
Alamo: An Architecture for Integrating Heterogeneous

Data Sources

�

Daniel P. Miranker

miranker@cs.utexas.edu

Vasilis Samoladas

vsam@cs.utexas.edu

Department of Computer Sciences

and

The Applied Research Laboratory

The University of Texas at Austin

Austin, TX 78712-1188

Abstract

We are developing an architecture, Alamo,

that addresses both the semantic and physi-

cal aspects of data integration. The Alamo ar-

chitecture permits the interoperability of both

data sources and semantic components. As

a collection, the supported semantic compo-

nents capture most basic forms of knowledge

representation. Since the semantic integration

of heterogeneous data sources requires some

representation of the semantic content of the

data source, the Alamo architecture forms an

infrastructure for the development and possi-

ble integration of di�erent forms of semantic

integration of heterogeneous data sources.

Central to the Alamo architecture is a

CORBA compliant software bus called the

Abstract Search Machine (ASM). The ASM

augments a simple cursor class with methods

that can be used to implement the marking,

memoing and learning schemes exploited by

clever search algorithms. The broad claim is

that high performance implementations of se-

�

This research is partially funded by DARPA, contract num-

ber: F30602-96-2-0226 and the Applied Research Laboratories

Univ. of Texas, Internal Research Development Program.

The copyright of this paper belongs to the papers authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 4th KRDB Workshop

Athens, Greece, 30-August-1997

(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

mantic components can all be built using a

common means for accessing data. Since the

output of each semantic component can be ac-

cessed by virtue of the ASM de�nitions the

components of the Alamo architecture can be

composed to resolve higher level data integra-

tion problems. Ultimately, further composi-

tions will embody complex knowledge-bases

and be able to answer high-level queries.

1 Introduction

The widespread adoption of web related technolo-

gies has spawned the motivation to immediately solve

the problem of integrating heterogeneous information

sources. There is a large number of contributions

to the problem of accessing heterogeneous informa-

tion sources. These contributions typically address

special subproblems of interest, like data warehous-

ing, (loosely) federated databases, textual and semi-

structured data access etc. We claim that in all of

these environments, the problem of semantic integra-

tion is addressed, at least in part, by some means of

knowledge representation. Further, at this juncture

the forms of semantic modeling are at least as numer-

ous as the number of application areas;

� SQL programming is popular for Decision Sup-

port,

� deductive databases are used for data mining,

� production rules apply well to expert systems and

distributed systems of constraints,

� frame systems are widely popular in knowledge

representation, and so on.

D.P. Miranker, V. Samoladas 14-1



A goal of the Alamo project is to provide founda-

tions, formal and engineering, for integrating heteroge-

neous data sources, under multiple, di�erent informa-

tion and semantic representations. A critical aspect in

the experimental part of this goal is to amortize the

work required to integrate data sources into each ex-

perimental system. Toward this end we have de�ned

what may most succinctly be described as a CORBA-

compliant middleware interface, coined the Abstract

Search Machine (ASM). The interface comprises an

augmented cursor de�nition, such that data sources

may be accessed through a \least-common denomi-

nator". Simultaneously, the interface de�nition in-

cludes direct support for sifting data and methods for

associating markings with individual data elements.

The behavior of of the ASM cursors change, transpar-

ently, per the markings. Marking techniques, (a.k.a.

learning, memoing), become part of the data abstrac-

tion. Since these techniques are endemic to high per-

formance implementation of knowledge-based systems

both data processing methods and knowledge-base in-

ference methods, or in our parlance semantic mod-

ules, may all be constructed using a common inter-

face. Thus, the ASM will serve as the basis for inter-

operability among data sources and knowledge-base

techniques.

Another starting point of the project is that we as-

sume that there is no cooperation from the component

databases beyond having made their data available on-

line. Thus there is no requirement that the owners of

the component databases provide information about

the content and structure of their databases (meta-

data). If an ontology or other aspect of distributed

agent approaches is available for a data source, we

anticipate that we will have a semantic component

that may exploit that extra information directly. How-

ever, we do not view organizations that provide data

as fundamentally altruistic or as having the extra

people-related resources to build an agent infrastruc-

ture. Thus, we seek to empower a user, or at least his

organization, to resolve semantic conicts among data

sources.

Most of the proposed system designs adopt a hier-

archical structure, where individual layers of the hier-

archy decompose, translate and optimize application

requests. One of the main innovations in the Alamo

architecture is the adoption of a recursive structure,

rather than a hierarchical one. Since the data pro-

vided by a semantic module may itself be viewed as

a data source, it follows that the output of semantic

modules may be accessed through the ASM de�nition.

Thus, we claim that Alamo further provides for inter-

operability among semantic modules. The advantages

of interoperability include the ability to develop more

complex applications, rapid prototyping, and use of

existing development tools.

The ability of Alamo to host divergent semantic

models and integrate a wide range of data sources,

does not compromise clean system design and mod-

ularity. An Alamo implementation remains a tightly

integrated system. Concessions made in our current

e�ort in order to promptly achieve design goals, in-

clude

1. Updates to the component databases are not sup-

ported.

2. There is no concept of \global transactions",

which implies that on-line processing is not

straightforwardly supported.

2 Architectural Overview

The structure of the Alamo architecture is shown in

Fig.1. The circles represent processes we call data

pumps. Not illustrated is that behind the ASM is a

cache manager that replaces the bu�er and storage

managers of a conventional database system and a di-

rectory service manager which includes both broker

and mediator services.

2.1 Data Model

The Alamo data model de�nes two types of entities:

objects and collections.

Alamo objects are complex objects, i.e. contain

set-valued attributes and references to other objects

(not through identity, but through physical pointers).

Objects do not have identity, but they do have type.

There is a class hierarchy, encapsulating object prop-

erties and behavior. Each object is an instance of a

class. In other words, Alamo classes are also ADTs,

and the data model is \object-relational." Dynami-

cally created classes are, by necessity, allowed in order

to represent the results of ad-hoc queries.

Collections are logical sets (or multi-sets) of objects.

Collections can be extensional, i.e. de�ned by their

contents, or intentional, i.e. de�ned by a speci�cation.

This speci�cation, which can be a query, a datalog pro-

gram, or any other semantic speci�cation is expressed

in terms of semantic module programs.

2.2 The Abstract Search Machine

The Abstract Search Machine (ASM) is an auge-

mented cursor interface. The primary cursor oper-

ations, i.e. Open(), Next(), EOF(), provide a least

common denominator into which virtually all poten-

tial data sources may be cast. Once data is loaded

in the system a richer abstraction is exploited. The

additional power falls into two categories, access and

marking.

D.P. Miranker, V. Samoladas 14-2



Deductive DBActive DBOOQ Miner

SQL CORBA-IDL HTTP ODBC

ASM: Abstract Search Machine

Figure 1: The Alamo architecture. Boxes above the ASM represent semantic modules. Circles represent data

pumps.

The added access facilities comprise the following.

When a cursor is opened it may be optionally quali-

�ed by a selection predicate and/or an ordering qual-

i�cation. Similarly the next() method may option-

ally be quali�ed by a select predicate. These abstrac-

tions have been borrowed from the Genesis extensible

DBMS, a component based DBMS. The same abstrac-

tions have been further exploited in the de�nition of

several follow-on systems and proven apt in several

applications including the implementation of forward-

chaining rule-systems[He93].

We use the term marking as it is the term coined

by Stonebraker as a category in a taxonomy of ap-

proaches to the implementation of rule systems in

databases[Sto92]. Consider that to solve many prob-

lems multiple passes may have to be made over the

same data set and instance speci�c relations between

pairs of data sets may be discovered. For example, a

record in one table may join with a particular record in

another table, or the opposite may be true. A record

in one table may not join with any records in the sec-

ond table. In the latter case, we may conclude that

that record need never be examined again. Thus, the

record may be marked and for the duration of that

task it need not be returned by the iterator. In the for-

mer case, the record in the �rst table may be marked

with pointers to all the joining tuples in the second

table. The search literature refers to these markings

as "no-goods" and "goods" respectively. A collection

of "goods" is known as a good list and can be viewed

as a kind of denormalized join-index.

It happens that these marking primitives have been

exploited for the development of good, if not op-

timal algorithms, in each of relational query pos-

sessing, object-oriented query processing, forward-

chaining rule systems, logic programming and truth

maintenance systems[De90, BaMi94, SaMi96, He93,

KuLi88]. Depending on the domain the primitives may

be called, marking, learning, memoing or justi�cation.

2.3 Data Pumps

The purpose of the data pumps is to overcome the

impedance mismatch between clever main-memory im-

plementations of knowledge-based components which

deal with data one element at a time and remote data

sources whose access su�ers from long latency and is

best optimized around large block transfers. The idea

is that a data pump is an active element, in a separate

process, that prefetches data ahead of its use. Dis-

cussions of middleware commonly refer to establishing

a "pipe" as a connection to a component database.

Since pipes are passive elements we prefer the term

"data pump".

Since data pumps do little more than pull data

streams into the cache manager they can easily accom-

modate data from a variety of external data sources.

The structure and functionality of an individual data

pump depends on the type of data source it accesses.

Should a data source be a conventional database

server, the selection and sorting quali�ers speci�ed at

the level of the ASM may be pushed to the component

database. We expect such decisions to be made by the

Directory Service Manager in a manner similar to ac-

cess path selection performed by a query optimizer.

D.P. Miranker, V. Samoladas 14-3



Notice that joins may not, dynamically, be

pushed down through a data-pump into a component

database. If system optimization calls for and al-

lows joins to be executed by component databases, a

view may be de�ned on the component database and

treated as another information source. Disallowing ad-

hoc execution of joins on component databases simpli-

�es the system considerably and defers to the priority

of the transaction processing load in a live OLAP en-

vironment.

We are investigating if the data pumps should have

a role at a low-level of semantic integration. It seems

to make little sense for a stream of data to be loaded

into memory in an incorrect physical format. Until a

pump is implemented, it will be unknown if the process

communication and bu�ering primitives integrate in a

way for us to avoid that step.

2.4 The Cache Manager

Given that the intended behavior of the data pumps

is to mask latency through extensive prefetching, sub-

stantial bu�er space is required including managing

the overow of bu�er space to secondary storage. Po-

tentially the storage capacity of an Alamo platform

may have to match that of a conceptually equivalent

centralized data warehouse.

Depending on the precise use and nature of a data

stream di�erent indexing methods may be appropri-

ate. Thus, the cache manager serves as much more

than a simple bu�er manager. Sophisticated imple-

mentations of the cache manager may even dynami-

cally restructure the data. For example an ASM cursor

may be opened on a collection such that it provides no

quali�cation on the data. Thus, it is most likely a sim-

ple sequential scan of the data will ensue and the data

is stored in a sequential structure. A second cursor on

the same collection might then be opened such that it

speci�es an ordered-by attribute. At that juncture an

ordered index might be built. But there are several

many di�erent circumstances, each one demanding a

di�erent structure. To consider just a few:

� The �rst cursor may already be closed, the col-

lection completely present in the cache and the

collection �ts into main memory. Thus, a main-

memory sort is most e�ective means of organizing

the data.

� The data pump instantiated for the �rst cursor

happened to exploit an access-path that used a

sorted index on the attribute. Nothing need be

done and the second cursor may start iterating

immediately.

� The collection is not yet fully materialized in the

cache and data is not sorted conveniently. A

sorted index may be constructed, and optimized

in anticipation of future inserts. The second cur-

sor is blocked until the collection is fully materi-

alized.

2.5 The Directory Service Manager

The Directory Service Manager (DSM) contains a

system wide catalog of the collections, both inten-

sional and extensional. The DSM acts as a broker,

marrying data sources to data consumers indepen-

dent of whether those sources are external component

databases or internal semantic elements. In addition

the DSM tracks and manages the state of the Cache

Manager.

We stated that the ASM forms a software bus. How-

ever, a bus is a broadcast mechanism and in the con-

text of software components, "bus" is a misnomer.

The fact is to compute each intentional collection the

computation must be connected directly to each col-

lection that serves as an argument. If an allusion to

computer hardware is to be made, then it is more cor-

rect to think of a collection of data-ow processing

elements connected using a multiprocessor intercon-

nection network. In this analogy the DSM serves as

controller for the routing mechanism.

When a cursor is created on a collection, the follow-

ing actions are taken:

1. The collection is looked up in the DSM.

2. If it is an extensional collection,

(a) an appropriate physical cursor is created in

the CM.

(b) If an appropriate data pump is not in place,

an access path for the component database

is selected and a data pump instantiated.

3. If the collection is an intensional collection,

(a) its speci�cation is retrieved from the DSM.

(b) This speci�cation is merged with any cursor

quali�cations (selection predicate, ordering

quali�cation), and the result is sent to the

appropriate semantic module, for processing.

(c) The semantic module is responsible for

translating, optimizing and executing this

speci�cation, and returning the resulting

data to the ASM.

(d) The ASM bu�ers the data in the cache man-

ager and returns it through an ASM cursor.

D.P. Miranker, V. Samoladas 14-4



2.6 Semantic Modules

Standard semantic modules in Alamo will include (see

Fig.1):

� an object-relational query engine (OOQ)

� a production rule engine (Active DB)

� a deductive database engine (Deductive DB)

We have chosen these three modules for a �rst imple-

mentation, because of their familiarity and wide appli-

cability.

Processing performed by the semantic modules, is

done through the ASM facilities, at every level. This

statement implies a slightly di�erent design of well-

known data processing algorithms (relational join algo-

rithms, semi-naive evaluation etc.). Our claim is that

such algorithms can be expressed in a cursor-based lan-

guage, together with a library of data structures. Such

a library of data structures, both memory-based and

disk-based ones, is implemented in the Cache Manager

inside the ASM, and is accessible through ASM cur-

sors. This somewhat unorthodox design was adopted

because it is more extensible, permits the detection of

race conditions and allows more clever resource allo-

cation.

3 Data Integration in Alamo

The Alamo schema consists of the set of classes and

collections de�ned in the system. We adopt the termi-

nology of federated databases, and de�ne local schemas

and a federated schema.

3.1 Local Schemas

Data pumps do not perform any semantic integration

processing (beyond binary translation of data). Alamo

objects constructed at the data pumps resemble the

structure of external data very closely, e.g. if relational

tuples are received, there will be one object per tuple,

having exactly the same attributes as that tuple. Still,

these objects have a class. Also, objects returned by a

query to an external data source are viewed as belong-

ing to a speci�c collection. Thus, a (partial) schema is

associated with each data pump. We adopt the term

local schema, and use the symbol L to describe it.

3.2 Federated Schema

Data integration is achieved when the application

views the data organized under a single, consistent, in-

tuitive schema. We adopt the term federated schema,

and use the symbol F to describe it. Notice that F

subsumes any local schemas.

3.3 Mapping Languages

Each of the classes and collections in F is de�ned by

a speci�cation, residing in the DSM. These speci�ca-

tions are the results of a transformation from the local

schemas L

1

; : : : ; L

n

, to the federated schema F . Such

a transformation is usually expressed as a program in

a mapping language.

The recursive nature of Alamo allows for multiple

mapping languages, each used to de�ne some part of

F . A mapping language program is not simply a col-

lection of queries de�ning collections, but rather a pro-

cess of translating domain knowledge into metadata,

that is then used by the system to perform data pro-

cessing tasks. This translation of domain knowledge

into metadata is called knowledge compilation.

4 Interoperable Semantic Processing

We expand on the notions of the previous section

with a discussion of a number of semantic integra-

tion approaches, and their possible implementation in

the context of Alamo. First, we give a brief example

of integrating relational databases through knowledge

compilation. Then, we discuss two speci�c systems for

data integration proposed in the literature: the SIMS

project, and the Information Manifold. We show that

both of these systems can be integrated into Alamo.

4.1 Knowledge Compilation

A fundamental semantic module is an object-relational

query engine. It provides basic access to the data in

a very e�cient way, which makes it the tool of choice

for massive data applications, like Decision Support.

There are also numerous extensions to the basic rela-

tional calculus and algebra. One of these is presented

in [KLK91], where it is argued that second-order rela-

tional queries (i.e. queries over the schema, as well as

over the data) are often required for data integration.

We will present a short example with respect to a pri-

mary application of Alamo, the World-Wide Herbar-

ium, in order to introduce the concept of knowledge

compilation in Alamo.

A herbarium is a library of plant specimens. Sim-

ilar to book libraries, herbaria are moving their card-

catalogs on-line. In contrast to book libraries, the

�eld notes on the "cards" indexing the plant specimens

form a rich source of information. The integration of

these notes from many collections promises to be a

great botanical resource.

Suppose there are two herbaria in the Austin

1

area,

and each of them maintains a database of the number

of wild ower specimens collected in the Austin area.

1

the capital of Texas, USA. The Austin city area includes

the Travis and Williamson counties

D.P. Miranker, V. Samoladas 14-5



We will denote the local schemas of these databases

by L

1

and L

2

. Sample databases for these schemas

appear in Fig.2.

We would like to access all the data through a sin-

gle table, with the schema of Fig.3 Observe that both

Figure 3: Federated schema of the herbarium example.

Federated Schema F

AllFlowers:

Species County Specimens

lily Travis 5

.

.

.

.

.

.

.

.

.

of these local schemas have semantic information (the

county) embedded in the schema. This is domain

knowledge, known to the user. This knowledge can

be used to derive an SQL query, that will serve as

the speci�cation of collection AllFlowers in the fed-

erated schema. In general however, the user should be

assisted by a high-level tool, that will allow him to ex-

press this knowledge succinctly. For example, the user

could write a high-order SQL query:

counties = { Travis, Williamson };

SELECT *

FROM t IN

(SELECT t.Species, name(c), t.Specimens

FROM c in COLLECTIONS counties,

t IN c)

UNION

(SELECT t.Species, name(a), t.a

FROM t IN Flowers,

a IN ATTRIBUTES counties OF Flowers)

The above program fragment would be a program in a

mapping language. The program would be compiled,

and appropriate SQL code would be produced, for the

speci�cation of collection AllFlowers. This speci�ca-

tion would be stored in the DSM, as metadata.

4.2 The SIMS project

The SIMS project ([AKS96]) approaches the data in-

tegration problem by building a domain model for the

application which integrates all information sources

by describing the semantic interdependencies between

them. Then, for each query submitted to the system, a

query plan is computed using AI planning techniques

such that the user query is rewritten into subqueries

targetting the appropriate component databases. The

domainmodel in SIMS is built using the LOOM knowl-

edge representation language. The query language of

SIMS is an object-oriented query language.

All of the SIMS components have to be mapped to

Alamo. First, the domain model, expressed in LOOM,

has to be compiled. Information sources in the do-

main model would simply be Alamo collections. These

of course, would not necessarily be external database

relations, but could themselves be computed inside

Alamo, by other semantic modules. The generation

of the domain model is a knowledge compilation step,

thus a suitable LOOM compiler has to be built.

A semantic module would also have to be built

for SIMS. This module would implement the runtime

functionality of the SIMS system, and in particular

query reformulation, optimization and execution. This

semantic module would then be used for two pur-

poses: answering ad-hoc queries, and de�ning new (in-

tensional) collections through queries, that would be

available to other semantic modules in the system.

4.3 The Information Manifold

The Information Manifold (IM) ([LRO96]) is a

highly scalable system for the integration of WWW

databases. A major issue resolved by IM, is the fact

that most WWW databases have very limited capa-

bilities in terms of the queries they will accept. This

factor makes it di�cult to integrate such data sources

into systems that assume full query capabilities for ex-

ternal data sources. IM is a hierarchical system, and

as such it can be integrated into Alamo, and interoper-

ate with other types of systems, e.g. a loose federation

of relational databases.

The implementation of IM in the context of Alamo

has to de�ne the mapping between IM queries and

ASM collections. This is indeed straightforward, since

IM queries are expressed by deductive rules. The

IM has its own concept of a federated schema (called

the world view), which consists of a number of IM

classes, and a number of IM relations. Each of these

classes and relations naturally de�nes an ASM col-

lection. This de�nition is a knowledge compilation.

Thus, IM's world view would be part of Alamo's fed-

erated schema.

In addition to the de�nition of the world view, there

is another piece of metadata produced by knowledge

compilation, called source descriptions. This is a set of

speci�cations for each of the information sources, used

in query plan generation, that allows IM to access data

sources of limited query capabilities. At this point, we

should mention that Alamo does not address this issue

explicitly. In other words, there are no assumptions

in the architecture, or in the data model, about the

ability to open arbitrary cursors (e.g. with arbitrary

selection predicates) to a collection.

In IM, interaction with external sources is done

through interface programs. In Alamo, this role is

D.P. Miranker, V. Samoladas 14-6



Figure 2: The local schemas of the herbarium example

Schema L

1

Schema L

2

Flowers:

Species Travis Williamson

lily 5 11

daisy 12 9

Travis:

Species Specimens

rose 9

tulip 14

Williamson:

Species Specimens

rose 9

tulip 14

played by data pumps. The two components are very

similar: they both have the ability to formulate queries

in the source's native language using query templates,

and they both have the ability to cast received infor-

mation into the system's binary format.

The main functionality of IM would be implemented

by a semantic module, which would perform plan gen-

eration and execution, as described in [LRO96].

5 Conclusion and Status

Our primary observation is that despite di�erent ter-

minology there is a common collection of techniques

that are often used in the construction of knowledge-

based systems and that these techniques are express-

ible in terms of a simple extension to standard cursor

de�nitions. We are exploiting this observation toward

the development of a multi-purpose platform with the

intention of supporting multiple mechanisms in a sin-

gle integrated system. Existing systems usually con-

centrate in one area of the space of possible applica-

tions. For example, a system may perform very so-

phisticated data integration, but only allow browsing

of the resulting data. Another system may support

sophisticated processing of the data (e.g. statistical

analysis), but only operate with high-quality and/or

high-speed data sources. Our hope is that Alamo will

serve as a basis for establishing much larger collabora-

tive e�orts.

We are underway in the construction of simpli�ed

data pumps and the integration of the ASM inter-

face with a query engine and the Venus rule language

compiler [MiOb96]. Inspection of the Coral deductive

database system reveals a promising integration root

with the ASM. Since both Venus and Coral are reason-

ably mature systems we anticipate a much more mod-

est implementation e�ort than may �rst come across.

References

[AKS96] Yigal Arens, Craig A. Knoblock, and

Wei-Min Shen. Query reformulation for

dynamic information integration. Jour-

nal of Intelligent Information Systems,

6(2/3):99{130, 1996.

[Baetal94] D. Batory, V. Singhal, J. Thomas, S.

Dasari, B. Geraci, and Marty Sirkin. The

GenVoca Model of Software-System Gener-

ators. IEEE Software, September 1994

[BaMi94] R. J. Bayardo-Jr. and D. P. Miranker,

An Optimal Backtrack Algorithm for Tree-

Structured Constraint Satisfaction Prob-

lems, Journal of Arti�cial Intelligence,

71(1), 159-181, 1994.

[De90] R. Dechter, "Enhancement Schemes for

Constraint Processing", Journal of Arti-

�cial Intelligence, 41:273-312, 1990.

[He93] T. Hetherington, "On Intelligent Back-

tracking, Shallow Learning and Produci-

ton Systems", M.S Thesis. Department of

Computer Sciences, University of Texas at

Austin 1993.

[KLK91] R. Krishnamurthy, W. Litwin,

and W. Kent. Language Features for In-

teroperability of Databases with Schematic

Discrepancies. SIGMOD Record, 20(2):40{

49, 1991.

[KuLi88] V. Kumar and Y-J. Lin, "A Data-

Dependency-Based Intelligent Backtrack-

ing Scheme for Prolog", The Journal of

Logic Programming, 5:165-181 1988.

[LRO96] Alon Y. Levy, Anand Rajaraman, and

Joann J. Ordille. Querying heterogeneous

information sources using source speci�ers.

In Proc. of the 22nd VLDB Conf., 1996.

D.P. Miranker, V. Samoladas 14-7



[MiOb96] Daniel P. Miranker and Lance Obermeyer.

An Overview of the VenusDB Active Mul-

tidatabase System. In Proceedings of the

International Symposium on Cooperative

Database Systems for Advanced Applica-

tions, Kyoto, Japan, December 1996.

[SAD

+

94] Ming-Chien Shan, Ra� Ahmed, Jim Davis,

Weimin Du, and William Kent.

Pegasus: A heterogeneous information

management system. In W. Kim, editor,

Modern Database Management - Object-

Oriented and

Multidatabase Technologies, pages 664{682.

Addison-Wesley/ACM Press, 1994.

[SaMi96] V. Samoladas, D.P. Miranker, Loop

optimizations for acyclic object-oriented

queries, Technical Report 96-10, Dept. of

Computer Science, University of Texas at

Austin.

[SL90] Amit P. Sheth and James A. Larson. Fed-

erated database systems for managing dis-

tributed, heterogeneous, and autonomous

databases. Computing Surveys, 22(3):183{

236, Sept. 1990.

[Sto92] M. Stonebraker. The Integration of Rule

Systems and Database Systems. IEEE

Trans. on Knowledge and Data Engineer-

ing, 4-5:415{423, Oct. 1992.

[Ull88] J. Ullman. Principles of Database and

Knowledge-Base Systems. Computer Sci-

ence Press, Inc., 1988.

D.P. Miranker, V. Samoladas 14-8


