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Abstract. We introduce a new approach for the localization of 3D
anatomical point landmarks. The approach uses 3D parametric inten-
sity models of anatomical structures which are directly fit to the image
intensities. We developed an analytic model based on the Gaussian error
function to efficiently model tip-like structures of ellipsoidal shape. The
approach has been successfully applied to accurately localize the tips of
ventricular horns in 3D MR image data.

1 Introduction

The localization of 3D anatomical point landmarks is an important task in med-
ical image analysis. Landmarks are useful image features in a variety of appli-
cations, for example, the registration of 3D brain images of different modalities
or the registration of images with digital atlases. The current standard proce-
dure, however, is to localize 3D anatomical point landmarks manually which is
difficult, time consuming, and error-prone. To improve the current situation it
is therefore important to develop automated methods.

In previous work on the localization of anatomical point landmarks, 3D dif-
ferential operators have been proposed (e.g., Thirion [1], Rohr [2]). For a recent
evaluation study of nine different 3D differential operators see Hartkens et al.
[3]. While being computationally efficient, differential operators incorporate only
small local neighbourhoods of an image and are therefore relatively sensitive to
noise, which leads to false detections and also affects the localization accuracy.
Recently, an approach based on deformable models was introduced, see Frantz et
al. [4] and Alker et al. [5]. With this approach tip-like anatomical structures are
modeled by surface models, which are fit to the image data using an edge-based
fitting measure. However, the approach requires the detection of 3D image edges
as well as the formulation of a relatively complicated fitting measure, which
involves the image gradient as well as 1st order derivatives of the surface model.

We have developed a new approach for the localization of 3D anatomical
point landmarks. In contrast to previous approaches the central idea is to use
3D parametric intensity models of anatomical structures. In comparison to differ-
ential approaches, larger image regions and thus semi-global image information



is taken into account. In comparison to approaches based on surface models, we
directly exploit the intensity information of anatomical structures. Therefore,
more a priori knowledge and much more image information is taken into ac-
count in our approach to improve the robustness against noise and to increase
the localization accuracy.

2 Parametric Intensity Model for Tip-Like Structures

Our approach uses 3D parametric intensity models which are fit directly to
the intensities of the image data (see Rohr [6] where such an approach has been
proposed for segmenting 2D corner and edge features). These models describe the
image intensities of anatomical structures in a semi-global region as a function
of a certain number of parameters. The main characteristic, e.g. in comparision
to general deformable models, is that they exhibit a prominent point which
defines the position of the landmark. By fitting the parametric intensity model
to the image intensities we obtain a subvoxel estimate of the position as well
as estimates of the other parameters, e.g., the image contrast. As an important
class of 3D anatomical point landmarks we here consider tip-like structures. Such
structures can be found, for example, within the human head at the ventricular
system (e.g., the tips of the frontal, occipital, or temporal horns) and at the skull
(e.g., the tip of the external occipital protuberance).

The shape of these anatomical structures is ellipsoidal. Therefore, we use a
(half-)ellipsoid with the three semi-axes (rg,7y,r.) and the intensity levels ag
(outside) and ay (inside) to model them. We also introduce Gaussian smooth-
ing with the parameter o to incorporate image smoothing effects. To efficiently
represent the resulting 3D intensity structure we developed an analytic model
based on ¢ (z) = f_xoo (271')_1/2 e=€'/2 d¢ , which is given by
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where x = (z,y, z). We define the tip of the ellipsoid w.r.t. the semi-axis r, as the
position of the landmark, which also is the center of the local coordinate system.
In addition, we include a 3D rigid transform R with translation parameters
(%0, Yo, z0) and rotation parameters («, 3, v). Moreover, we extend our model to
a more general class of tip-like structures by applying a tapering deformation 7
with the parameters p, and p,, and a bending deformation B with the parameters
J (strength) and v (direction), which are defined by
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This results in our parametric intensity model with a total of 16 parameters:
gum (x,P) = gru. (T (B(R (2)))) (3)
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3 Model Fitting Approach

Estimates for the model parameters are found by a least-squares fit of the model
to the image intensities g () within semi-global regions-of-interest (ROIs), thus
minimizing
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The fitting measure does not include any derivatives. This is in contrast to pre-
vious fitting measures for surface models which incorporate the image gradient
as well as st order derivatives of the model (e.g., [4]). For the minimization
we apply the method of Levenberg-Marquardt, incorporating 1st order partial
derivatives of the intensity model w.r.t. the model parameters, which can be de-
rived analytically. Note, we do not need the image gradient. We need 1st order
derivatives of the intensity model only for the minimization process, whereas the
surface model approach requires 2nd order derivatives for the minimization.

To improve the robustness as well as the accuracy of model fitting, we sep-
arated the model fitting process into different phases. In the first phase, only a
subset of the model parameters are allowed to vary in the minimization process
(parameters for semi-axes, rotation, and smoothing). In subsequent phases fur-
ther model parameters are additionally allowed to vary, i.e. the parameters of
the translation, the intensity levels, and the deformation.

4 Experimental Results

Our approach has been applied to 3D synthetic data as well as to 3D MR images
of the human head. In the first part of the synthetic experiments, we applied
our approach to 3D image data generated by the model itself with added Gaus-
sian noise. In total we carried out about 2400 experiments and achieved a very
high localization accuracy with an error in the estimated position of less than
0.12 voxels. We also found that the approach is robust w.r.t. the choice of ini-
tial parameters. In the second part, we applied our approach to synthetic 3D
images, which have been obtained by discrete Gaussian smoothing of an ideal
(unsmoothed) ellipsoid. Since our 3D model represents an approximation to a

Fig. 1. 3D contour plots of the fitted model for the left temporal horn (left), the right
temporal horn (center), and the right occipital horn (right) within the original data.
The marked axes indicate the estimated landmark positions.



Gaussian smoothed ellipsoid, in these experiments it turned out that we obtained
a systematic error in estimating the landmark position. To cope with these er-
rors we developed a nonlinear correction function which “calibrates” the model:
Nzo = ¢+ 36 + 362 + (04 + 50 + 0632) 27,/ (7 + 7y). To determine the pa-
rameters ¢y, ..., cg we devised a large number of experiments and systematically
varied the respective parameters. In total, we used more than 2000 synthetic 3D
images. Incorporating the correction function, we achieved an average localiza-
tion error of less than 0.2 voxels.

We also applied our approach to real 3D MR images of the human head. Table
1 shows the fitting results for the tips of six ventricular horns. For each landmark,
we applied the model fitting 100 times with different sets of initial parameters.
On average, model fitting succeeded in 89 cases with an average of 75 iterations
and a mean fitting error (positive root of the mean squared error) of €;,; = 10.70.
The average distance between the estimated landmark positions and manually
localized positions for all six landmarks is € = 1.90 voxels. In comparision,
using the 3D differential operator Op3 ([2]), we obtain an average distance of
€op3 = 3.42 voxels. Thus, the localization accuracy with our new approach turns
out to be much better. For three landmarks we have also visualized the fitting
results in Figure 1 using 3D Slicer (SPL, Boston). It demonstrates that the
spectrum of possible shapes of our model is relatively large. The left ellipsoid
includes only tapering, the center ellipsoid includes tapering and bending, and
the right ellipsoid includes relatively strong tapering and bending. Figure 2 shows
the fitting results for the left and right frontal horn overlayed with four different
slices of the original data. It can be seen that the model describes the depicted
anatomical structures fairly well.

Fig. 2. 3D contour plots of the fitted model for the left and right frontal horn. The
result is shown for four different slices of the original data.
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Table 1. Fitting results for the ventricular horns in a 3D MR image for ca. 100 ex-
periments using a spherical ROI with a diameter of 21 (*11) voxels. The estimated
landmark position and intensity levels are given with their standard deviations. Also,
the mean fitting error €;»: and the distance € to the manually localized landmark
position are listed. For comparison, the distance éops of the diff. operator Op3 is given.

5

Landmark .%0 go ,20 &0 &1 éint e éop?,
Left frontal horn 111.17  78.36 101.79 124.7 23.1 9.13 2.20|3.16
(Tapering only) 0.001 0.001 0.001 0.01 0.01
Right frontal horn 111.48 76.64 132.80 122.7 19.4 10.69 2.32|2.24
(Tapering only) 0.002 0.001 0.002 0.01 0.03

Left occipital horn 189.38 101.53 91.58 107.3 23.4 10.17 2.30(4.12
(Tapering and bending)*| 0.089 0.07v8 0.204 0.13 0.24
Right occipital horn |182.61 97.22 150.01 112.7 19.4 7.81 0.87|3.61
(Tapering and bending)*| 0.063 0.025 0.109 0.07 3.53
Left temporal horn |134.63 111.65 90.05 106.7 43.0 13.36 2.81|2.83
(Tapering only) 0.031 0.023 0.014 0.01 0.21
Right temporal horn [130.36 114.79 148.92 104.9 26.3 13.03 0.87|4.58
(Tapering and bending) 0.008 0.030 0.026 0.01 0.11

Discussion

The experiments verify the applicability of our new approach, which yields sub-
voxel positions of 3D anatomical landmarks. In further work we plan to perform

a comprehensive evaluation study including a comparison with the results of
other approaches.
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