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Abstract. In this paper we present an approach to combine the informa-
tion of n MR images the so-called source images {S; }1 <i<» — monitored
from different directions — into a so-called fused imagg T which should
include the features of each source image. The so-called image fusion
process cuts into two steps. First an affine linear mapping is determined,
so that the so-called sum of squared differences, between the source im-
ages is as small as possible. Furthermore, a trilinear interpolation is used
to combine the information of the matched source images. The image
fusion approach is tested on real MR images provided by the Institute
of Anatomie I, Heinrich-Heine-Universitat Diisseldorf.

1 Introduction

The resolution of MR images has been steadily increased during the past years.
However, it is still very limited with respect to the underlying histology. The
resolution obtained in clinical settings is normally in the range of one square-
millimeter; the magnification at which the structural information is derived by
light microscopy is higher by a factor of between 100 and 1000. This means that
the correlation between morphological and functional information is far from
optimum.

Our goal is to narrow the gap in resolution between clinical MR images
and underlying tissue. The imaging modalities providing the highest resolution,
however, obtain this only in two but not in three dimensions greatly affect-
ing 3-dimensional reconstruction. In order to compensate for the loss of detail
we developed a image fusion approach which renders an increased resolution
throughout tissue volume. Image fusion is a way of combining information of
several images given e.g. by different spatial resolution or different sensors. The
result is a product that synergistically combines the best features of each of
its components. In this paper we provide a powerful image fusion approach to
combine MR images together.

In our situation n 3D-MR source images {S;}1<i<n from a single object,
recorded in frontal, sagittal and/or horizontal direction are given. Each set con-
sist of a moderate number of slides (e.g. 70-100) with high resolution (e.g.



314

512 x 512). The aim of the proposed image-fusion approach is to incorporate
information of the images to one fused image I with highest resolution (e.g.
512 x 512 x 512), so that the details of the images are well preserved.

2 Image fusion of MR images

In the following the image fusion approach is illustrated for several MR images
monitored from different directions. The MR images are recorded in the DICOM
format. We start the image fusion process by an affine linear matching of the
images. Within the matching process the reference image is defined w.l.o.g. by the
first source image S1. The optimal transformations are determined by minimizing
the sum of squared differences

g(A,b) = |81 — S:(FD(4,8)]3 for i=2,.,n (1)

between the reference and each template image {9; }2<;<n. The considered map-
pings f depend crucial on the monitored direction of the reference image 5.
E.g., let 51 be recorded in frontal, S5 in sagittal and S5 in horizontal direction,
then the affine linear mappings are restricted to the form
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where R is the rotation matrix according to the three axis (e.g., see [4]), b is the
translation vector and

1 0 8100
Mi:=]0s0 resp. My:=| 010 (3)
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are scaling matrices. We combine the searched parameters to a vector m =
(s1, 82, 83,71, 72, '3, b1, b, bg)T. This leads us to a nine-dimensional minimization
problem min,, g(m) for each pair of images. To solve the optimization problem
several approaches are proposed in the literature, e.g. the authors in [2,5] use the
Powell-algorithm , in [7] the Downbhill-algorithm , the minimization approach in
[1,6] is based on a singular value decomposition and the Levenberg-Marquardt
iteration is used in [3]. Due to the fact that in our application the condition of the
resulting Jacobian is small, the resulting minimization problem is solved just by
a Gauss-Newton iteration with additional line-search. Therefore we determine a
descend direction

4 = argmin s {||BAm — v} (4)

with h(x) = S1(z) — S;(fi(2)) and x; ;; the Jacobian is defined by
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by solving it’s normal-equations BY BAm = BT r. The reason is that this way we
just have to do a 9 x 9 Cholesky-composition. A QR decomposition is unneces-
sarily since the condition of this problem is acceptable small. B can be calculated
either by a analytical differentiation or difference quotients. Of course there is
no big difference between this possibilities, except the analytical differentiation
leads to better results for small steps. The solution Am is used in the line-search

A = arg lg\n;glg(m + AAm) (6)

as direction. For a fast minimization of the functionals (1) a multiresolution
framework is developed. Therefore the problem is solved in lower resolutions first.
As lower resolutions the images are restricted to half the size in each direction
until a fixed image resolution is achieved. The minimization problem is solved
first on the coarsest resolution, by using initial guess which includes no rotation,
the DICOM-scalings and a translation that centers the images according to each
other. The resulting solution vector is adapted to the next finer resolution and
is used there as initial guess. This is done until the finest resolution is reached.
In the second step of the image fusion process the images are fused to an image
1, which contains all features of the source images {.5; }1<;<n. Therefore, we use
just a trilinear interpolation for the voxels {Sl(fz(x))}%z;n_ and the fused image

I is determined by .
I(z) = S1(x) + 3 imy Silfil2)) ™)

n

3 Discussion

The function f has to fulfill different conditions. It should allow translation,
rotations and a global scaling as well as taking care of that each image has one
direction with lower resolution. The last condition is the reason why the scaling
M is split in (1). As the images are matched to the frontal, the frontal scaling
has to be done before the rotation, while the sagittal and horizontal scaling
has to be done after the rotation. This allows also the global scaling for small
angles. As the angles have to be small one restriction is that the images must
have the same orientation. Another restriction is, that so far the slides must be
equidistant. Instead of extending the images in some way, we just leave out any
calculation in th sum, that would use values that would be outside the boundary.
This speeds up the convergence significantly, as no ”fake”boundary falsifies the
descent direction. It also allows the images to be slightly different in what they
show. But this assumes our start value is good enough to find not only a local
but a global minimum.

4 Results

The shown results in Figure 2 which is a central slide of a fused 3D-image is
quite what we tried to accomplish. The image is smooth and the artefacts of
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Fig. 2. . Central slide of the fused image.
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the different resolutions are neglect able. In Figure 1 you see a slide of a given
problem. The frontal image shown dark and the sagittal shown in white. One
can notice the different resolutions of the images. Shown from this direction the
frontal resolutions are high, while the sagittal has a low horizontal resolution.
One can also notice that the sagittal image slide is not matching in any way to
the frontal as we have a 3D-problem. In Figure 1 one can see the same frontal,
but a different sagittal slide.
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