release it as a
commercial application soon. However, there still remain a number of potential
improvements that can be made, and we will keep improving the codebase.

The obvious direction for improvements is in extending the amount of SBVR that
our grammar can handle, improving both the highlighter and the parser at the same
time. Also, adding support for multiple vocabularies and inclusion of vocabularies in
others will make the environment more suitable for larger projects.

Another intriguing possibility, which may help in making SBVR more popular, is
to add the possibility for publishing models on the Web, with an easily shareable
URL. This will hopefully address the dearth of SBVR examples online currently,
another barrier for newcomers.

We also expect to receive a lot of feedback as we make the tool available for use to
wider audiences, and have reserved significant resources in our roadmap so we can be
responsive to users’ suggestions.

References

1. Object Management Group, “Semantics of Business Vocabulary and Rules Formal
Specification v1.0”, 2008, URL: http://www.omg.org/spec/SBVR/1.0/, Accessed:
16/9/2011.

2. Marinos, A., Krause, P., “An SBVR Framework for RESTful Web Applications” In
Semantic Web Rules - International Symposium, RuleML 2010, Washington, DC, USA,
October 21-23, 2010. Proceedings. LNCS 6403, Springer-Verlag Berlin, Heidelberg, 2010,
pp. 144-158.

3. Marinos, P. Krause. “What, not How: A generative approach to service composition”, IEEE
Conference on Digital Ecosystems Technologies 2009 (DEST 2009)

4. SBeaVeR, URL: http://sbeaver.sourceforge.net, Accessed: 16/9/2011.
5. RuleXpress, URL: http://www.rulearts.com/RuleXpress, Accessed: 16/9/2011.
6. Inflection-js, URL: http://code.google.com/p/inflection-js/, Accessed: 16/9/2011.
7. Ace, URL: http://ace.ajax.org, Accessed: 16/9/2011.
8. CodeTextArea, URL: http://code.google.com/p/codetextarea/, Accessed: 16/9/2011.
9. EditArea, URL: http://www.cdolivet.com/editarea/, Accessed: 16/9/2011.
10. Kleiner M., Albert, P., Bézivin, J., “Parsing SBVR-Based Controlled Languages”, In Model

Driven Engineering Languages and Systems, LNCS, 2009, Volume 5795/2009, pp. 122-136
11. CodeMirror2, URL: http://codemirror.net/, Accessed: 16/9/2011.

