
Querying Schema Information

Vinay K. Chaudhri and Peter D. Karp

Arti�cial Intelligence Center

SRI International

333 Ravenswood Avenue, Menlo Park, CA, 94025, USA

Phone: (415)859-3368 Fax:(415)859-3735

Abstract

Schema queries can play an important role

while retrieving information from multiple

sources, for example, in query formulation and

in query optimization. We identify four classes

of schema queries that we have found use-

ful while designing an application program-

ming interface for frame representation sys-

tems (FRSs): taxonomic, frame structure,

constraint and class comparison queries. We

propose a scheme for direct support for these

queries in a mediator language such as Object

Query Language (OQL).

1 Introduction

A system that answers queries by accessing informa-

tion residing in multiple sources has to perform the fol-

lowing tasks. Given a query, it has to determine which

data items should be retrieved from which source,

retrieve those data items, process the results, and

present them to the user. Many of these tasks are

performed by a software component called Mediator

[Wid92].

Mediator usually issues queries to several data

sources. The implementation of a mediator is con-

siderably simpli�ed if it is able to issue queries in one

language instead of using a di�erent language for each

data source. Such an e�ect can be easily achieved by

using one mediator language and providing wrappers

The copyright of this paper belongs to the papers authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 4th KRDB Workshop

Athens, Greece, 30-August-1997

(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

for the data sources so that they can be accessed using

the mediator language.

At a recent meeting of I*3/POB held at the Univer-

sity of Maryland at College Park, a subset of Object

Query Language or OQL [Cat95] was proposed as a

standard for Mediator language [BRU97]. OQL is a

good initial proposal for a standard of a mediator lan-

guage, but it provides inadequate facilities for query-

ing schema information that can be extremely useful

in mediation. Some existing information integration

systems hand code the schema information in the me-

diator [CGMH

+

94] or manually construct an explicit

model of the information content of a source [LRO96],

but we believe that a mediator's ability to query a

source for schema information and using it to deter-

mine the information content gives us more exibility

in adding new sources.

We have been working on Generic Frame Pro-

tocol (GFP), an application programming interface

for object-oriented knowledge representation systems

[KMG95, CFF

+

97]. We believe that GFP can be used

as an inspiration for extending OQL to query schema

information, which in turn can be used to build more

powerful mediators.

GFP was originally motivated by a graphical

browsing and editing application called GKB-Editor

[PLK97]. We were interested in reusing GKB-

Editor with multiple FRSs, and therefore, we built

GFP wrappers for Loom [Mac91], Ocelot, Sipe{

2 [Wil90], Theo [MAC

+

89], and Ontolingua

[Gru93]. Our experience in using these wrappers

in conjunction with GKB-Editor is described else-

where [KCP97]. We anticipate that GFP will be

adopted as an application programming interface

in DARPA's high-performance KB initiative (see

http://www.teknowledge.com:80/HPKB/) where its

use will not be limited to just graphical browsing and

editing applications.

Our goal in discussing the schema queries supported

by GFP is not to propose GFP as a mediator language.

Instead, we argue that the schema queries that have

V. K. Chaudhri, P. D. Karp 4-1

been found useful in the context of GFP have a general

utility and should be directly supported in the OQL

which is being considered as a mediator language.

2 Using Schema Information in An-

swering Queries

We use a variation of an example published else-

where [LRO96] in which the goal is to answer queries

about used automobiles for sale. Suppose that we have

three available information sources. Source 1 contains

information about cars newer than 1990, and Source 2

about cars older than 1990. Source 3 is a car reviews

database. Source 1 is a relational database. Source

2 is an object-oriented database (OODB) that de�nes

three classes of cars { sports, economy, and vintage.

Each of these classes has further subclasses, but we

are not concerned with them at the moment. Source 2

records low blue book value and fair market value for

the sports cars and economy cars and only fair market

value for the vintage cars.

Schema information can be extremely useful to a

user in formulating queries. For example, without any

schema information, a user may formulate her query

as Q1: Get the price and reviews of cars whose price

is less than $15,000. But if the schema of Source 2 is

made available, the user may decide that she is not re-

ally interested in vintage cars, and in addition to fair

market price, blue book value is of interest. So, she

can reformulate the query as Q2: Get the price, blue

book value and reviews of cars whose price is less than

$15,000 and which are not vintage cars. Q2 is likely

to return a response much closer to the user's expecta-

tion. Thus, in some cases, knowing the class-subclass

relationships and attributes of classes in a source can

lead to better formulation of queries.

Schema information can also be useful in optimiz-

ing queries. Suppose the user poses a query Q2: Get

the price and reviews of cars whose price is less than

$10,000 and which are not older than 1992. The fact

that Source 1 contains information about cars older

than 1990 can be represented by a constraint that the

maximumvalue of the year-of-manufacture attribute is

1990. The mediator then queries Source 1, determines

that the values stored in it are outside the range of the

query, and eliminates it from its access plan.

By itself, schema information is not su�cient for

resolving semantic mismatches in the information re-

siding in multiple sources [FDFP95]. For example, the

Price attribute may represent di�erent information in

two sources | in one source it is blue book value, and

in the other source, it is fair market value. We are not

concerned with the problem of semantic mismatches

in this paper.

3 Querying Schema Using GFP

GFP assumes a knowledge model of frame representa-

tion systems (FRSs). The basic representational units

are frames, slots, and facets [CFF

+

97]. The frames are

partitioned into classes and individuals. Facets repre-

sent properties of slots, for example, value type or car-

dinality constraints. In logical terms, class frames can

be viewed as unary predicates, slots as binary pred-

icates and facets as ternary predicates. A knowledge

base (KB) is de�ned as a collection of frames and their

associated slots, facets, and values.

In the terminology of OODBs, frames are like ob-

jects and slots are like attributes. OODBs do not have

an analog of facets. From now on, we will use the

terms frames and objects, and slots and attributes in-

terchangeably.

GFP de�nes a collection of methods to query

schema information. The GFP methods to query the

schema information can be classi�ed into four broad

categories: taxonomic queries, frame structure queries,

constraint queries, and class comparison queries. Ta-

ble 2 lists a subset of GFP methods in each category.

The taxonomic queries al-

low us to query the class-subclass relationships. For

example, get-class-subclasses allows us to deter-

mine all the subclasses of a class. The root classes can

be determined using get-kb-root-classes.

The frame structure queries retrieve the slots

and facets associated with a frame. For example,

get-frame-slots returns all the slots associated with

a frame. (A formal de�nition of what it means for a

slot to be associated with a frame can be found else-

where [CFF

+

97].)

The constraint queries allows us to query the facet

information. As stated earlier, facets are used to

represent constraints on slot values. Currently sup-

ported facet names are :VALUE-TYPE, :CARDINALITY,

:MINIMUM-CARDINALITY, :MAXIMUM-CARDINALITY,

:INVERSE, :NUMERIC-MINIMUM, :NUMERIC-MAXIMUM,

:SAME-VALUES, :SOME-VALUES, :NOT-SAME-VALUES,

:SUBSET-OF-VALUES, and :COLLECTION-TYPE. an in-

formal de�nition of the facets is shown in Table 2.

More formal de�nitions of facets are available else-

where [CFF

+

97]. By using get-facet-values on the

facets :numeric-minimumand :numeric-maximum, the

range constraints on a slot can be obtained.

The class comparison queries support the infer-

ences usually available only in description logic sys-

tems, such as Loom [Mac91] and Classic [BBMR89].

For example, equivalent-p examines the de�nitions

of two classes and determines if they are equivalent in

the sense that they have the same slots, slot values,

facets, and facet values.

V. K. Chaudhri, P. D. Karp 4-2

Table 1: Querying Schema Information by Using GFP

GFP Method Brief Description

Taxonomic Queries

get-class-subclasses Returns a list of direct subclasses of a class

get-class-superclasses Returns a list of direct superclasses of a class

get-root-classes Returns a list of those classes that have no superclass

Frame Structure Queries

get-frame-slots Returns a list of all the slots of a frame

get-frame-facets Returns a list of all the facets of a frame

Constraint Queries

get-facet-value Returns the value of a facet

get-slot-facets Returns the list of facets applicable to a frame

Class Comparison Queries

equivalent-p Given classes class1 and class2, returns true when the ex-

tensions of class1 and class2 are the same

consistent-classes-p Given classes class1 and class2, returns true if an instance

could satisfy the de�nition of both classes simultaneously

class-disjoint-p Given classes class1 and class2, returns true if they are

incompatible, that is, an instance could not satisfy the

de�nition of both classes simultaneously

Table 2: Facets Supported by GFP

Facet Name Description

:VALUE-TYPE A value C for facet :VALUE-TYPE of slot S of frame F means that

every value of slot S of frame F must be an instance of the class C.

:INVERSE A value S2 for facet :INVERSE of slot S1 of frame F means that if

V is a value of S1 of F, then F is a value of S2 of V.

:CARDINALITY A value N for facet :CARDINALITY on slot S on frame F means that

slot S on frame F has N values.

:MAXIMUM-CARDINALITY A value N for facet MAXIMUM-CARDINALITY of slot S of frame F

means that slot S of frame F can have at most N values.

:MINIMUM-CARDINALITY A value N for facet MINIMUM-CARDINALITY of slot S of frame F

means that slot S of frame F has at least N values.

:SAME-VALUES A value S2 for facet :SAME-VALUES of slot S1 of frame F, where S2

is a slot, means that the set of values of slot S1 of F is equal to the

set of values of slot S2 of F.

:NOT-SAME-VALUES A value S2 for facet :NOT-SAME-VALUES of slot S1 of frame F, where

S2 is a slot, means that the set of values of slot S1 of F is not equal

to the set of values of slot S2 of F.

:SUBSET-OF-VALUES A value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F,

where S2 is a slot, means that the set of values of slot S1 of F is a

subset of the set of values of slot S2 of F.

:NUMERIC-MINIMUM A value N for facet :NUMERIC-MINIMUM on slot S on frame F means

that the minimum value of slot S on frame F is N.

:NUMERIC-MAXIMUM A value N for facet :NUMERIC-MAXIMUM on slot S on frame F means

that the minimum value of slot S on frame F is N.

:SOME-VALUES A value V for own facet :SOME-VALUES of own slot S of frame F

means that V is also a value of own slot S of F.

:COLLECTION-TYPE The :COLLECTION-TYPE facet speci�es whether multiple values of

a slot are to be treated as a set, list, or bag.

V. K. Chaudhri, P. D. Karp 4-3

4 Enhancing a Mediator Language to

Query Schema

We believe that a mediator language should provide

natural support for the four classes of queries consid-

ered in Section 3. We �rst briey discuss the schema

queries supported in the current relational DBMS

products and then propose a scheme to enhance OQL

to support schema queries.

The analog of a frame structure query such as

get-frame-slots for a relational DBMS is to obtain

a list of all the attributes of a relation. Traditionally,

such queries have been answered by using the infor-

mation in the data dictionary of a DBMS. The analog

of a constraint query such as get-facet-value is to

obtain the key of a relation or to obtain constraints

attached to a relation. Even though constraint queries

can be answered by querying the data dictionary, the

current products do not o�er the exibility as we pro-

pose. For example, in ORACLE DBMS, it is possible

to query the constraints associated with a table, but

those constraints are returned as a string. Thus, if the

numeric value of an attribute Cost was restricted to a

positive integer, we will be returned the string \Cost �

0". We then need to parse the result to determine that

it represents a :numeric-minimum facet of GFP. The

class comparison queries are outside the scope of rela-

tional DBMSs. Thus, RDBMSs support only a subset

of schema queries that are useful for querying multiple

sources.

Release 1.2 of OQL did not provide any support for

taxonomic queries [Cat95]. To some extent, the prob-

lem will be recti�ed in the upcoming Release 2.0 of

ODMG [Cat97], as the new data model includes a class

MetaObject that has a relation called De�ningScope

that will allow OQL to query the class-subclass rela-

tionships.

A possible way to incorporate taxonomic queries in

OQL is to view each class relationship as a relation as

proposed in XSQL [KKS92]. For example, the follow-

ing XSQL query allows a variable to range over a class.

XSQL syntax uses #X to distinguish the variables that

range over classes.

SELECT #X WHERE Person subclassOf #X

The above query returns all the subclasses of the

class Person. Each GFP method corresponding to

taxonomic queries can be represented as a relation in

an OQL query to provide a comprehensive support

for querying the schema information. For example,

get-class-superclasses can be represented by the

relation superclassOf. Then the following query re-

turns all superclasses of a class.

SELECT #X WHERE #X superclassOf Person

A similar technique can be used for supporting

frame structure queries if we allow #X to represent

a variable that ranges over attributes. For example,

if we assume that the relation attributeOf represents

the association of an attribute with a class, then the

query

SELECT #X WHERE #X attributeOf Person

returns all the attributes of the class Person. Alterna-

tive syntax for querying slots is possible [LSS96] and

investigation of the relative syntax merits is left open

for future research.

The Release 2.0 of the ODMG standard has lim-

ited facilities for querying the constraints on schema.

It provides the method getCardinality to determine

the cardinality of a relationship. We believe that more

facilities should be provided to query constraints on

an attribute or a relation. In GFP, the constraints are

represented using facets. The ODMG data model does

not support cardinality and range constraints, which

is unfortunate because they can be extremely useful in

optimizing queries in a heterogeneous database envi-

ronment.

A possible approach to support queries on con-

straints is to de�ne a method called facet that can be

invoked during the OQL queries. For example, con-

sider the class de�nition shown in Figure 4. Given the

de�nition of Person, we show some sample queries and

their expected results in Table 4.

The method facet can be system-generated when

the schema is compiled. We believe that the ODMG

data model should be extended to incorporate a larger

set of constraints on the attribute and relationship val-

ues. The range and cardinality constraints supported

by GFP are good initial candidates for inclusion in the

ODMG data model.

To incorporate the class comparison queries in

OQL, an approach similar to the one for other queries

can be used. We can introduce a relation correspond-

ing to each type of class comparison inference. For

example, if consistentWith represents a relation that

holds between two classes that are consistent, the

query

SELECT #X WHERE Person consistentWith #X

returns all the classes that are consistent with the

class Person.

5 Conclusions

In summary,we believe that the schema queries can be

extremely useful in retrieving information from multi-

ple sources. The example uses are support for query

formulation and information for query optimization.

V. K. Chaudhri, P. D. Karp 4-4

Figure 1: A Sample Class De�nition

interface Person

(extent People)

{

attribute String name;

attribute Struct Address {Short number, String Street} address;

relationship Person spouse inverse Person::spouse;

attribute Integer age;

relationship Set<Person> children inverse Person::parents;

relationship List<Person> parents inverse children;

};

Table 3: Example Constraint Queries. The NUMERIC-MINIMUM facet cannot be determined using the schema of

Figure 4.

Query Expected Result

select facet(p.name, value-type) from person p string

select facet(p.spouse, value-type) from person p Person

select facet(p.children, value-type) from person p Set<Person>

select facet(p.children, collection-type) from person p List

select facet(p.children, inverse) from person p parents

select facet(p.age, numeric-minimum) from person p 0

We identi�ed four classes of schema queries that we

have found useful while designing an application pro-

gramming interface for FRSs: taxonomic, frame struc-

ture, constraint and class comparison queries. We

believe that if direct support for the four classes of

schema queries identi�ed here is provided in OQL, it

will be a more powerful mediator language.

Acknowledgments

This work was supported by Rome Laboratory con-

tract F30602-96-C-0332. The contents of this article

are solely the responsibility of the authors.

References

[BBMR89] Alexender Borgida, Ronald J. Brach-

man, Deborah L. McGuinness, and

Lori Alperine Resnick. CLASSIC: A

Structural Data Model for Objects. In

Proceedings of the 1989 ACM SIGMOD

International Conference on Manage-

ment of Data, pages 58{67, Portland,

OR, 1989.

[BRU97] Peter Buneman, Louiqa Raschid, and

Je�rey Ullman. Mediator Languages |

A Proposal for a Standard. SIGMOD

Record, 26(1):39{44, 1997.

[Cat95] R. G. G. Cattell. The Object Database

Standard: ODMG-93, Release 1.2. Mor-

gan Kaufmann Publishers, Inc., 1995.

[Cat97] R. G. G. Cattell. The Object Database

Standard: ODMG-93, Release 2.0. Mor-

gan Kaufmann Publishers, Inc., 1997.

[CFF

+

97] Vinay K. Chaudhri, Adam Farquhar,

Richard Fikes, Peter D. Karp, and

James P. Rice. The Generic Frame Pro-

tocol 2.0. Technical report, Arti�cial

Intelligence Center, SRI International,

Menlo Park, CA, 21 July 1997. See

http://www.ai.sri.com/�gfp/

spec.html.

[CGMH

+

94] S. Chawathe, H. Garcia-Molina, J. Ham-

mer, K. Ireland, Y. Papakonstantinou,

J. Ullman, and J. Widom. The TSIM-

MIS Project: Integration of Heteroge-

neous Information Sources. In Proceed-

ings of the 10th Meeting of the Informa-

tion Processing Society of Japan, pages

7{18, Tokyo, 1994.

[FDFP95] A. Farquhar, A. Dappert, R. Fikes,

and W. Pratt. Integrating Informa-

tion Sources Using Context Logic. In

V. K. Chaudhri, P. D. Karp 4-5

AAAI-95 Spring Symposium on Infor-

mation Gathering from Distributed Het-

erogeneous Environments, 1995.

[Gru93] T.R. Gruber. A Translation Approach

to Portable Ontology

Speci�cations. Knowledge Acquisition,

5(2):199{220, 1993. URL for Ontolin-

gua is http://www-ksl.stanford.edu/

knowledge-sharing/ontolingua/

README.html.

[KCP97] Peter D. Karp, Vinay K. Chaudhri, and

Suzanne M. Paley. A Collaborative En-

vironment for Authoring Large Knowl-

edge Bases. Technical report, Arti�cial

Intelligence Center, SRI International,

Menlo Park, CA, submitted for publica-

tion, April 1997.

[KKS92] Michael Kifer, Won Kim, and Yehoshua

Sagiv. Query-

ing Object-Oriented Databases. In Pro-

ceedings of the 1992 ACM SIGMOD In-

ternational Conference on Management

of Data, pages 393{402, San Diego, May

1992.

[KMG95] P.D. Karp, K. Myers, and T. Gruber.

The Generic Frame Protocol. In Proceed-

ings of the 1995 International Joint Con-

ference on Arti�cial Intelligence, pages

768{774, 1995. See also WWW URL

ftp://ftp.ai.sri.com/pub/papers/

karp-gfp95.ps.Z.

[LRO96] Alon Y. Levy, Anand Rajaraman, and

Joann J. Ordille. Querying Heteroge-

neous Information Sources Using Source

Descriptions. In Proceedings of the 22nd

International Conference on Very Large

Databases, Bombay, 1996.

[LSS96] Laks V. S. Lak-

shmanan, Fereidoon Sadri, and Iyer N.

Subramanian. SchemaSQL | A Lan-

guage for Interoperability in Relational

Multi-database Systems. In Proceedings

of the 22nd International Conference on

Very Large Databases, Bombay, 1996.

[MAC

+

89] T.M. Mitchell, J. Allen, P. Chalasani,

J. Cheng, E. Etzioni, M. Ringuette, and

J.C. Schlimmer. THEO: A Framework

for Self-Improving Systems. In Architec-

tures for Intelligence. Erlbaum, 1989.

[Mac91] R.MacGregor. The Evolving Technology

of Classi�cation-based Knowledge Rep-

resentation Systems. In J. Sowa, editor,

Principles of Semantic Networks, pages

385{400. Morgan Kaufmann Publishers,

Los Altos, CA, 1991.

[PLK97] Suzanne M. Paley, John D. Lowrance,

and Peter D. Karp. A Generic Knowl-

edge Base Browser and Editor. In Pro-

ceedings of the Ninth Conference on In-

novative Applications of Arti�cial Intel-

ligence, 1997.

[Wid92] Gio Widerhold. Mediators in the Archi-

tectures of Future Information Systems.

IEEE Computer, 25:38{49, 1992.

[Wil90] D.E. Wilkins. Can AI planners solve

practical problems? Computational In-

telligence, 6(4):232{246, November 1990.

V. K. Chaudhri, P. D. Karp 4-6

