
On Preserving Views In Evolving Environments

�

Elke A. Rundensteiner

Dept. of CS, WPI

Worcester, MA 01609

rundenst@cs.wpi.edu

Amy J. Lee

Dept. of EECS, U of Mich.

Ann Arbor, MI 48105

amylee@eecs.umich.edu

Anisoara Nica

Dept. of EECS, U of Mich.

Ann Arbor, MI 48105

anica@eecs.umich.edu

Abstract

The construction and maintenance of data

warehouses (views) in large-scale environ-

ments composed of numerous distributed in-

formation sources (ISs) such as the WWW

has received great attention recently. Such

environments are plagued with continuously

changing information because ISs tend to con-

tinuously evolve by modifying not only their

content but also their query capabilities and

interface and by joining or leaving the envi-

ronment at any time. In this paper, we out-

line our position on issues related to the chal-

lenging new problem of how to adapt views in

such evolving environments. We �rst present

a taxonomy of view adaptation problems by

describing the dimensions along which view

adaptation problems can be classi�ed. Based

on this taxonomy, we identify a new view

adaptation problem for view evolution in the

context of ISs capability changes, which we

call View Synchronization. We also outline

the Evolvable View Environment (EVE) that

we propose as framework for solving the view

synchronization problem, along with our deci-

sions concerning some of the key design issues

surrounding EVE.

�

This work was supported in part by the NSF RIA grant

#IRI-9309076 and NSF NYI grant #IRI 94-57609. We would

also like to thank our industrial sponsors, in particular, IBM

and Informix.

The copyright of this paper belongs to the papers authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 4th KRDB Workshop

Athens, Greece, 30-August-1997

(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

1 Problem Description

Advanced applications such as web-based information

services, data warehousing, digital libraries, and data

mining often specify views on a large number of dy-

namic information sources (ISs) [Wid95]. There is typ-

ically a large variety and number of ISs in these en-

vironments, each modeled by diverse data models and

each supporting di�erent query languages and inter-

faces. Furthermore, individual ISs freely update both

their content and their capabilities

1

. Lastly, they can

even join or leave the environment as frequently as

they wish.

In order to provide e�cient information access in

such environments, relevant data is often retrieved

from several sources, integrated as necessary, and then

materialized at a view site. Besides providing simpli-

�ed and customized information access to users who

may not have the time nor skill to identify and re-

trieve relevant information from all sources, material-

ized views may also o�er more consistent availability

shielding users from the fact that some of the underly-

ing ISs may temporarily become disconnected as well

as o�ering better query performance as all information

can be retrieved from a single location.

However, materialized views in such evolving en-

vironments also introduce new challenges to the

database community [Wid95]. We refer to any pro-

cess that changes the view de�nition or the view ex-

tent (i.e., materialized view data) as view adaptation

process. In Section 2 we propose a taxonomy of view

adaptation problems in evolving environments based

upon types of changes that either a view or an informa-

tion source could undergo. This taxonomy represents

a suitable classi�cation based on which we can de�ne

as well as di�erentiate between di�erent view adap-

tion problems, such as materialized view maintenance

[GM95, Wid95], view rede�nition [GMR95, MD96],

1

These may include information such as their schemas, their

query interfaces, as well as other services o�ered by the infor-

mation sources.

E.A. Rundensteiner, A.J. Lee, A. Nica 13-1

etc.

We also use the taxonomy to identify a new view

adaptation problem, called view synchronization, that

corresponds to the process of view de�nition adapta-

tion triggered by capability changes of ISs.

We propose a general framework, which we call the

Evolvable View Environment (EVE), for this process

of view adaptation triggered by capability changes of

ISs. In EVE, views are speci�ed using an SQL exten-

sion which enables view creators to explicitly state the

evolution preferences, e.g., whether dropping or chang-

ing a view component is acceptable. Our algorithm

for view synchronization then attempts to construct

a modi�ed view de�nition for a view V in response

to a capability change of an IS that a�ects V, while

meeting the evolution preferences.

The rest of the paper is organized as follows. Sec-

tion 2 presents our general taxonomy of view adapta-

tion problems, while Section 3 characterizes problem

subspaces of speci�c view adaptation problems. Sec-

tions 4 and 5 characterize our solution for the view

synchronization problem, namely, the EVE framework

and its components. Section 6 discusses some related

work and Section 7 concludes the paper.

2 A Taxonomy of View Adaptation

Problems

In order to de�ne our view synchronization problem,

we now provide a general characterization of view

adaptation problems, including both our new as well

as other already well studied problems, such as view

maintenance and view rede�nition. The proposed tax-

onomy is based upon the types of changes to the view

and base information, and the desired level of view

adaptability in the context of changes. Further, for

each view adaptation problem, we present the dimen-

sions that characterize its subproblems.

2.1 Dimensions of View Adaptation Problems

We identify four dimensions that de�ne the coordi-

nates for di�erent view adaptation problems (Fig. 1):

IS-Related Changes dimension: There are three

types of changes that can be made in such envi-

ronments at the information supply side, namely (1)

changing the metadata, such as adding the fact that

a relation R in IS

1

is contained in another relation S

in IS

2

, (2) changing the capability of an IS, such as

deleting/adding an attribute or a relation, and (3) up-

dating the (data) content of an IS, such as adding a

new tuple to a relation.

IS Willingness to Preserve dimension: This dimen-

sion refers to the willingness of an IS to conform to the

information needed by views de�ned on top of it. Pos-

sible values along this dimension correspond to the IS

View Space

IS Space

Yes

Capability
 Changes

No

None

None

Metadata
 Changes

IS Willingness
 to Preserve

View Willingness
 to Adapt

Some
Data Updates

View−Related
 Changes

IS−Related
 Changes

 Data
Updates

 Up−to−date
 Extent

 Up−to−date
 Definition Explicit

Def. Change

 Implicit
Def. Change

Fixed View

Figure 1: A Taxonomy of View Adaptation Problems.

is willing and able to preserve all, some, or not any of

its capabilities (either query interface, schema or even

data content) referenced in a view V | denoted by

Yes, Some, and No values on this dimension, respec-

tively. If an IS for example opts to continue to preserve

its data as it is in use by at least one of its derived views

V , then V 's data and/or de�nition would not need to

be adapted after an IS change.

View-Related Changes dimension: Most previous

work in the materialized view literature has focussed

on processing changes at the (view) content level, ei-

ther triggered by updates at the information site or by

view updates speci�ed directly through the view in-

terface (Data Updates value on this dimension). How-

ever, similarly to schema changes at an IS, capability

changes also could take place for a view. Such de�ni-

tion changes could be either explicitly requested by the

view maintainer, or they could be implicitly triggered

due to other changes in the underlying environment.

View Willingness to Adapt dimension: This di-

mension considers the degree of desired exibility in

view adaptation in the context of changes, i.e., if the

view data or view de�nition needs to be adapted af-

ter an IS-related or view-related change. This dimen-

sion refers to the criticality of di�erent components

of the view (e.g., view extent, view de�nition (VD),

etc.) during the lifetime of the view, in order for the

view to still be useful to the view user. One option

(denoted by Fixed View value on this dimension) cor-

responds to not being able to handle any changes af-

fecting the view - be it data or schema. The second

option (denoted by Up-to-date Extent value on this

dimension) corresponds to the view user's desire to

maintain the view extent after any view-related or IS-

related changes so that it always corresponds to the

most up-to-date value set. The third option, which

is the key focus of our work, corresponds to the view

user's desire to adapt the view de�nition under ISs ca-

E.A. Rundensteiner, A.J. Lee, A. Nica 13-2

pability changes. This is denoted by Up-to-date De�-

nition value on this dimension in Figure 1. The later

represents a large range of options such as: (1) pre-

serving the view interface and the original view ex-

tent while allowing the view de�nition to be changed,

e.g., taking data from other sources, (2) preserving the

view interface but accepting any view extent returned

by the new view de�nition, (3) allowing some compo-

nents to be dropped if no replacements can be found,

versus (4) placing no constraints on the view adapta-

tion process { which can survive any kind of capability

changes.

2.2 Classi�cation of View Adaptation Prob-

lems

In Figure 1, we depict the four dimensions that we use

to de�ne several view adaptation problems character-

ized by speci�c combinations of the coordinates. A set

of four coordinates, one from each dimension, corre-

sponds to a set of apriori conditions of the evolving

view environment (on either IS or view space) that

leads to a speci�c view adaptation process.

View Space

Yes

Capability
 Changes

No

None

None

Metadata
 Changes

IS Willingness
 to Preserve

View Willingness
 to Adapt

Some

View Synchronization Problem

Materialized View Maintenance Problem

Materialized View Maintenance Problem

Materialized View Maintenance Problem

after ISs Data Update

after View Redefinition

after View Synchronization

 Data
Updates

View−Related
 Changes

IS−Related
 Changes

IS Space

 Data
Updates

 Up−to−date
 Extent

 Up−to−date
 Definition

 Explicit
Def. Change

 Implicit
Def. Change

Fixed View

Figure 2: Problem Spaces in our View Adaptation

Taxonomy.

1. View Synchronization is de�ned as a dynamic pro-

cess that adapts the view de�nition triggered by

IS-related capability changes. The coordinates

that de�ne this problem space are marked by cir-

cles in Figure 2. One key distinction of this prob-

lem as compared to others is that it is charac-

terized by the Up-to-date De�nition value on the

View Willingness to Adapt dimension. This

characterizes the fact that the view user desires

for the view de�nition to adapt with changing IS

capabilities instead of the view becoming unde-

�ned. The None value on the View-Related

Changes dimension means that apriori no other

change occurs on the view. The changes of the un-

derlying ISs we consider are capability changes as

indicated by the Capability Changes value on the

IS-Related Changes dimension. No assump-

tions about the the modi�ed ISs being willing to

preserve their old capabilities are being made, as

indicated by the No value on the IS Willingness

to Preserve dimension

2

.

2. The rest of the problem spaces depicted in Figure

2 are de�ned by a common view adaptability pref-

erence: maintaining the extent of the materialized

view up-to-date as indicated on the Willingness

to Adapt dimension.

(a) The problem of materialized view mainte-

nance after base relation updates is well stud-

ied in the database literature (see [GM95,

Wid95] for an overview of problems and so-

lutions). Its coordinates are marked by black

squares in Figure 2. The problem is char-

acterized by (1) the view has no explicit

changes apriori, (2) the IS changed its data

extent, (3) the view user wants the view ex-

tent up-to-date, and (4) the IS did not pre-

serve its old data.

(b) The problem of materialized view mainte-

nance after view rede�nition has been re-

cently studied by Gupta et al. [GMR95] and

by Mohania et al. [MD96]. Its coordinates

are marked by triangles in Figure 2. The

main di�erence to above is that the process

is (1) triggered by the view's explicit change

of its de�nition, and (2) no changes at the IS

side occurred.

(c) A new problem - materialized view main-

tenance after view synchronization - is now

been given a formal framework by our tax-

onomy. In the context of view synchroniza-

tion when the view de�nition is adapted to

the IS capability changes, the view extent

2

For this to be possible, we have to �nd a model to express

evolution preferences for the desired view adaptability proper-

ties for di�erent view elements under capability changes. See

Section 4, for our solution to this issue.

E.A. Rundensteiner, A.J. Lee, A. Nica 13-3

also needs to be updated in response to view

synchronization. This is what this new view

maintenance problem is about. It is de�ned

by the apriori conditions: (1) the view de�ni-

tion was synchronized, i.e., its de�nition was

implicitly changed by the view synchroniza-

tion process, (2) the IS changed its capability

(this information is needed by the process of

view maintenance in order to know what ex-

actly was the change that triggers it), (3) the

view user wants the view extent up-to-date,

and (4) the IS did not preserve its old data

nor schema.

The distinguishing characteristic of this

maintenance problem over the other two is

that potentially both ISs capabilities and

data are changed (e.g., after the attribute

A of relation R is deleted, relation R's data

is changed as well, that is the column cor-

responding to attribute A is deleted from

R, and hence both are not accessible for

maintaining the view derived from it). This

problem space brings new challenges as the

changes in a view de�nition due to synchro-

nization are in general complex as we discuss

in Section 5. The coordinates of this problem

are marked by stars in Figure 2.

3 Dimensions of Di�erent View Adap-

tation Problem Spaces

For each view adaptation problem identi�ed in Sec-

tion 2.2, we describe next the dimensions that classify

subproblems in each problem space. We emphasis in

particular the View Synchronization problem as it is

new and the target of our project work.

3.1 Problem Space of View Synchronization

Problem

For the View Synchronization problem, we identify

three dimensions along which the complexity of view

synchronization algorithms can be characterized (Fig-

ure 3). Selections of design choices along these dimen-

sions results in speci�c subproblems, each worth future

investigation.

IS Capability Changes dimension: This corre-

sponds to capability changes in databases such as

delete attribute, delete relation, etc. Generally, these

types of changes make the views derived from using

these components unde�ned, leaving the view user

with no choice but rede�ning the view completely. It

is this problem that we address in this paper: what

kind of extra information we must have at the view

site in order to be able to rede�ne the view so that it

survives after such changes.

Complexity of Meta Knowledge dimension: This

corresponds to the description of capabilities and con-

tent of each IS plus of relationships between ISs. Such

knowledge allows our system to reason about �nding

appropriate replacements of view components when

evolving a view de�nition. One example of meta

knowledge is that an identical duplicate of a relation

R at IS

1

may also be available in another site IS

2

, i.e.,

\IS

1

:R � IS

2

:S". When the relation R is deleted from

IS

1

, the view synchronization process is able to pre-

serve the a�ected view de�nitions that reference R by

replacing IS

1

:R with IS

2

:S. The more knowledge our

system has about the information space, the higher

chance it has to preserve the a�ected views when a ca-

pability change takes place at an IS - though of course

the more complicated the algorithm for synchroniza-

tion may become.

View Space

IS Space

arithmetic

aggregation

nested query

.
.

SPJ

 Complexity of
View Definition
 Language

.

 Complexity of
Meta Knowledge

. ..
. .
.

change attribute name

delete relation

add relation

change relation name

 type constraint

 order constraint

 join constraint

 functional dependency

 key constraint

 full meta information

delete attribute

add attribute

 IS Capability Changes

Figure 3: Problem Space of View Synchronization.

Complexity of View De�nition Language dimen-

sion: This can be classi�ed according to the view

components allowed in the view de�nitions. The

simplest view de�nition is speci�ed by using the

conventional SELECT-PROJECT-JOIN structure with

WHERE clause containing conjunctive clauses only, de-

noted by SPJ in Figure 3. More complex views allow

arithmetic, aggregation, negation, nested queries, and

so on in their view de�nitions. If more complex lan-

guage constructs are used as part of a view de�nition,

then it is more likely that sophisticated algorithms are

required to preserve the view interface (and the view

extent) under capability changes.

In Section 5, we describe a view synchronization

algorithm that addresses the points in this problem

space of the following coordinates: (1) delete attribute

value on the IS Capability Changes dimension; (2)

E.A. Rundensteiner, A.J. Lee, A. Nica 13-4

a selected subset of types of meta information on the

Complexity of Meta Knowledge dimension; and

(3) SPJ point on the Complexity of View De�ni-

tion Language dimension.

3.2 Problem Space of Materialized View

Maintenance After View Synchronization

After the view synchronization process, the view, if

materialized, must be updated accordingly: this is

what we coin the materialized view maintenance af-

ter view synchronization problem (Figure 2). We de-

scribe next the dimensions that characterize this new

problem space depicted in Figure 4.

View Space

IS Space

arithmetic

aggregation

nested query

.
.

SPJ

none

 Complexity of
View Definition
 Language

.

. .
.

 Extra
Information

 Complexity of
Meta Knowledge

 type constraint

. ..

.
.

.

IS Willingness
 to Notify

never

. .
.

delete relation

add relation

change relation name

 order constraint

 key constraint

 full meta information

delete attribute

add attribute

change attribute name

 before
change

after
change

materialized
 view

 base
relations

 join
attributes

 join constraint

 IS Capability Changes

Figure 4: Problem Space of View Maintenance after

View Synchronization.

Complexity of View De�nition Language dimen-

sion: This characterizes the complexity of the view

de�nition as done for view synchronization (Figure 3).

Extra Information dimension: This dimension is

concerned with the issue of what information besides

the old and new view de�nitions is available for the

purpose of facilitating view maintenance and possibly

achieving view self-maintainability after view synchro-

nization. The amount of information available for view

maintenance can range from fully duplicated base re-

lations, partially duplicated base relations { such as

join attributes, the attributes in the SELECT clause,

derive-counts, and auxiliary join tables, to no data

from base relations available at the view site.

Complexity of Meta Knowledge dimension: See

description in the view synchronization problem space.

IS Capability Changes dimension: See description

in the view synchronization problem space above.

IS Willingness to Notify dimension: This dimen-

sion considers whether, and if so, when ISs notify the

view site of their changes. Choices here are that the

IS does not notify, noti�es only after, or noti�es the

view site even before the change actually takes place.

A more optimal re-organization may be able to take

place at a view site if it gets informed of a potential

change (especially a deletion) before a change takes

e�ect. In that case, it would have the chance to copy

the a�ected data over to the view site, to utilize meta

knowledge about the to-be-deleted IS component to

identify alternate sources for information supply, etc.

3.3 Other Problem Spaces

 IS Data Updates

View Space

IS Space

 Complexity of
View Definition
 Language

. .
.

 Extra
Information

. ..

none

materialized
 view

. ..

 base
relations

 join
attributes

insert group

insert tuple

 delete group

delete tuple

SPJ

arithmetic

aggregation

nested query

Figure 5: The Problem Space of View Maintenance

after ISs Data Update.

Figures 5 and 6 depict the dimensions of the well

known problem spaces: Materialized View Mainte-

nance after base relation updates [GM95] and Ma-

terialized View Maintenance after view rede�nition

[MD96, GMR95].

View Space

IS Space

arithmetic

aggregation

nested query

.
.

SPJ

none

 Complexity of
View Definition
 Language

 Extra
Information

.

. .
.

..

.

drop attribute

add relation

add attribute

drop relation

 base
relations

materialized
 view

 join
attributes

Redefinition

Figure 6: The Problem Space of View Maintenance

after View Rede�nition.

E.A. Rundensteiner, A.J. Lee, A. Nica 13-5

4 View Evolution in Evolvable View

Environments (EVE)

The view synchronization problem tempts to evolve

a view, if its view de�nition is a�ected by a capa-

bility change at a underlying IS, by �nding appro-

priate replacements for the a�ected view components

or by dropping non-essential view components if ap-

propriate replacements cannot be found. We have

designed the Evolvable View Environment (EVE) to

tackle the problems concerning view synchronization

and view maintenance after synchronization in dy-

namic environments (Figure 7). We give an architec-

tural overview of the EVE framework next and outline

our key design decisions.

IS Registration. Our environment can be divided

into two spaces, i.e., the view space and information

space. The information space is populated by a large

number of external ISs. External ISs are heteroge-

neous, distributed, and autonomous; and they join,

leave, or change their capabilities dynamically. An IS

is \integrated" in the global framework via a mediator

(i.e., the information source interface (ISI)) that serves

as a bridge between the information space and the view

space. The main functionality of an ISI is to translate

the messages speci�ed in the underlying data de�ni-

tion/manipulation languages into a common language

used in the view site, and vice versa. The ISI may be

intelligent so that it can extract not only raw data, but

also meta information about the IS, such as changes

at the schema level of the IS, performance data, or

relationships with other ISs. Any IS that supports a

query interface can participate in our environment.

. Information
 Source

ISI

Information
 Source

ISI

Information
 Source

ISI

 Query
Executor

 View
Synchronizer

capability
changes

 View
Knowledge
 Base

. . .
 View
Definition

Extent

 View
Definition

Extent

 Meta
Knowledge
 Base

 MKB
Evolver

 update
notifications

 MKB
 Consistency
 Checker

queries/query results

VIEW SPACE

 View
 Maintainer

INFORMATION SPACE

Materialized View Evolver

Figure 7: The Framework of Evolvable View Environ-

ment (EVE).

Meta Knowledge Base (MKB). When an IS joins

EVE, it advertises to the MKB its capabilities, data

model (e.g., the semantic mappings from its concepts

to the concepts already in the MKB), and data con-

tent. The information providers have strong economic

incentives to provide the meta knowledge of their indi-

vidual ISs as well as the relationships with other ISs,

since populating the MKB not only makes their data

known by the view users, but it also increases the data

utilization of their data set (especially, if they o�er the

same information at a better price).

We have designed a model for information source

descriptions (MISD) [LNR97] that is capable of de-

scribing the content and capabilities of heterogeneous

ISs, to be entered into the MKB. MISD captures

meta knowledge such as an attribute must have a

certain type (type integrity constraint), one relation

can be meaningful joined with another relation if cer-

tain join constraints are satis�ed (join constraint), a

fragment of a relation is partially or completely con-

tained in another fragment of some other relation

(partial/complete information constraint), and so on

[LNR97]. The IS descriptions collected in the MKB

form an information pool that is critical in �nding

appropriate replacements for view components when

view de�nitions become unde�ned (See Section 5) and

for translating loosely-speci�ed user requests into pre-

cise query plans [NR97].

Global Consistency Checking Across Sources.

There are two types of inconsistencies (related to meta

knowledge) in EVE. The �rst one is that constraints

expressed in the MKB do not correspond to the in-

formation actually provided by ISs; and the second

one is that di�erent assertions in the MKB contradict

with each other. The �rst type of inconsistency occurs

when (1) either an IS provider makes an error when

entering a MISD description, (2) an update occurred

at one IS that causes a constraint that used to hold to

become invalid, or (3) the usage and hence content of

an IS changes over time without proper noti�cation to

the MKB. For example, the information provider for

IS

1

inserts the fact that the relation R is equivalent to

a relation S in another site IS

2

into the MKB. Now,

the provider of IS

2

, that is not aware of this assertion

made about S in IS

2

, inserts a new tuple t that makes

the assertion become false.

There are alternative approaches for resolving this

inconsistency. For example, (1) insert the tuple t into

the relation R as well, (2) reject the insertion into

S, (3) modify the invalid assertion in the MKB so to

make it valid (i.e., in this case change \IS

1

:R � IS

2

:S"

into \IS

1

:R � IS

2

:S"), or (4) remove the invalid as-

sertion from the MKB. Since checking and enforcing

constraints across distributed autonomous ISs is an ex-

tremely di�cult problem all on its own, in this work we

E.A. Rundensteiner, A.J. Lee, A. Nica 13-6

assume that providers of individual ISs are in charge

of assuring that their data is consistent with the meta

knowledge collected in the MKB. We do not at this

time incorporate a tool into our EVE framework that

checks possible inconsistencies. However, once being

noti�ed about the entry or removal of some data item

by an IS, EVE will notify the creators of all constraints

in the MKB that may possibly be violated by this data

modi�cation. For example, on inserting a new tuple

t into the relation S in the above example, both the

providers of S and R are noti�ed that the update oc-

curred and that the constraint \IS

1

:R � IS

2

:S" may

now be inconsistent. It is up to the providers of IS

1

and IS

2

to determine how to handle this situation, once

given the noti�cation.

MKB Consistency. The second type of MKB con-

sistency concerns conicts between the constraints en-

tered in the MKB, and thus can be detected by our

MKB Consistency Checker module without help from

the IS providers. One example of this type of conict is

that one information provider declares that a relation

R of IS

1

is a strict subset of a relation S in another site

IS

2

, and at the same time the provider of S claims that

the extent of S is a strict subset of of R. This is clearly

an inconsistency. Our MKB consistency checker dis-

covers such controversial meta knowledge using various

types of inference techniques. Once detected, inconsis-

tent assertions are reported to responsible information

providers to have the di�erences resolved.

MKB Evolution. When an underlying IS makes a

change to its capabilities (e.g., adds a new relation),

the MKB no longer reveals the IS correctly in the sense

that the meta knowledge describing the IS and the

actual capabilities of the IS are distinct. For this,

we have designed the MKB Evolution process to re-

act to capability changes in the information space. In

our framework, each IS will via the ISI interface no-

tify the MKB of any such capability changes so that

they can be properly registered in the MKB. The MKB

Evolver module will then take appropriate actions to

update the MKB [NLR97]. For example, deleting of

an attribute A from a relation S may cause the MKB

evolver to modify a subset constraint between two rela-

tions S and R, e.g., \S � R", into a simpler constraint

\S � (project all attributes of R besides A from R)".

In other cases, some constraints may have to be com-

pletely removed from the MKB if they contain refer-

ences to the deleted attribute.

Language for Information Access. For intelligent

information access in such environments, we need a

language that can express a user's demand for infor-

mation both for a one-time (naive) requester as well as

for constructing a materialized view site by a more sea-

soned user (a view developer). An adequate language

must thus support query speci�cations ranging from

a vague ontology-based information request [NR97] to

a precisely elaborated query speci�cation that details

what piece of information is to be retrieved from which

particular IS (as assumed in OEM by Papakonstanti-

nou et al. [PGMW95]). We have designed the DIIM

query language [NR97] so to be able to handle this

wide range.

Query Planning. Our system incorporates algo-

rithms for mediating between the requests for informa-

tion (e.g., a view de�nition) and the actual information

supply available in ISs as characterized in our MKB. In

particular, we have developed the DIIM query planner

that re�nes a loosely-speci�ed user query into a precise

query that meets all constraints expressed in the MKB

and is executable within the environment [NR97]. Our

proposed query semantics de�ne a natural way of re�n-

ing a vague query by rewriting it into a more restricted

query that is consistent with both IS descriptions and

the original query de�nition. A re�ned query uses join

constraints to extract information from di�erent ISs

and at the same time is in agreement with their query

interfaces. For this, we introduce the notion of con-

nected relations as a natural extension of the concept

of full disjunction [RSU95]. In the default case when

only natural joins are de�ned in the IS descriptions in

the MKB we have shown that the semantics of these

two concepts (connected rules and full disjunction) are

equivalent [NR97].

View Synchronization. We are applying query

planning algorithms, such as the DIIM planner

[NR97], to solve the view synchronization problem.

(For more details see Section 5). We are continuing

to investigate di�erent reasoning techniques to deter-

mine progressively more complex means of preserving

as much as possible the initial view [NLR97].

ViewMaintenance. The view maintainer tool in our

EVE framework (Figure 7) is in charge of propagating

data updates executed on an IS site following a capa-

bility change to the view site to bring the view content

up-to-date after the view de�nition already had been

changed by the view synchronizer.

5 Our Solution Approach to the View

Synchronization Problem

In this section, we give an overview of the key con-

stituents of our EVE framework, while a complete de-

scription of the EVE solution can be found in [LNR97].

5.1 Basics of the Evolvable-SQL View De�ni-

tion Language (E-SQL)

A novel principle of our approach is to explore the

evolution of views based on preferences speci�ed by

its creator, such as (1) whether the view component

is essential for the view to be useful to the view user

E.A. Rundensteiner, A.J. Lee, A. Nica 13-7

and (2) whether the view component is allowed to be

obtained from ISs other than the IS originally stated

in the view de�nition. The Evolvable-SQL view de�ni-

tion language (E-SQL) is our solution to this problem.

E-SQL is an extension of SQL augmented with speci�-

cations for evolution. Essentially, E-SQL incorporates

evolving parameters into SQL which allow the view de-

�ner to specify criteria based on which the view will be

transparently evolved by the system under capability

changes at the ISs.

We summarize the evolution parameters in Figure

8. Each row represents one type of evolution param-

eter in E-SQL. The four columns in Figure 8 repre-

sent the name, symbol, possible values and semantics,

and default value for each evolving parameter, respec-

tively. When the evolving parameter setting is omit-

ted from the view de�nition, then the default value is

assumed. This means that a conventional SQL query

(without explicitly speci�ed evolution preferences) has

well-de�ned evolution semantics in EVE, i.e, anything

the creator speci�ed in the view de�nition must be

preserved as originally speci�ed in order for the view

to be meaningful to the view user. The format of the

E-SQL view de�nition language is given in Figure 9.

Next, we use one example to demonstrate the in-

tegrated usage of these evolution parameters, while a

justi�cation for the design of this language plus more

examples can be found in [LNR97].

Example 1 Let's assume a large web-based travel

agency has a promotion for its customers who travel

to Asia by air. The travel agency is either going to

send promotion letters to these customers or call them

by phone. Therefore, the travel agency needs to �nd

the customers' names, addresses, and phone numbers.

The query for getting the necessary information can be

speci�ed in SQL as follows:

CREATE VIEW Asia-Customer AS (2)

SELECT C.Name, C.Address, C.PhoneNo

FROM Customer C, FlightRes F

WHERE (C.Name = F.Passenger)

AND (F.Destination = 'Asia')

Equation (2) is static, incapable of evolving, while IS

capability changes are inevitable in a dynamic envi-

ronment. We reformulate Equation (2) with view evo-

lution parameters so that the view Asia-Customer

may survive in a changing environment. The resulting

E-SQL view is shown in Equation (3).

Assume the company is willing to put o� the phone

marketing strategy, if the customer's phone number

cannot be obtained, e.g., the information provider of

the Customer relation decides to delete PhoneNo.

This preference can be stated clearly in the SELECT

clause of Equation (2) by the attribute dispensable pa-

rameter �. In addition, if the travel agent is willing to

accept the customer information from other branches,

we set the relation replaceable parameter � in the

FROM clause to true. Further, let's assume the travel

agent is willing to o�er its promotion to all the cus-

tomers who travel by air, if identifying who travels to

Asia is impossible (i.e., the second WHERE condition

cannot be veri�ed)

3

. This preference can be explic-

itly speci�ed by associating the condition-dispensable

parameter with that condition in the WHERE clause.

CREATE VIEW Asia-Customer (� =�) AS (3)

SELECT Name (" = false),Address (" = false),

PhoneNo (� = true, " = true)

FROM Customer C (� = true);FlightRes F

WHERE (C.Name = F.Passenger) (� = false)

AND (F.Destination = 'Asia') (� = true)

5.2 Model of Information Source Description

While ISs may be based on disparate data models,

when registered ISs translate their IS schemas into

one common model supported by the EVE system

(see [NR96, LNR97]). We now introduce the model

of information source descriptions (MISD) (for a full

description of MISD, see [LNR97]) we use to specify

the meta knowledge currently collected in the MKB

of EVE. We summarize the name (�rst column) and

the syntax (second column) of the di�erent types of

constraints collected in the MKB in Figure 10.

In the following, we give some examples. The type

integrity constraint:

Customer(Name) � String(Name)

says that the Name value of any customer is a string.

The join constraint:

J C

Customer;FlightRes

=

(Customer:Name = F lightRes:Passenger)

states that it is meaningful to combine the Customer

and FlightRes relations, possibly taken from di�erent

ISs, as long as the customer's name is the same as the

passenger's name. The partial/complete information

constraint:

3

Note that in general dropping a local condition is more ac-

ceptable than dropping a join condition, since dropping a join

condition may change the view de�nition dramatically. For ex-

ample, replacing a join condition that returns some subset of

tuples by a Cartesian product which then would return all pair-

wise combinations of tuples from both relations as view result.

E.A. Rundensteiner, A.J. Lee, A. Nica 13-8

View Evolution Parameter

Parameter Symbol Semantics Default

Attribute- dispensable (AD) � true: the attribute is dispensable false

false: the attribute is indispensable

replaceable (AR) " true: the attribute is replaceable false

false: the attribute is nonreplaceable

Condition- dispensable (CD) � true: the condition is dispensable false

false: the condition is indispensable

replaceable (CR) � true: the condition is replaceable false

false: the condition is nonreplaceable

Relation- dispensable (RD) � true: the relation is dispensable false

false: the relation is indispensable

replaceable (RR) � true: the relation is replaceable false

false: the relation is nonreplaceable

View- extent (VE) � don't care: no restriction on the new extent �

�: the new extent is equal to the old extent

�: the new extent is a superset of the old extent

�: the new extent is a subset of the old extent

Figure 8: View Evolution Parameters of the E-SQL Language.

CREATE VIEW V (B

1

; : : : ; B

m

) (� = �

i

) AS

SELECT R

1

:A

s

1;1

(� = �

s

1;1

; � = �

s

1;1

); : : : ; R

1

:A

s

1;i

1

(� = �

s

1;i

1

; � = �

s

1;i

1

); : : : ;

R

n

:A

s

n;1

(� = �

s

n;1

; � = �

s

n;1

); : : : ; R

n

:A

s

n;i

n

(� = �

s

n;i

n

; � = �

s

n;i

n

)

FROM R

1

(� = �

1

; � = �

1

); : : : ; R

n

(� = �

n

; � = �

n

)

WHERE C

1

(� = �

1

; � = �

1

) AND : : : AND C

k

(� = �

k

; � = �

k

)

(1)

where fB

1

; : : : ; B

m

g corresponds to local names given to attributes preserved in V, fA

s

j;1

; : : : ; A

s

j;i

j

g is a subset of the

attributes of relation R

j

with j = 1; :::;n; C

i

with i = 1; :::; k; are WHERE conditions (primitive clauses) de�ned over the

attributes of relations in the FROM clause. The parameters �; �; �; �; �; � and � are de�ned in Fig. 8.

Figure 9: Syntax of E-SQL Query.

PC

Customer;Branch

=

(�

Name;Address

(Customer) � �

Name;Address

(Branch))

represents the fact that the customer information kept

in the Branch relation is included in the customer

information kept in the Customer relation from the

headquarter IS.

5.3 View Synchronization Algorithm for

Delete-Attribute Capability Change

When an attribute A of the R relation is deleted from

IS1, our view synchronization process (VSP) searches

the view knowledge base (VKB) for the a�ected views.

For each of the a�ected views, VSP �nds an accept-

able view de�nition for the a�ected view, based on

the evolution preferences speci�ed in the E-SQL view

de�nition, the type of capability change, and the meta

knowledge in the MKB. In Figure 11, we present a ow

chart of our view synchronization algorithm for the

case when the capability change is delete-attribute (see

[NLR97] for other view synchronization algorithms).

In this algorithm, VSP �nds an appropriate sub-

stitute S.B for R.A, if (1) S.B has the same type as

R.A, (2) it is meaningful to join S and R, i.e., a join

constraint between R and S is found in the MKB, and

(3) the new view extent that results after S.B replaces

R.A in the view de�nition satis�es the view extent re-

quirement.

Example 2 Let's assume the information provider of

the Customer relation decides to drop the PhoneNo

attribute. When the VSP (view synchronization pro-

cess) receives this delete-attribute capability change

noti�cation, it searches the VKB and �nds that the

Asia-Customer view (see Equation (3)) is a�ected.

VSP searches in the MKB for an appropriate replace-

ment for Customer.PhoneNo (Figure 11). If the

phone number information cannot be found in the in-

formation space, then VSP drops the PhoneNo view

component from the SELECT clause, registers the mod-

E.A. Rundensteiner, A.J. Lee, A. Nica 13-9

Model for Information Source Description

Name Syntax

Type Integrity Constraint R(A

1

; : : : A

n

) � Type

1

(A

1

); : : : Type

n

(A

n

)

Order Integrity Constraint R(A

1

; : : : ; A

n

) � C(A

i

1

; : : : ; A

i

k

)

Join Constraint J C

R

1

;R

2

= (C

1

AND � � �C

l

)

Partial/Complete Constraint PC

R

1

;R

2

= (�

A

i

s

(�

C(A

j

1

;:::;A

j

l

)

R

1

)��

A

n

s

(�

C(A

m

1

;:::;A

m

t

)

R

2

))

Figure 10: Model for Information Source Description.

Replaceable?

Dispensable? Dispensable?

Success

Replace

Failure

Drop

Start

Drop Replace

False/Not Found

T
ru

e/
F

o
u

n
d

 Find
Substitute?

 Find
Substitute?

Figure 11: Flow Chart: View Synchronization Algo-

rithm when Attribute Is Deleted from Select.

i�ed view de�nition with the VKB, and removes the

PhoneNo attribute from the original view extent.

6 Related Work

To our knowledge, the view adaptation problems

caused by capability changes in participating ISs

(view synchronization and associated view mainte-

nance problems) have not been studied before.

In the MultiView project, we have investigated the

design and implementation of object-oriented view

technology in a centralized setting [Run92, KR96a,

KR96b]. We are also studying the application of this

view technology to simulate schema changes instead of

changing the base schema and thus a�ecting all users

of the shared object-oriented database [RR95].

Gupta et al. [GJM96] and Mohania et al. [MD96]

address the view rede�nition problem. They study un-

der which conditions this view update can take place

without requiring access to base relations, i.e., the self-

maintainability issue. Their algorithms could poten-

tially be applied to views in the context of our overall

framework, once EVE has determined an acceptable

view rede�nition. Their results are thus complimen-

tary to our work.

Gupta et al. [GM95] identify the view mainte-

nance problems according to four dimensions (e.g.,

the amount of information used for view maintenance)

that constitute the problem space, but do not treat IS

capability changes which is one of the key dimensions

driving our taxonomic development.

In the work of Levy et al. [LSK95], external ISs

are described relative to one uni�ed world-view model.

Levy et al. focus on choosing the right base relations

for execution of queries expressed using world view re-

lations, with the relationships between the world view

relations and the relations of the underlying sources

all expressed in that world view. The problem of view

evolution, i.e., that the world view itself may evolve,

is not handled in [LSK95].

Papakonstantinou et al. [PGMW95] pursue the

goal of information gathering across multiple sources.

Their proposed OEM language is traditional in the

sense of being static, hence the view synchronization

problem is not touched upon by their work.

In the University of Michigan Digital Library

project [NR97], we have proposed the Dynamic In-

formation Integration Model (DIIM) to allow ISs to

dynamically participate in an information integration

system. The DIIM query language allows loosely spec-

i�ed queries that the DIIM system re�nes into exe-

cutable, well-de�ned queries based on the capability

descriptions each IS exports when joining the DIIM

system. We are in the process of adapting and incor-

porating the DIIM query planner as one thread of our

view synchronization tool suite.

7 Conclusion

This paper is the �rst work to study the problem of

view adaptation in dynamic environments. We bring

forward a taxonomy of the view adaptation problems

composed of four dimensions. We use our proposed

taxonomy to classify and di�erentiate among di�erent

view adaptation problems, such as view rede�nition

and view maintenance [GM95, MD96, GMR95]. We

also use it to de�ne a new problem of view adaptation,

which we call view synchronization, that corresponds

to the process of adapting view de�nitions triggered

by capability changes of ISs.

We propose the Evolvable View Environment

E.A. Rundensteiner, A.J. Lee, A. Nica 13-10

(EVE) architecture as a generic framework within

which to solve view adaptation when underlying ISs

change their capabilities. Design decisions and key

components of the EVE solution, in particular, as they

relate to the view synchronization problem, are also re-

viewed in this paper. In short, this paper has opened

up a new direction of research by identifying view syn-

chronization as an important and so far unexplored

problem of current view technology in dynamic large-

scale environments such as the WWW.

Acknowledgments. The authors would like to

thank students at the University of Michigan Database

Group and at the Database Systems Research Group

at WPI for their interactions on this research. In

particular, we thank Esther Dubin (CRA summer re-

search student) and Xin Zhang for helping to proof-

read the paper and for implementing components of

the EVE system.

References

[GJM96] A. Gupta, H.V. Jagadish, and I.S. Mu-

mick. Data Integration using Self-

Maintainable Views. International Con-

ference on Extending Database Technol-

ogy (EDBT), 1996.

[GM95] A. Gupta and I.S. Mumick. Maintenance

of Materialized Views: Problems, Tech-

niques, and Applications. IEEE Data En-

gineering Bulletin, Special Issue on Mate-

rialized Views and Warehousing, 18(2):3{

19, 1995.

[GMR95] A. Gupta, I.S. Mumick, and K.A. Ross.

Adapting Materialized Views after Redef-

inition. In Proceedings ACM SIGMOD

International Conference on Management

of Data, pages 211{222, 1995.

[KR96a] H. A. Kuno and E. A. Rundensteiner. The

MultiView OODB View System: Design

and Implementation. In Harold Ossher

and William Harrison, editors, Theory

and Practice of Object Systems (TAPOS),

Special Issue on Subjectivity in Object-

Oriented Systems. John Wiley New York,

1996.

[KR96b] H. A. Kuno and E. A. Rundensteiner. Us-

ing Object-Oriented Principles to Opti-

mize Update Propagation to Materialized

Views. In IEEE International Confer-

ence on Data Engineering, pages 310{317,

1996.

[LNR97] A. J. Lee, A. Nica, and E. A. Runden-

steiner. The EVE Framework: View Evo-

lution in an Evolving Environment. Tech-

nical Report WPI-CS-TR-97-4, Worces-

ter Polytechnic Institute, Dept. of Com-

puter Science, 1997.

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk.

Data Model and Query Evaluation in

Global Information Systems. Journal of

Intelligent Information Systems. Special

Issue on Networked Information Discov-

ery and Retrieval, 1995.

[MD96] M. Mohania and G. Dong. Algorithms

for Adapting Materialized Views in Data

Warehouses. International Symposium

on Cooperative Database Systems for Ad-

vanced Applications, December 1996.

[NLR97] A. Nica, A.J. Lee, and E. A. Runden-

steiner. View Synchronization with Com-

plex Substitution Algorithms. Techni-

cal Report WPI-CS-TR-97-6, Worcester

Polytechnic Institute, Dept. of Computer

Science, July, 1997.

[NR96] A. Nica and E. A. Rundensteiner. The

Dynamic Information Integration Model.

Technical report, University of Michigan,

Ann Arbor, EECS Dept. CSE Division,

1996.

[NR97] A. Nica and E. A. Rundensteiner.

On Translating Loosely-Speci�ed Queries

into Executable Plans in Large-Scale

Information Systems. In Proceedings

of Second IFCIS International Confer-

ence on Cooperative Information Systems

(CoopIS'97), pages 213{222, June 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina,

and J. Widom. Object Exchange Across

Heterogeneous Information Sources.

IEEE International Conference on Data

Engineering, pages 251{260, March 1995.

[RR95] Y. G. Ra and E. A. Rundensteiner.

A Transparent Object-Oriented Schema

Change Approach Using View Schema

Evolution. In IEEE International Confer-

ence on Data Engineering, pages 165{172,

March 1995.

[RSU95] A. Rajaraman, Y. Sagiv, and J.D. Ull-

man. Answering Queries Using Tem-

plates With Binding Patterns. In Pro-

ceedings of ACM Symposium on Princi-

ples of Database Systems, pages 105{112,

May 1995.

[Run92] E. A. Rundensteiner. MultiView:

Methodology for Supporting Multiple

Views in Object-Oriented Databases". In

18th VLDB Conference, pages 187{198,

1992.

[Wid95] J. Widom. Research Problems in Data

Warehousing. In Proceedings of Inter-

national Conference on Information and

Knowledge Management, pages 25{30,

November 1995.

E.A. Rundensteiner, A.J. Lee, A. Nica 13-11

