
Semantic Query Caching for Heterogeneous Databases

Parke Godfrey

U.S. Army Research Laboratory

2800 Powder Mill Road

Adelphi, Maryland 20783-1197

U.S.A.

godfrey@arl.mil

Jarek Gryz

Department of Computer Science

York University

Toronto, Ontario M3J 1P3

Canada

jarek@cs.yorku.ca

Abstract

Query caching can play a vital role in hetero-

geneous, multi-database environments. An-

swers to a query that are available in cache

at the local client can be returned to the user

quickly, while the rest of the query is evalu-

ated. The use of caches can optimize query

evaluation. By caching certain sensitive data

locally, caches can be used to answer the parts

of queries that involve the sensitive data, so it

need not be shipped across the network. Most

prior cache schemes have been tuple-based or

page-based. It is unclear, however, how these

might be adapted for multi-databases. We ex-

plore a more exible semantic query caching

(SQC) approach. In SQC, caches are the an-

swer sets of previous queries, labeled by the

query expressions that produced them. We

promote developing the technology, based on

logic, to manipulate semantic caches, to deter-

mine when and how caches can be used to an-

swer subsequent queries, and to optimize via

cache use.

The copyright of this paper belongs to the papers authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 4th KRDB Workshop

Athens, Greece, 30-August-1997

(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

1 Introduction

Semantic Query Caching (SQC) has been proposed as

a data-caching scheme for client-server environments

[5, 12]. Under this architecture, the client maintains in

cache semantic descriptions and the associated answer

sets of previous queries. If the current query is answer-

able from cache, no communication with the servers is

necessary. If a query is only partially answerable from

cache, the amount of data needed from the servers may

be substantially reduced.

1

SQC provides an alterna-

tive approach to page-caching and tuple-caching archi-

tectures [3, 6], in which the unit of transfer between

servers and clients is a page or a tuple, respectively.

The key advantage of SQC over other approaches is its

exibility: it can be used to answer new queries which

are semantically related to previous queries that were

cached.

2

Tuple-based and page-based caches are rel-

atively inexible. The new query must ask the same

sources for much the same information, in the same

format. Otherwise, it is not possible to determine the

relevant pages or tuples. (See [5] for speci�c disadvan-

tages.) Furthermore, in heterogeneous environments,

it is not clear what tuple-based or page-based caching

across databases even means.

We propose to extend the SQC paradigm in two

orthogonal directions: �rst, we advocate broaden-

ing the domain of applications of SQC into hetero-

geneous database environments; and, second, we pro-

pose a logic-based framework for SQC and describe

techniques for query optimization that become possi-

ble within the framework.

1

The cache should also be consistent; that is, it is up-to-

date. We ignore the issues of cache consistency, updating, and

currency here, although we acknowledge their importance. We

also do not discuss cache replacement strategies.

2

This is commonplace during query sessions, in which a user

asks a number of related and follow-up queries.

P. Godfrey, J. Gryz 6-1

Our focus is on mediation-based systems over

databases with structured data, such as provided by

TSIMMIS [15] or the Information Manifold [14]. Sys-

tems such as these can be built over hundreds of data

sources, each \wrapped" to translate the data mod-

els and languages of local databases into global con-

cepts of the mediator. Queries are issued via the global

concepts to the mediators, which identify the relevant

sources, issue local queries to them, and then synthe-

size the results. Query optimization in heterogeneous

environments has received increased attention recently

[2, 7, 13], and by us as well [8, 9, 10].

We contend that SQC is needed in these environ-

ments and is critical for viable optimization strategies.

In addition, SQC can help attend a number of other is-

sues that arise in mediated, distributed environments.

� Query optimization.

{ Improvement in overall query response time.

(Traditional optimization.) Since part, or

all, of query processing can be done by

the client via caches, the workload at the

database servers is reduced. If the answer

set of a query is large, computing part of it

at the client also provides savings in network

communication.

{ Saving money. In environments where there

are monetary charges for information, such

as in electronic commerce, caching tech-

niques can be used to optimize over these

monetary costs (instead of computational

cost). That is, caching can save us from buy-

ing the same answer many times.

{ Optimization of queries with few answers. If

the cardinality of the query's answer set|

for instance, that there is only one answer|

can be determined in advance (perhaps by

reasoning with integrity constraints) and the

number of answers to the query in cache is

equivalent to the known cardinality, then the

cached answer set is known to be complete.

� Data Security. We can limit the shuttling of sen-

sitive data across the network by storing it at the

client. Such data does not have to consist of com-

plete tables; it can be de�ned as parts of tables

in the same way views are de�ned. Except for

the fact that caches de�ned in this way are never

purged from the client, they can be treated in the

same way cached queries are.

� Fault tolerance. Some databases may not be ac-

cessible at a given time. If a query can be par-

tially computed from caches, at least some of the

answers can be returned to the user.

� Approximate answering. Sometimes a good ap-

proximation of aggregate values such as average

can be obtained from caches. If it can be deter-

mined that a cache contains a representative sam-

ple of the tuples over which the aggregate function

is to be computed, then it can be evaluated just

over cache. Techniques for approximate compu-

tation of averages are investigated in [11].

� Better user interaction.

{ Answer set pipelining. A subset of the an-

swers that are computable at the client by

cache can be returned to a user promptly,

while remaining answers are being evaluated.

{ Indirect answering. The information that

the query is contained in cache may some-

times be all that the user requires. This

happens, for example, when in a sequence

of queries it can be determined that the next

query does not add any new \tuples" to the

answers previously retrieved. Such informa-

tion not only improves the query response

time, but also can provide the user with valu-

able semantic information about his or her

queries.

{ Limiting the size of the answer set. In some

applications, a user may not be interested in

retrieving all answers, but may be satis�ed

with just some (that is, with just a subset of

a complete answer set). It might also be the

case that the user might want to terminate

the query evaluation if he or she �nds that

the answer set is larger than expected. In

both cases, query processing can be termi-

nated after retrieving answers from cache.

2 Answering Queries by Semantic

Query Caches

A cache is useful when some of the query's answers can

be obtained via the given cache, with project and select

operations. (A cache is stored as a relational table.) If

the query is answerable entirely from a cache, no com-

munication with the servers is necessary. Otherwise,

a single trimmed query [12] is sent for processing. We

propose to relax this basic paradigm in two ways:

1. we advocate to allow for all relational operations

to be performed over the caches (at the client);

and

P. Godfrey, J. Gryz 6-2

Cache

Query

Case 3

Cache

Query

Case 4

Case 1

Cache

Query

Cache

Query

Case 2

Figure 1: Possible relations between cached and cur-

rent queries.

2. we allow for the possibility of a dialogue between

clients and servers, not simply requests for an-

swers to a query.

Consider Figure 1. The boxes represent tables: the

horizontal represents rows (tuples), and the vertical

columns (attributes). Assume initially that the only

operations to be performed on the cached query (the

white boxes) and the current query (the grey boxes)

were selects and projects. The current query may over-

lap with a cached query in a number of possible ways.

The query may be computable entirely from a cache

(case 1), or only partially (cases 2, 3, and 4). Case

2 represents the situation when some of the answers

to the query are available from cache; we refer to this

case as a horizontal partition of a query. Case 3 rep-

resents what we call, a vertical partition of a query.

If a cache contains the key column(s) of the relation

in the query, the missing columns could be imported

from the server, to be joined with the cache locally.

Case 4 represents a mixed partition of a query.

The scenario above can be generalized so that both

caches and queries may involve joins. Then the white

boxes in Figure 1 may represent (the resulting table

of) an arbitrary join of several caches stored locally.

Even in the simplest case (1)|when all columns of

interest of the query are in caches|it may be impos-

sible to compute the answer set to a query without

more information from the servers. For example, if

a cached query C is the join R

1

1 ::: 1 R

n

and the

current query Q is the join R

1

1 ::: 1 R

n

1 R

n+1

,

then we would need to import at least the join col-

umn(s) of the relation R

n+1

to the client to evaluate

Q in cache. Therefore it may be necessary for clients

and servers to engage in dialogues to decide when this

strategy is better than evaluating entirely the query at

the servers.

Cases 2, 3, and 4 introduce yet another complica-

tion: trimming the query to evaluate at the servers.

This is not necessary, but one can optimize by not

evaluating the entire query at the servers when many

answers are already known from cache. Ideally, one

would want to evaluate only for the answers that were

not in cache. Of course, trimming strategies cannot

optimize universally; sometimes, a trimmed query will

be more expensive to evaluate than would be the origi-

nal query. We consider a trimming strategy in [9] that

we believe is an optimization in general.

3

How \trim-

ming" should be done depends on the goal of SQC:

answer set pipelining generally bene�ts from heavier

use of caches than is necessarily the case for optimiz-

ing the overall query response time.

3 Reasoning over Semantic Query

Caches

We employ the terminology of logic databases and

Datalog [19].

4

Whenever a query's answer set is

cached, introduce a new predicate, say c, represent-

ing the cache, and a rule

5

for the cache predicate into

the (intensional) database to reect the query.

ch~x i

(

q

1

h~x

1

i, : : :, q

k

h~x

k

i.

Let the collection of caches accumulated so far

be c

1

, : : :c

n

. Analytical tools developed for logic

databases can be employed to decide when a cache

(or combination thereof) answers, or partially answers,

the query [20]. The basic inference needed is conjunc-

tive query subsumption [19]. Tests for this are well

known [4, 16]. This determines when one conjunctive

query logically subsumes another. Whenever this is

the case, all answers to the latter|say, a cache|are

3

The trimming strategy, tuple tagging, proposed in [9] is for

removing parts of a query that are known in advance to evalu-

ate empty, as determined by semantic query optimization tech-

niques. We are considering how to extend this for the more

general case when parts of a query are known via cache.

4

Logic databases are also known as deductive databases.

5

Actually, we might pedantically argue that it is an integrity

constraint, not a rule, that should be introduced since the cache

itself is extensional (that is, materialized as a table).

P. Godfrey, J. Gryz 6-3

also answers to the former|say, the query. Thus, the

subsumption test alone is su�cient for the simplest

case of SQC above (case 1 from Figure 1 without joins

considered).

SQC with joins (and especially SQC with dialogue)

requires more sophisticated inferencing. In particu-

lar, full Datalog subsumption must be considered [1,

18]; that is, when the collection of caches subsume

(or partially subsume) the query. Also, when caches

and queries are not simply conjunctive queries|that

is, they may employ view predicates|more sophisti-

cated reasoning is needed. We consider such issues in

[8, 9].

There is also the case when one can determine that a

query's answers (or some of its answers) are in cache,

but one does not have enough information logically

to identify those tuples constructible from cache that

belong to the query's answer set. There are situations,

however, when this weaker knowledge is still useful.

(We discussed this in the point indirect answering on

page 2.) In situations or applications in which a user

is asking a sequence of queries in an attempt to �nd

certain information, he or she is not interested to know

which answers belong to which query. Thus, when a

new query adds no new answers|that is equivalent to

say that all its answers are known to be in cache|

that is all one needs to know. One does not need to

construct that query's answer set.

In the case that answers to the query are known to

be in cache, but how to identify them is not, always

with more information from the servers, one could

identify the answers. The same analytic tools we use

to determine when a query is answerable via cache can

be adapted to identify the \missing" tables that would

allow us to infer the answers in cache. So if we want

the answers from cache, the client could request such

additional tables from the servers in dialogue. It is

complex to determine when such a dialogue exchange

could be used to optimize query evaluation. It may

easily be that the additional information needed from

the servers would be more expensive to fetch than just

evaluating the query as is at the servers.

However, such capability o�ers us much more exi-

bility, because it o�ers us alternative ways to evaluate

the same answers using cache that would otherwise

not be available to us. For instance, information we

need to extract the answers from cache may be avail-

able at currently accessible servers, whereas evaluating

the query may not be currently possible because some

requisite servers are not accessible. In electronic com-

merce, the information needed for extraction might be

inexpensive, whereas evaluating the query (without ex-

ploiting the caches) would be prohibitively expensive.

In data security, we might be able to extract answers

from cache locally with the use of additional public

information from the servers, but not be able to pull

those answers directly because they contain sensitive

data that the servers are not allowed to ship on the

network.

Another important technology needed is to be able

to remove semantically portions of a query. If we can

answer partially a query at the client via caches, ide-

ally the trimmed query sent to the servers would only

result in answers not already found (or, at least, would

minimize the overlap). This reduces potentially redun-

dant calculations and saves in network bandwidth. In

[8], we introduced the the concept of a discounted query

which can, in part, accomplish this. In [9], we provide

an evaluation strategy for discounted queries that is,

in general, more e�cient than evaluating the queries

themselves.

4 Conclusions and Issues

For successful SQC, many issues need to be resolved.

� Reasoning over conjunctive query containment

and DATALOG containment is computationally

hard [20]. When we allow view (intensional) pred-

icates in queries, this is harder yet. So is SQC

worthwhile?

{ While such reasoning may be complex, it is

CPU-bound and can be done in main mem-

ory. The savings are over I/O and network

bandwidth. So as the gap between CPU

speeds and I/O speeds widens, we can a�ord

to spend much e�ort on inference in return

for more optimal queries and for pipelined

answers.

{ Detecting cache use does not need to be com-

plete. We can curtail search early if rea-

soning threatens to be expensive. Our algo-

rithms should be incremental insofar as they

provide some results if stopped early (rather

than being all-or-nothing).

� What would cost models for SQC be? In partic-

ular, what would cost models for dialogue SQC

be?

{ Certain applications of SQC are always a

win, and, thus, should always be done.

{ Few optimization strategies in wide use to-

day are universally optimizing. They can

P. Godfrey, J. Gryz 6-4

back-�re, resulting in worse performance for

a given query. However, good optimization

techniques perform well in average case. We

believe reliable heuristics can be designed as

well for optimizing by cache.

{ SQC o�ers the exibility to optimize over

di�erent criteria (or a combination thereof),

such as over monetary charges and execution

time.

� Can caches be kept \reasonably" current inexpen-

sively? What are the criteria for \reasonably"

current? How is currency to be achieved and/or

guaranteed?

{ In many distributed domains, currency is a

less critical issue, as over the Internet.

{ The same analysis tools for determining

cache usage can be used to test cache cur-

rency.

{ Even when a cache is no longer current, we

still can use it safely sometimes, when we

know in what way it lost currency. (For in-

stance, we might track the context queries of

the updates since the cache was created.)

� What would be a reasonable cache maintenance

strategy?

{ Semantic caches can sometimes be merged

when closely related. When one cache sub-

sumes another, the \redundancy" should

somehow be removed.

{ As with all cache schemes, we need a bal-

ance between keeping too much information

in cache and assuring e�ective cache use by

future queries.

Semantic query caching can be readily incorporated

over existing database systems. Datalog subsumes the

relational algebra and many aspects of SQL. Thus, the

reasoning machinery needed for SQC is adequate for

the types of queries we encounter in today's database

systems. While reasoning over caches is computation-

ally hard (and, in Datalog with recursion, is for certain

tasks undecidable), we believe there are approaches

that can perform well, in average case, and that can

sacri�ce completeness while still being useful. Other

approaches, such as those o�ered by description logics,

are simpler computationally by design. However, they

do not readily apply to existing systems. The queries

of the underlying systems would have to be restricted

to within the description logic, but database systems

are rarely so constrained.

We believe that the issues above for SQC can be

addressed. If so, SQC will provide valuable tools that

address a number of critical issues facing the rise of

heterogeneous database environments, including opti-

mization, fault tolerance, data security, and answer

pipelining.

Acknowledgments

This research was supported in part by grant NSF IRI-

9300691 under Professor Jack Minker at the Univer-

sity of Maryland, College Park. Until recently, Jarek

Gryz was a�liated with the University of Maryland,

and Parke Godfrey currently is. We thank Professor

Minker for his help, guidance, and insights in this work

and in general. We also thank the ARL for their con-

tinued support of this work.

References

[1] S. Abiteboul, Y. Sagiv, and V. Vianu. Founda-

tions of Databases. Addison-Wesley, 1995.

[2] S. Adali, S. Candan, Y. Papakonstantinou,

and V. S. Subrahmanian. Query caching and

optimization in distributed mediator systems.

In Proc. SIGMOD, pages 137{148, Montreal,

Canada, June 1996.

[3] M. Carey, M. Franklin, and M. Zaharioudakis.

Fine-grained sharing in page server database sys-

tem. In Proceedings of Sigmod, 1994.

[4] A. K. Chandra and P. M. Merlin. Optimal im-

plementation of conjunctive queries in relational

databases. In Proceedings of the Ninth Annual

ACM Symposium on the Theory of Computing,

pages 77{90, 1977.

[5] S. Dar, M. Franklin, B. Jonsson, D. Srivastava,

and M. Tan. Semantic data caching and replace-

ment. In Proceedings of VLDB, 1996.

[6] D. DeWitt, P. Futtersack, D. Maier, and F. Velez.

A study of three alternative workstation-server

architectures for object-oriented database sys-

tems. In Proceedings of VLDB, 1990.

[7] W. Du, R. Krishnamurthy, and M.-C. Shan.

Query optimization in a heterogeneous DBMS. In

L.-Y. Yuan, editor, Proc. VLDB, pages 277{291,

Vancouver, British Columbia, Aug. 1992. Morgan

Kaufmann.

[8] P. Godfrey and J. Gryz. A framework for in-

tensional query optimization. In D. Boulanger,

U. Geske, F. Giannotti, and D. Seipel, edi-

tors, Proceedings of the Workshop on Deductive

P. Godfrey, J. Gryz 6-5

Databases and Logic Programming, GMD-Studien

Nr. 295, pages 57{68, Bonn, Germany, Sept. 1996.

GMD-Forschungszentrum. Held in conjunction

with IJCSLP'96.

[9] P. Godfrey and J. Gryz. Intensional query

optimization. Technical Report CS-TR-3702,

UMIACS-TR-96-72, Dept. of Computer Science,

University of Maryland, College Park, MD 20742,

Oct. 1996.

[10] P. Godfrey, J. Gryz, and J. Minker. Semantic

query optimization for bottom-up evaluation. In

Ra�s and Michalewicz [17], pages 561{571.

[11] J. Hellerstein, P. Haas, and H. Wang. Online ag-

gregation. In Proc. SIGMOD, 1997.

[12] A. M. Keller and J. Basu. A predicate-based

caching scheme for client-server database archi-

tectures. The VLDB Journal, 5(2):35{47, Apr.

1996.

[13] C. Lee, C.-J. Chen, and H. Lu. An aspect of query

optimization in multidatabase systems. Sigmod

Record, 24(3):28{33, Sept. 1995.

[14] A. Y. Levy, A. Rajaraman, and J. Ordille.

Querying heterogeneous information sources us-

ing source descriptions. In Proc. 22nd VLDB,

1996.

[15] Y. Papakonstantinou, H. Garcia-Molina, and

J. Widom. Object exchange across heterogeneous

information sources. In Proceeding of ICDE, Mar.

1995.

[16] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and

M. Y. Vardi. Proof tree transformation theo-

rems and their applications. In Proceedings of

the Eighth ACM Symposium on Principles of

Database Systems (PODS), pages 172{181, 1989.

[17] Z. W. Ra�s and M. Michalewicz, editors. Founda-

tions of Intelligent Systems: Proceedings of the

9th International Symposium on Methodologies

for Intelligent Systems, Lecture Notes in Arti�cial

Intelligence 1079, Berlin, June 1996. Springer.

[18] O. Shmueli. Decidability and expressiveness as-

pects of logic queries. In Proc. 6

th

ACM Sym-

posium on Principles of Database Systems, pages

237{249, 1987.

[19] J. D. Ullman. Principles of Database and

Knowledge-Base Systems, Volumes I & II. Prin-

ciples of Computer Science Series. Computer Sci-

ence Press, Incorporated, Rockville, Maryland,

1988/1989.

[20] J. D. Ullman. Information integration us-

ing logical views. In Proceedings of the Sixth

International Conference on Database Theory

(ICDT'97), Delphi, Greece, Jan. 1997.

P. Godfrey, J. Gryz 6-6

