
Building DD to Support Query Processing

in Federated Systems

Yangjun Chen and Wolfgang Benn

Computer Science Dept., Technical University of Chemnitz-Zwickau,

09107 Chemnitz, Germany

fchen, Benng @informatik.tu-chemnitz.de

Abstract

In this paper, a method for building data dic-

tionaries (DDs) is discussed, which can be

used to support query processing in feder-

ated systems. In this method, the meda data

stored in a DD are organized into three classes:

structure mappings, concept mappings and

data mappings. Based on them, a query sub-

mitted to a federated system can be decom-

posed and translated, and the local results can

be synthesised automatically.

1 Introduction

Due to the rapid advance in networking technologies

and the requirement of data sharing among di�er-

ent organizations, federated systems have become the

trend of future database developments [BOT86, LA86,

Jo93, SK92, CW93, HLM94, RPRG94, KFMRN96].

The research on this issue can be roughly divided

into two main categories: the tightly-integrated ap-

proach that integrates databases by building an in-

tegrated schema and the loosely-integrated approach

that achieves interoperability by using a multidatabase

language. The method proposed here belongs to the

second category, but providing the possibility to build

integrated schemas. The key idea of this method is

to construct a powerful data dictionary to govern the

The copyright of this paper belongs to the papers authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 4th KRDB Workshop

Athens, Greece, 30-August-1997

(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

semantic conicts among the local databases. We rec-

ognize three classes of meta data stored in a data dic-

tionary: structure mappings, concept mappings and

data mappings, each for a di�erent kind of semantic

conicts: structure conict, concept conict and data

conict. Based on such meta informations, a query

submitted to a federated system can be translated (in

terms of structure mappings), decomposed (in terms

of concept mappings) and synthesised automatically.

In addition, for the execution optimization, some new

techniques are developed for generating balanced join

trees, which are quite di�erent from those used in dis-

tributed databases and in parallel processing of joins.

The remainder of the paper is organized as fol-

lows. In Section 2, we show our system architecture to

provide a background for the subsequent discussions.

Then, in Section 3, we discuss the mata data classi-

�cation and the data dictionary structure. In section

4, we present our strategies for query processing, in

cluding query decomposition, query translation, query

optimization and result synthsis. Section 5 is a short

summary.

2 System Architectur

In this section, we show our system architecture and

its installation.

2.1 System Logical Architectur

Our system architecture consists of three-layers: FSM-

client, FSM and FSM-agents as shown in Fig. 1.

The task of the FSM-client layer consists in the appli-

cation management, providing a suite of application

tools which enable users and DBAs to access the sys-

tem. The FSM layer is responsible for the mergence

of potentially conicting local databases and the def-

inition of global schemas, as well as the global query

treatment. In addition, a centralized management is

Y. Chen, W. Benn 5-1



supported at this layer. The FSM-agents layer corre-

sponds to the local system management, addressing all

the issues w.r.t. schema translations as well as local

transaction and query processing. (Here FSM stands

for "Federated System Manager".)

According to this architecture, each component

database is installed in some FSM-agent and must be

registered in the FSM. Then, for a component rela-

tional database, each attribute value will be implicitly

pre�xed with a string of the form:

<FSM-agent name> � <database system name> � <data-

base name> � <relation name> � <attribute name>,

where "." denotes string concatenation. For exam-

ple, FSM-agent1.informix.PatientDB.patient-

records.name references attribute "name" from re-

lation "patient-records" in a database named "Pa-

tientDB", installed in "FSM-agent1".

. . .   ... .

FSM-client

FSM

FSM-agent

DD

Figure 1: System Architecture

For ease of exposition, in the following, we discuss

the query optimization in a simple setting that each

local database involved in a query is relational.

2.2 System Installation

Fig. 2 shows an experiment environment, in which our

system is installed.

Ingres Osiris

Cheops

RPC
(TCP/IP)

RPC
(TCP/IP)

Ramses

Ontos

...

...

...Informix

FSM-client

Ingres Sybase

FSM-client

FSM-agent

FSM-client

FSM-agent

FSM-alient

FSM

FSM-agent

Re

Figure 2: System Installation

Here Cheops, Ramses, Re and Osiris are the names

of four computers located at di�erent sites and in each

computer several databases are installed. Since in our

system the data dictionary itself is implemented as an

object oriented database, e.g., as an ONTOS database,

the FSM layer can only be installed in those machines

where ONTOS is available. In contrast, the FSM-

agent layer should be installed in any machine if some

of its databases participate in the integration. At last,

we make the FSM-client layer available in each ma-

chine so that the system can be manipulated at any

site. To this end, we have implemented our own com-

munication protocol using RPC (remote procedure call

[Bl92]) which works in a server-client manner.

3 Meta Data and Data Dictionary

In this section, we discuss the meta information built

in our system, which can be classi�ed into three

groups: structure mappings, concept mappings and

data mappings, each for a di�erent kind of semantic

conicts: structure conict, concept conict and data

conict.

3.1 Structure Mappings

In the case of relational databases, we consider three

kinds of structure conicts which can be illustrated as

shown in Fig. 3.

1 conflict 2

conflict 3

conflict

relation name

attribute data

attribute name

Figure 3: Illustration for Structure Conicts

They are,

1) when an attribute value in one database appears

as an attribute name in another database,

2) when an attribute value in one database appears

as a relation name in another database, and

3) when an attribute name in one database appears

as a relation name in another database.

As an example, consider three local schemas of the

following form:

DB

1

: faculty(name, research area, income),

DB

2

: research(research area, name

1

, ..., name

n

),

DB

3

: name

0

1

(research area, income),

... ...

name

0

m

(research area, income).

Y. Chen, W. Benn 5-2



In DB

1

, there is one single relation, with one tuple

per faculty member and research area, storing his/her

income. In DB

2

, there is one single relation, with one

tuple per research area, and one attribute per faculty

member, named by his/her name and storing its in-

come. Finally, DB

3

has one relation per faculty mem-

ber, named by his/her name; each relation has one

tuple per research area storing the income.

If we want to integrate these three databases

and the global schema R is chosen to be the

same as "faculty", then an algebra expression like

�

name;research area

(�

income>1000

(R)) has to be trans-

lated so that it can be evaluated against di�erent local

schemas. For example, in order to evaluate this ex-

pression against DB

3

, it should be converted into the

following form:

for each y 2 fname

0

1

; name

0

2

; :::; name

0

m

g do

f�

name;research area

(�

income>1000

(y))g:

A translation like this is needed when a user of

one of these databases wants to work with the other

databases, too.

In order to represent such conicts formally and ac-

cordingly to support an automatic transformation of

queries in case any of such conicts exist, we intro-

duce the concept of relation structure terms (RST)

to capture higher-order information w.r.t. a local

database. Then, for the RSTs w.r.t. some hetero-

geneous databases, we de�ne a set of derivation rules

to specify the semantic conicts among them.

Relation structure terms

In our system, an RST is de�ned as follows:

[re

fR

1

;:::;R

m

g

ja

1

: x

1

; a

2

: x

2

; :::; a

l

: x

l

; y : z

fA

1

;:::;A

n

g

],

where re is a variable ranging over the relation name

set fR

1

; :::; R

m

g, y is a variable ranging over the at-

tribute name set fA

1

; :::; A

n

g, x

1

, ..., x

l

and z are

variables ranging over respective attribute values, and

a

1

, ..., a

l

are attribute names. In the above term,

each pair of the form: a

i

: x

i

(i = 1, ..., l) or y : z

is called an attribute descriptor. Obviously, such an

RST can be used to represent either a collection of

relations possessing the same structure, or part struc-

ture of a relation. For example, [re

fname

0

1

;:::;name

0

m

g

j

research area: x, income: y] represents any relation

in DB

3

, while an RST of the form: [re

fresearchg

j

research area: x, y: z

fname

1

;:::;name

n

g

] ( or simply

["research" j research area: x, y: z

fname

1

;:::;name

n

g

] )

represents a part structure of "research" with the form:

research ( research area,..., name

i

, ...) in DB

2

. Since

such a structure allows variables for relation names

and attribute names, it can be regarded as a higher

order predicate quantifying both data and metadata.

When the variables (of an RST ) appearing in the re-

lation name position and attribute name positions are

all instantiated to constants, it is degenerated to a

�rst-order predicate. For example, [ "faculty" j name:

x

1

, research area: x

2

, income: x

3

] is a �rst-order pred-

icate quantifying tuples of R

1

.

The purpose of RSTs is to formalize both data

and metadata. Therefore, it can be used to de-

clare schematic discrepancies. In fact, by combining

a set of RSTs into a derivation rule, we can specify

some semantic correspondences of heterogeneous local

databases exactly.

For convenience, an RST can be simply written as

[reja

1

: x

1

; a

2

: x

2

; :::; a

l

: x

l

; y : z] if the possible

confusion can be avoided by the context.

Derivation rules

For the RSTs, we can de�ne derivation rules in

a standard way, as implicitly universally quanti�ed

statements of the form: 

1

&

2

... &

l

( �

1

&�

2

...

&�

k

, where both 

i

's and �

k

's are (partly) instantiated

RSTs or normal predicates of the �rst-order logic. For

example, using the following two rules:

r

DB

1

�DB

3

: [yj research area: x, income: z] (

["faculty"jname: y, research area: x, income: z],

y 2 fname

0

1

, name

0

2

, ..., name

0

m

g,

r

DB

3

�DB

1

: ["faculty"j name: x, research area: y, income: z] (

[xjresearch area: y, income: z],

x 2 fname

1

", name

2

", ..., name

l

"g,

the semantic correspondence between DB

1

and DB

3

can be speci�ed. (Note that in r

DB

3

�DB

1

, name

1

",

name

2

", ..., and name

l

" are the attribute values of

"name" in "faculty".) Similarly, using the following

rules, we can establish the semantic relationship be-

tween DB

1

and DB

2

:

r

DB

1

�DB

2

: ["research"j research area: y, x: z] (

["faculty"jname: x, research area: y, income: z],

x 2 fname

1

, name

2

, ..., name

n

g,

r

DB

2

�DB

1

: ["faculty"j name: x, research area: y, income: z] (

["research"jresearch area: y, x: z],

x 2 fname

1

", name

2

", ..., name

l

"g,

Finally, in a similar way, the semantic correspondence

between DB

2

and DB

3

can be constructed as follows:

r

DB

3

�DB

2

: ["research"j research area: x, y: z] (

[yjresearch area: x, income: z],

Y. Chen, W. Benn 5-3



y 2 fname

1

, name

2

, ..., name

n

g,

r

DB

2

�DB

3

: [yj research area: x, income: z] (

["research"jresearch area: x, y: z],

y 2 fname

0

1

, name

0

2

, ..., name

0

m

g,

In the remainder of the paper, a conjunction consisting

of RSTs and normal �rst-order predicates is called a

c-expression (standing for "complex expression"). For

a derivation rule of the form: A ( B, B and A are

called the antecedent part and the consequent part of

the rule, respectively.

3.2 Concept Mappings

The second semantic conict is concerned with the

concept aspects, caused by the di�erent perceptions

of the same real world entities.

[SP94, SPD92] proposed simple and uniform corre-

spondence assertions for the declaration of semantic,

descriptive, structural, naming and data correspon-

dences and conicts (see also [Du94]). These asser-

tions allow to declare how the schemas are related,

but not to declare how to integrate them. Concretely,

four semantic correspondences between two concepts

are de�ned in [SP94], based on their real � world

states (RWS). They are equivalence (�), inclusion

(� or �), disjunction (�) and intersection (\). Equiv-

alence between two concepts means that their exten-

sions (populations) hold the same number of occur-

rences and that we should be able to relate those oc-

currences in some way (e.g., with their object identi-

�ers). Borrowing the terminology from [SP94], a cor-

respondence assertion can be informally described as

follows: S

1

�A � S

2

�B, i� RWS(A) = RWS(B) al-

ways holds; S

1

�A � S

2

�B, i� RWS(A) � RWS(B)

always holds; S

1

�A\S

2

�B, i� RWS(A) \ RWS(B)

6= � holds sometimes; and S

1

�A�S

2

�B, i� RWS(A)

\ RWS(B) = � always holds. For example, assum-

ing person, book, faculty and man are four concepts

(relation or attribute names) from S

1

and human,

publication, student, and woman are another four

concepts from S

2

, the following four assertions can be

established to declare their semantic correspondences,

respectively: S

1

�person � S

2

�human; S

1

�book � S

2

�

publication; S

1

� faculty\S

2

� student; S

1

�man�S

2

�

woman.

Experience shows that only the above four asser-

tions are not powerful enough to specify all the se-

mantic relationships of local databases. Therefore, an

extra assertion: derivation (!) has to be introduced

to capture more semantic conicts, which can be infor-

mally described as follows. The derivation froma set of

concepts (say, A

1

; A

2

; :::; A

n

) to another concept (say,

B) means that each occurrence of B can be derived by

some operations over a combination of occurrences of

A

1

, A

2

, ..., and A

n

, denoted A

1

; A

2

; :::; A

n

! B. In

the case that A

1

, A

2

, ..., and A

n

are from a schema

S

1

and B from another schema S

2

, the derivation

is expressed by S

1

(A

1

; A

2

; :::; A

n

) ! S

2

� B, stating

that RWS(A

1

; A

2

; :::; A

n

) ! RWS(B) holds at any

time. For example, a derivation assertion of the form:

S

1

(parent, brother) ! S

2

� uncle can specify the se-

mantic relationship between parent and brother in S

1

and uncle in S

2

clearly, which can not be established

otherwise.

3.3 Data Mapping

As to the data mappings, there are di�erent kinds of

correspondences that must be considered.

1) (exact correspondence) In this case, a value in one

database corresponds to at most one value in another

database. Then, we can simply make a binary table

for such pairs.

2) (function correspondence) This case is similar to the

�rst one. The only di�erence being that a simple func-

tion can be used to declare the relevant relation. For

example, consider an attribute "height in inches" from

one database and an attribute "height in centimeters"

from another. The value correspondence of these two

attributes can be constructed by de�ning a function of

the form:

y = f(x) = 2.54�x,

where y is a variable ranging over the domain

of "height in inches" and x is a variable ranging

over "height in centimeters". Further, a fact of the

form: S

1

�height in inches � S

2

� height in centimeters

should be declared to indicate that both of them refer

to the same concept of the real �world.

3) (fuzzy correspondence) The third case is called the

fuzzy correspondence, in which a value in one database

may corresponds to more than one value in another

database. In this case, we use the fuzzy theory to de-

scribe the corresponding semantic relationship. For

example, consider two attributes "age 1" and "age 2"

from two di�erent databases, respectively. If the value

set of "age 1" A is f 1, 2, ..., 100g while the value

set of "age 2" B is finfantile, child, young, adult, old,

very oldg, then the mapping from "age 1" to "age 2"

may be of the following form:

f(1, infantile, 1), (2, infantile, 0.9), ...,

(3, child, 1), ..., (13, child, 1), ...,

(14, young, 0.5), (15, young, 0.6), ...,

(20, young, 1), ...g,

in which each (a, b) with a 2 A and b 2 B is associated

with a value v 2 [0; 1] to indicate the degree to which

a is relevant to b.

Y. Chen, W. Benn 5-4



federated
schema

informatiom
meta

schema
mapping

concept
mapping mapping

data prefix

predicates

elements

fuzzy
derivation

rules

RSTs

schemas
export

formulas

new

function
simple

normal

predicates

table

quantifies

formulas

new
constraints

Figure 4: Data Dictionary

3.4 Meta Information Storage

All the above meta information are stored in the data

dictionary and accommodated into a part�of hierar-

chy of the form as shown in Fig. 4

The intention of such an organization is straight-

forward. First, in our opinion, a federated schema is

mainly composed of two parts: the export schemas

and the associated meta information, possibly aug-

mented with some new elements. Accordingly, classes

"export schemas" and "meta information" are con-

nected with class "federated schema" using part-of

links (see Fig. 4). In addition, two classes "new

elements" and "new constraints" may be linked in

the case that some new elements are generated for

the integrated schema and some new semantic con-

straints must be made to declare the semantic rela-

tionships between the participating local databases. It

should be noticed that in our system, for the two lo-

cal databases considered, we always take one of them

as the basic integrated version, with some new ele-

ments added if necessary. For example, if S

1

�person �

S

2

�human is given, we may take person as an element

(as a relation name or an attribute name) of the inte-

grated schema. (But for evaluating a query concerning

person against the integrated schema, both S

1

�person

and S

2

� human need to be considered.) However, if

S

1

� faculty \ S

2

� student is given, some new ele-

ments such as IS

faculty;student

, IS

faculty�

, IS

student�

and student will be added into S

1

if we take S

1

as

the basic integrated schema, where IS

faculty;student

=

S

1

�faculty \ S

2

�student, IS

faculty�

= S

1

�faculty\

:IS

faculty;student

and IS

student�

= S

2

� student \

:IS

faculty;student

. On the other hand, all the integrity

constraints appearing in the local databases are re-

garded as part of the integrated schema. But some new

integrity constraints may be required to construct the

semantic relationships between the local databases. As

an example, consider a database containing a relation

Department(name; emp; :::) and another one contain-

ing a relation Employee(name; dept; :::), a constraint

of the form: 8e(in Employee)9d(in Department)

(d:name = e:Dept ! e:name in d:emp) may be gen-

erated for the integrated schema, representing that

if someone works in a department, then this depart-

ment will have him/her recorded in the emp attribute.

Therefore, the corresponding classes should be prede-

�ned and linked according to their semantics (see be-

low for a detailed discussion).

Furthermore, in view of the discussion above, the

meta information associated with a federated schema

can be divided into three groups: structure mappings,

concept mappings and data mappings. Each struc-

ture mapping consists of a set of derivation rules and

each rule is composed of several RSTs and predicates

connected with "," (representing a conjunction) and

" ( ". Then, the corresponding classes are linked in

such a way that the above semantics is implicitly im-

plemented. Meanwhile, two classes can be de�ned for

RSTs and predicates, respectively. Further, as to the

concept mappings, we de�ne �ve subclasses for them

with each for an assertion. At last, three subclasses

named "table", "function" and "fuzzy" are needed,

each behaving as a "subset" of class "data mapping".

In the following discussion, C represents the set of

all classes and the type of a class C 2 C, denoted by

type(C), is de�ned as:

type(C) = < a

1

: type

1

; :::; a

l

: type

l

; Agg

1

with cc

1

: out� typ

1

;

...,Agg

k

with cc

k

: out� type

k

;m

1

; :::;m

h

>

where a

i

represents an attribute name,Agg

j

represents

an aggregation function: C ! C

0

(C;C

0

2 C and

out�type

j

2 type(C)), m

g

stands for a method de�ned

on the object identi�ers or on the attribute values of

objects and type

i

is de�ned as follows:

type

i

::= <PrimitiveTyp> j <list> j <set> j <ClassType>,

<PrimitiveTyp> ::= <Integer> j <Boolean> j <Character>

Y. Chen, W. Benn 5-5



j <String> j <Real>,

<list> ::= "["type

+

i

"]",

<set> ::= "f"type

+

i

"g".

Furthermore, each aggregation function may be asso-

ciated with a cardinality constraint cc

j

2 f[1 : 1]; [1 :

n]; [m : 1]; [m : n]g (j = 1, ..., k).

Then, in our implementation, we have

type("federated schema") = < IS :< string >; S

f

:< string >,

S

s

:< string >; indicator :< boolean >;

Agg

1

with [1 : 1] :< type("meta information")>;

Agg

2

with [1 : 2] :< type("export schemas")>;

Agg

4

with [1 : 1] :< type("new constraints")>>;,

where IS is an attribute for the integrated schema

name, S

f

and S

s

for the two participating local

schemas', indicator is used to indicate whether S

f

or

S

s

is taken as the basic integrated version and each

Agg

j

is an aggregation function, through which the

corresponding objects of the classes connected with

"federated schema" using part� of links can be refer-

enced.

As an example, an object of this class may be of the

form: oid 1(IS: IS DB, S

f

: S

1

, S

s

: S

2

, indicator: 0,

...), representing an integration process as illustrated

in Fig. 5(a), where S

1

is used as the basic integrated

schema, since the value of indicator is 0. Otherwise,

if the value of indicator is 1, S

2

will be taken as the

basic integrated schema.

S 1 S 2

IS_DB

S 1 S 2

(b)

IS_DB

IS_DB’

S 3

(a)

Figure 5: Integration Process

With another object, say oid 2(IS: IS DB', S

f

:

IS DB, S

s

: S

3

, ...) together, a more complicated inte-

gration process as shown in Fig. 5(b) can be recorded.

Class "export schemas" has a relatively simple

structure as follows:

type("export schemas") = < S :< string >; path :

<concatenation of strings>, r a names: <set of pairs>>;

where S is an attribute for the storage of a lo-

cal database name, path is for the access path of a

database in the FSM system, denoted as given in 2.1

and r a names is for an export schema, stored as a

set of pairs of the form: (r name, fattr

1

; :::; attr

n

g).

Here, r name is a relation name and each attr

i

is an

exported attribute name.

The type of "meta information" is de�ned as fol-

lows:

type("meta information") = < S

f

S

s

:<pairs of strings>;

Agg

1

with [1 : n] :< type("structure mapping")>;

Agg

2

with [1 : n] :< type("concept mapping")>;

Agg

3

with [1 : n] :< type("data mapping")>>;

where S

f

S

s

is used to store the pair of local database

names, for which the meta information is constructed,

while Agg

1

, Agg

2

and Agg

3

are three aggregation func-

tions, through which the objects of classes "structure

mapping", "concept mapping" and "data mapping" can

be referenced, respectively.

As discussed above, any new element is de�ned by

some function over the existing local elements (such as

IS

faculty�

= S

1

�faculty\:IS

faculty;student

.) Then, a

set of functions has to be de�ned in "new elements". In

general, class "new elements" has the following struc-

ture:

type("new elements") = < S :< string >;

new elem :< set >;m

1

; :::;m

h

>.

Here, S stands for the name of a new element added to

the integrated schema, new elem is for the attributes

of the new element, stored as a set and each element

in it is itself a set of the form: fa; a

1

; :::; a

n

;m

i

g,

where a represents the new attribute, each a

j

is a lo-

cal attribute and m

i

is a method name de�ned over

a

1

; :::; a

n

.

Example 1. To illustrate class "new elements", let

us see one of its objects, which may be of the form:

oid(S : IS

faculty;student

; new elem :

ffname; S

1

� faculty � name; S

2

� student � name; mg; fincome;

S

1

� faculty � income; S

2

� student � study support;m

0

gg),

where S

1

� faculty � name and S

1

� faculty � income

stand for two attributes of S

1

, while S

2

�student�name

and S

2

� student � study support are two attribute

names of S

2

, m is a method name, implementing the

following function:

f(x; y) =

8

>

>

<

>

>

:

x; if there exist tuple t

1

2 faculty and

tuple t

2

2 student such that t

1

:name

= x; t

2

:name = y and x = y

(in terms of data mapping),

null; otherwise.

and m

0

is another one for the function below:

f(x; y) =

8

>

>

>

<

>

>

>

:

x+y

2

; if there exist tuple t

1

2 faculty

tuple t

2

2 student such that t

1

:name =

t

2

:name (in terms of data mapping),

and x = t

1

:name and y = t

2

:name,

in terms of data mapping),

null; otherwise.

Y. Chen, W. Benn 5-6



Then, this object represents a new relation (named

IS

faculty;student

) with two attributes: "name" and

"income". The �rst attribute corresponds to the at-

tribute "name" of faculty in S

1

(through method m)

and the second is de�ned using m

0

.

Example 2. As another example, assume that the

relation schemas of faculty and student are

faculty(name; income; research area) and

student(name; study support),

respectively. In this case, we may not create new

elements for "research area". But if we want to

do so, a new attribute can be de�ned as follows:

fwork area; S

1

�faculty �research area; ;mg, where

m represents a function of the following form:

h(x; ) =

8

>

>

<

>

>

:

x; if there exist tuple t

1

2 faculty and

tuple t

2

2 student such that t

1

:name

= t

2

:name and t

1

:research area = x,

(in terms of data mapping),

null; otherwise.

Conversely, if the relation schemas of faculty and

student are

faculty(name; income) and

student(name; study support; study area),

respectively, we de�ne a new attribute as follows:

fwork area; S

2

�student�study area; ;m

0

g, where m

0

represents a function of the following form:

r( ; y) =

8

>

>

<

>

>

:

x; if there exist tuple t

1

2 faculty and

tuple t

2

2 student such that t

1

:name

= t

2

:name and t

2

:study area = y,

(in terms of data mapping),

null; otherwise.

At last, if the relation schemas of faculty and

student are faculty(name; income; research area)

and student(name; study support; study area), re-

spectively, the method associated with the new at-

tribute can be de�ned as follows:

fwork area; S

1

� faculty � research area,

S

2

� student � study area; ;m

00

g,

where m

00

is a method name for the following function:

u(x; y) = fxg [ fyg.

In our system, each new integrity constraint is of

the following form:

(Qx

1

2 T

1

):::(Qx

n

2 T

n

)e(x

1

; :::; x

n

),

where Q is either 8 or 9, n > 0, exp is a (quanti�er-

free) boolean expression (concretely, two normal for-

mulas connected with " ! ", each of them is of the

form: (p

11

_:::p

1n

1

)^:::^(p

j1

_:::p

jn

j

)), x

1

, ..., x

n

are all

variables occurring in exp, and T

1

, ..., T

n

are set-valued

expressions (or class names). Therefore, two classes

"pre�x quanti�er" and "normal formulas" are de�ned

as parts of "new constraints" (see Fig. 4). Then, class

"new constraints" is of the following form:

type("new constraints") = < constraint number :< string >;

Agg

1

with [1:1]: < type("pre�x quanti�er")>;

Agg

2

with [1:2]: < type("normal formulas")>>;

where constraint number is used to identify an newly

generated individual integrity constraint andAgg

1

and

Agg

2

are two aggregation functions, through which the

objects of classes "pre�x quanti�er" and "normal for-

mulas" can be referenced, respectively. Accordingly,

"pre�x quanti�er" is of the form:

type("pre�x quanti�er") = < constraint

n

umber :< string >;

quantifiers :< string >>;

and "normal formulas" is of the form:

type("normal formulas") = < constraint

n

umber :< string >;

l formula with [1:n]: < type("formulas") >;

r formula with [1:n]: < type("formulas") >>;

where quantifiers is a single-valued attribute used to

store a string of the form: (Qx

1

2 T

1

):::(Qx

n

2 T

n

),

while l formula and r formula are two attributes to

store the left and right hand sides of " ! " in an ex-

pression, respectively.

Similarly, we can de�ne all the other classes shown

in Fig. 4 in such a way that the relevant information

can be stored. However, a detailed description will

be tedious but without di�culty, since all the map-

ping information are well de�ned in 3.1 - 3.3 and the

corresponding data structures for them can be deter-

mined easily. Therefore, we omit them for simplicity.

In the following, we mainly discuss a query treatment

technique based on such meta informations stored in

a data dictionary.

4 Query Processing

Based on the metadata built as above, a query sub-

mitted to an integrated schema can be evaluated in

a �ve-phase method (see Fig. 6). First, the query

query syntactic analysis decomposition

translationsynthesis optimization

Figure 6: Query Processing

will be analyzed syntactically (using LEX unix utility

[Ra87]). Then, it will be decomposed in terms of the

Y. Chen, W. Benn 5-7



correspondence assertions. Next, we translate any sub-

query in terms of the derivation rules so that it can be

evaluated in the corresponding component database.

In the fourth phase, we generate an optimal execution

plan for each decomposed subquery. At last, a syn-

thesis process is needed to combine the local results

evaluated.

- query decomposition

After the syntactic analysis, a syntactically correct

query will be decomposed in terms of the correspon-

dence assertions, which can be pictorially illustrated

as shown in Fig.7.

� ... (� ...(R

1

./ ::: ./ R

n

))

query

decomposition

!

w

w

w

w

�

(

assertion set

� ...(� ...(R

1

1

./ ::: ./ R

1

n

))

... ...

� ...(� ...(R

j

1

./ ::: ./ R

j

n

))

... ...

� ...(� ...(R

m

1

1

./ ::: ./ R

m

n

n

))

Figure 7: Query Decomposition

where each R

i

stands for a global relation and each

is a relation in some local databaseDB

j

. Furthermore,

we assume that R

i

= R

1

i

[R

2

i

...[R

m

i

i

for some m

i

and

an assertion of the form: (...(R

1

i

Q

i1

R

2

i

)... Q

im

i

R

m

i

i

) is

declared, where each Q

ij

represents an assertion �, \

or �. Notice that such an assertion is built manually

along with the integration process. In our system, the

integration is always done pairwise as shown in Fig.

5(b). That is, for two local databases, say DB

1

and

DB

2

, we generate an integrated schema IS

1

. Then,

when a third local database DB

3

is about to be inte-

grated, we glue it to IS

1

in the same way as for DB

2

to DB

1

. Accordingly, corresponding to a global rela-

tion R

0

i

, we may have an assertion ((R

1

i

Q

i1

R

2

i

)Q

i2

R

3

i

)

established as shown in Fig. 8. By the query decom-

position, there may be m

1

� m

2

::: � m

n

subqueries

generated in total.

R
i
2

R
i
3

Q
i 1

Q
i 2

1

R
i ’

R
i

R
i

Figure 8: Relation Integration

- query translation

Each leaf node of the tree shown in Fig. 10(b)

should be generally considered as a query of the form:

�(�(R)) since in terms of the traditional optimal strat-

egy, the project and select operations should be shifted

to be evaluated as early as possible. In addition, such

a query should be evaluated in a local database. But in

the presence of structure conicts as demonstrated in

3.1, it has to be translated so that it can be evaluated

locally. To this end, a mechanism is developed in our

system to do the transformation automatically based

on the relation structure terms and derivation rules

discussed in 3.1. The mechanism can be illustrated as

shown in Fig. 9.

rule: <antecedent-part>) <consequent-part> + ES

matching

x

?

?

y

derivation

an algebra expr: �! a set of new algebra expr.

Figure 9: Illustration for Query Translation

where "ES" stands for "extended substitution", a

data structure used to store the result of matching

an algebra expression of the form: �(�(R)) with the

antecedent part of some rule (see [CB96a]). Then, in

terms of this result and the consequent part of the

corresponding rule, a set of new algebra expressions

can be derived. In this way, the query is translated.

- optimization

As in a traditional database, for each subquery pro-

duced by the query decomposition, an execution plan

should be generated and optimized. First, all the se-

lect and project operations should be arranged to be

performed as early as possible, as for a normal query.

Then, for the join operations, we use a two-phase

method to optimize the execution process. In the

�rst phase, we generate an optimal left-deep join tree

for the corresponding join sequence (see Fig. 10(a)).

This can be achieved using the approaches proposed in

[CWY96] or in [YL89]. In the second phase, we trans-

late the left-deep join tree into a balanced bushy join

tree using the methods developed in [CB96b, CB97,

DSD95] (see Fig. 10(b) for illustration.) But one may

wonder why not to generate a balanced bushy join tree

directly from a join sequence as done in [CYW96]. The

reason for this is as follows:

(i) The bushy join tree generated (directly from a

join sequence) by [CYW96] is not balanced. There-

fore, an extra process is needed to balance such a tree

just as for a left deep join tree.

(ii) The time complexity of the algorithm for �nding

such a bushy join tree (directly from a join sequence)

Y. Chen, W. Benn 5-8



is O(n � e), where n and e are the numbers of the re-

lations and the corresponding joins involved in a sub-

query, while the time complexity of the algorithm for

�nding a left deep join tree is O(n

2

) (see [CYW96]).

As we can see in [CB96b], a recursive algorithm can

be implemented, which translates a left deep join tree

into a balanced bushy join tree but requires only O(n

2

)

time. Therefore, theoretically, the strategy developed

based on the transformation of the left deep join trees

will have a better time complexity.

./

�@

./

R

4

�@

./

R

3

�@

R

1

R

2

(a)

A possible optimal

left deep join tree

for R

1

./ R

2

./ R

3

./ R

4

./

�

�H

H

./ ./

�@

R

1

R

2

�@

R

3

R

4

(b)

A possible optimal

balanced bushy join tree

Figure 10: Join Tree Transformation

- synthesis process

Normally, the synthesis process is very simple, by

which all the local results are combined directly to-

gether. But in some cases, more complicated com-

putations may be involved. For example, if faculty

and student are two relations of two local relational

databases DB

1

and DB

2

, respectively, and an asser-

tion of the form: DB

1

� faculty \ DB

2

� student is

speci�ed between them, then a query of the form:

�

name;income

(

�

income>1000^research area=

0

informatik

0

(Faculty))

(Faculty stands for the global version of faculty and

student), submitted to the integrated version of DB

1

and DB

2

, will be decomposed into two subqueries:

q

1

= �

name;income

(

�

income>1000^research area=

0

informatik

0

(faculty))

and

q

2

= �

name;income

(

�

income>1000^research area=

0

informatik

0

(student)).

However, if the attribute values of "income" is evalu-

ated in terms of function g(x; y) de�ned in 3.4, q

1

and

q

2

have to be further changed into

�

name;salary

(�

research area=

0

informatik

0

(faculty)) and

�

name;study support

(�

research area=

0

informatik

0

(student)).

We notice that by this modi�cation, not only the

global attribute name "income" is replaced with the

corresponding local ones, but the condition "income

> 1000" is also removed, since such a condition can

not be checked until the corresponding local values are

available. Obviously, the lost computation (due to the

removing of "income > 1000" from the queries) has to

be recovered in this phase.

5 Conclusion

In this paper, a systematic method for evaluating

queries submitted to a federated database is outlined.

The method consists of �ve steps: syntactic analysis,

query decomposition, query translation, optimal exe-

cution plan generation, and synthesis process. If the

metadata are well established, the entire process can

be performed automatically.

References

[Bl92] J. Bloomer. Power Programming with RPC

O'Reilly & Associates, Inc. 1992.

[BOT86] Y. Breitbart, P. Olson, and G. Thompsom.

"Database integration in a distributed hetero-

geneous database system," in: Proc. 2nd IEEE

Conf. Data Eng., 1986, pp. 301 - 310.

[CB96a] Y. Chen and W. Benn. "On the Query Trans-

lation in Federative Relational Databases," in:

Proc. of 7th Int. DEXA Conf. and Workshop

on Database and Expert Systems Application,

Zurich, Switzerland: IEEE, Sept. 1996, pp.

491-498.

[CB96b] Y. Chen and W. Benn. "On the Query Op-

timization in Multidatabase," in:Proc. of the

�rst Int. Symposium on Cooperative Database

Systems for Advanced Application, Kyoto,

Japan, Dec. 1996, pp. 137 - 144.

[CB97] Y. Chen and W. Benn. "Tree Balance

and Node Allocation," accepted by Int.

Database Engineering and Application Sympo-

sium, Montreal, Canada, Aug. 1997.

[CW93] S. Ceri and J. Widom. "Managing Seman-

tic Heterogeneity with Production Rules and

Persistent Queues", in:Proc. 19th Int. VLDB

Conference, Dublin, Ireland, 1993, pp. 108 -

119.

[CYW96] M-S. Chen, P.S. Yu and K-L. Wu. "Opti-

mization of Parallel Execution for Multi-Join

Queries," IEEE Trans. on Knowledge and

Data Engineering, vol. 8, No. 3, June 1996,

pp. 416-428.

[DSD95] W. Du, M. Shan and U. Dayal. "Reducing

Multidatabase Query Response Time by Tree

Balancing", in:Proc. 15th Int. ACM SIGMOD

Y. Chen, W. Benn 5-9



Conference on Management of Data, San Jose,

california, 1995, pp. 293 -303.

[Du94] Y. Dupont. "Resolving Fragmentation con-

icts schema integration," in:Proc. 13th Int.

Conf. on the Entity-Relationship Approach,

Manchester, United Kingdom, Dec. 1994, pp.

513 - 532.

[HLM94] G. Harhalakis, C.P. Lin, L. Mark and

P.R. Muro-Medrano. "Implementation of

Rule-based Information Systems for Integrated

Manufacturing", IEEE Trans. on Knowledge

and Data Engineering, vol. 6, No. 6, 892 - 908,

Dec. 1994.

[KFMRN96] W. Klas, P. Fankhauser, P. Muth, T.

Rakow and E.J. Neuhold. "Database Integra-

tion Using the Open Object-oriented Database

System VODAK," in: O. Bukhres, A.K. El-

magarmid (eds):Object-oriented Multidatabase

Systems: A Solution for Advanced Applica-

tions. Chapter 14. Prentice Hall, Englewood

Cli�s, N.J., 1996.

[Jo93] P. Johannesson. "Using Conceptual Graph

Theory to Support Schema Integration",

in:Proc. 12th Int. Conf. on the Entity-

Relationship Approach, Arlington, Texas,

USA, Dec. 1993, pp. 283 - 296.

[LA86] W. Litwin and A. Abdellatif. "Multidatabase

interoperability," IEEE Comput. mag., vol.

19, No. 12, pp. 10 - 18, 1986.

[Ra87] T. S. Ramkrishna. UNIX utilities, McGraw-

Hill, New York, 1987.

[RPRG94] M.P. Reddy, B.E. Prasad, P.G. Reddy, and

A. Gupta. "A methodology for integration

of heterogeneous databases," IEEE Trans. on

Knowledge and Data Engineering, vol. 6, No.

6, 920 - 933, Dec. 1994.

[SK92] W. Sull and R.L. Kashyap. "A self-organizing

knowledge representation schema for extensi-

ble heterogeneous information environment,"

IEEE Trans. on Knowledge and Data Engi-

neering, vol. 4, No. 2, 185 - 191, April 1992.

[SPD92] S. Spaccapietra and P. Parent, and Yann

Dupont. "Model independent assertions for in-

tegration of heterogeneous schemas", VLDB

Journal, No. 1, pp. 81 - 126, 1992.

[SP94] S. Spaccapietra and P. Parent. "View integra-

tion: a step forward in solving structural con-

icts", IEEE Trans. on Knowledge and Data

Engineering, vol. 6, No. 2, 258 - 274, April

1994.

[YL89] H. Yoo and S. Lafortune. "An Intelligent

Search Method for Query Optimization by

Semijoins," IEEE Trans. on Knowledge and

Data Engineering, vol. 1, No. 2, June 1989,

pp. 226 - 237.

Y. Chen, W. Benn 5-10


