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Abstract. In this paper, we present a browsing framework for digitised
cultural collections. Using a data analysis technique called Formal Con-
cept Analysis (FCA), units of thought can be constructed from a series
of objects and their tags. FCA can dynamically generate links in be-
tween objects and induce a serendipitous browsing experience using a
relatively simple data structure. We evaluate the utility and scalability
of our approach to a collection of 15,000 objects from the Brooklyn Mu-
seum’s collections. We describe how we use natural language processing
techniques and external lexical resources to synthesise key terms from
museum documentation. We then combine this term extraction process
with FCA to effectively demonstrate links between and within collections
of objects. In doing so we present a versatile, generalizable term extrac-
tion and browsing framework suitable for digital libraries and archives
within the art and architecture domain.

1 Introduction

Cultural collections are vast, heterogeneous stores of history that are monu-
mental in their representation of human history and expression. Of particular
interest are the philosophical notions on how to best represent knowledge within
these collections, beginning from the rigid classification hierarchies that are com-
monly employed in today’s cultural collections to organic, tag-based, associative
approaches. Weinberger [1] examines tags as a form of classification, and notes
that there are often multiple relationships among objects within a collection,
each of which can be meaningful in their own interpretation. He quotes that
“trees can be built from leaves” – meaning that sorting and categorisation can
be dynamically induced, either from user communities and stakeholders (social
tagging) or from the metadata itself without reliance on an imposed classifica-
tion schema. In effect, sorting, categorising and relating objects can be organic,
dynamic and data-driven. When combined with a consistent knowledge rep-
resentation structure and controlled vocabulary, these relationships can unify
multiple, heterogeneous collections.
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Large scale cultural heritage projects such as Europeana1 and Digital NZ2

are a step in the right direction in unifying and providing accessibility to collec-
tions. As a result of projects such as these, there is a large amount of research
conducted in making these collections accessible and semantically inter-related.
For example, Schreiber et al. [2] investigate approaches towards enhancing and
enriching collection metadata and providing semantic annotation and search
facilities to large cultural collections. Klavans et al. [3] describe the nuances
and challenges of extracting metadata from cultural collections using natural
language processing techniques. Work conducted by Trant [4] report on how au-
diences can contribute new knowledge to collections in the form of social tagging
while latter work by Klavans et al. [5] examine how such data could be exploited
in order to assist information retrieval and browsing. These authors recognise
the importance of deriving meaning from cultural collections. Their research is
well aligned with related work in data visualisation, such as the Visible Archive
and commonsExplorer projects [6]. Like our project, these works focus on the
discovery of patterns and relationships within collections, rather than traditional
targeted search.

In our approach, we discover these patterns and relationships by using a data
analysis technique called Formal Concept Analysis (FCA). FCA is the matheme-
tization of conceptual thinking – a way of ordering and relating structured units
of thought [7]. A formal concept denotes a unit of thought and consists of an ex-
tension, the objects that compose that thought, and an intension, the attributes,
properties and meanings that apply to all of the objects within the extension.
For example, when applied to a collection of works, one may be thinking about
“Chinese vases with floral patterns” (the intension, or the attributes) or the ac-
tual 17 vases (the extension, or objects). In human conceptual thinking, concepts
rarely exist on their own, but rather in relation with many other concepts [8]
– as a result neighbouring concepts often play an important role in data analy-
sis and communication. For example, it is inevitable that there would be some
sort of link between “Chinese vases” and “vases with floral patterns” – these
are superconcepts of “Chinese vases with floral patterns”, so called because they
represent ‘broader’ concepts with a greater set of objects. Dually, concepts such
as “Chinese vases with floral patterns from the Qing dynasty” are subconcepts –
they provide a more narrow, focused view of the collection. These superconcept-
subconcept relationships are one of the core mechanisms in which we use to
provide associative links between clusters of objects and as such, it drives our
framework for browsing digitised collections.

Over 10 years of research in applied FCA has been dedicated towards new ap-
proaches of knowledge discovery within collections. Projects such as ImageSleuth
and ImageSleuth2 [9] are precursors to the design of the Virtual Museum of the
Pacific [10] in which the current framework is derived from. This research as-
sesses the applicability of the browsing framework towards a large data-set of
15,000 objects from the Brooklyn Museum’s collections, using an automated

1 http://www.europeana.eu/portal/
2 http://www.digitalnz.org/
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term extraction approach to derive the required key terms for analysis. It refines
and assesses the applicability of the content-based retrieval component of the
framework, and its contribution lies in its applicability to a large, real world
data-sets.

The structure of this paper is as follows: Section 2 provides a brief introduc-
tion of Formal Concept Analysis as applied in our case study, and its significance
as a tool for linking groups of objects. In Section 3, we describe how we extract
key terms from the Brooklyn Museum’s API in order to provide a suitable data
structure for analysis. In Section 4, we describe results of our application of For-
mal Concept Analysis to those terms, highlighting issues with respect to scal-
ability and complexity along with the results of the description of a prototype
collection browser. The paper concludes with a discussion on useful applications
and extensions of our work.

2 Formal Concept Analysis

Formal Concept Analysis (FCA) [7] is a core feature of our framework that is
used to derive relationships among objects. Central to the theory of FCA is the
notion of the formal concept, and its resulting algebraic structure, the concept
lattice. To clarify the theory of FCA, we will use a Pacific collection of objects
as an example.

Fig. 1. A concept lattice for a small collection of Pacific objects. Labels above the
nodes denote attributes (or tags) and labels below the nodes denote registration IDs
from the Museum’s content management system
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A formal concept (A,B) represents a unit of thought, where A is a set of
object identifiers and B is a set of attributes, or ‘tags’, that describe the objects.
For example, the concept “Fijian fans” can be represented by (A,B) where
A = {e002509, e090525} and B = {body accessory, fan,melanesia,fiji}. Formal
concepts can be ordered and arranged in a specialisation hierarchy. A concept
(A,B) is a sub-concept of concept (C,D) if A ⊆ C (or equivalently, B ⊇ D). Us-
ing this definition, more specific concepts have fewer objects and more attributes.
For example: (A,B) < (C,D) where:

(A,B) = {{e002509, e090525}, {body accessory, fan,melanesia,fiji}}
(C,D) = {{e090525, e002509, e058551-004}, {body accessory, melanesia, fiji}}
The set of all formal concepts, together with the specialisation relation, forms

the concept lattice. The concept lattice is an algebraic structure that shows hi-
erarchies and relations between formal concepts (Fig. 1). It is derived from the
formal context, which is a list of objects and their tags, represented as a cross-
table (Table 1) and formally denoted as a triple K := (G, M, I) where G is a set
of formal objects, M is a set of attributes and I is an incidence relation between
the objects and the attributes.

Table 1. The formal context, or cross table, used to generate the concept lattice in
Fig. 1. Note that the core data structure can be expressed as a series of objects and
tags.
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e002509 × × × ×
e090525 × × × ×
e058551-004 × × × ×
e091567 × × × ×
e091570 × × × ×
e002415 × × × ×
e002416 × × × ×
e058169 × × × ×
e058169 × × × ×
e011543 × × × ×

In Fig. 1, nodes represent formal concepts. Labels above the nodes repre-
sent attributes, (or tags) that describe the object, and labels below the nodes
represent the database identifiers of those objects. The set of attributes for a
particular formal concept is inferred by gathering all of the attribute labels as
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one would traverse upwards on the line diagram, starting from the node repre-
sented by the formal concept and ending at the top node. For example, based
on the interpretation on this line diagram, one can infer that objects ‘e002509’
and ‘e090525’ are similar to objects ‘e091567’ and ‘e091570’, in that they share
common attributes ‘fiji’, ‘melanesia’ and ‘body accessories’ and that they are
close to one another. This observation, in part, drives the foundation of the sim-
ilarity and distance metrics that we use to provide an order ranked list of similar
formal concepts for a given object [11].

The similarity metric is a measure based on the number of common objects
and the number of common attributes (tags) of two given formal concepts (A,B)
and (C,D):

similarity((A,B), (C,D)) :=
1
2

( |A ∩ C|
|A ∪ C| +

|B ∩ D|
|B ∪ D|

)
.

The distance metric is a measure based on the overlap of the objects and
attributes of two concepts, normalised with respect to the size of the formal
context, where G is the total set of objects and M is the total set of attributes.
For two concepts (A,B) and (C,D), the distance metric is as follows:

distance((A,B), (C,D)) :=
1
2

( |A \ C| + |C \ A|
|G| +

|B \ D| + |D \ B|
|M |

)
.

When combined, these two metrics can be used to provide a list of similar for-
mal concepts to a given object, ordered from ‘most similar’ to ‘least similar.’ As
we are comparing formal concepts, a similarity query can derive both matching
and nearby objects (e.g. “An American sculpture that depicts youth”) or clus-
ters of objects (e.g. “6 Contemporary sculptures that are made with bronze”).
Section 4 of this paper describes how we use these similarity metrics to provide
an order ranked list of objects and object clusters from the Brooklyn Museum’s
collections. However, in order to do so, we need to build the formal context by
extracting key terms from the objects.

3 Term Extraction: Building the Formal Context

Term extraction algorithms, such as Yahoo’s Term Extraction Web Service3,
are commonly employed to assign keywords to documents based on their con-
tent. Our term extraction method is built based on the work of Klavans et al.
[3] who discuss the application of computational linguistics to museum collec-
tions along with current state-of-the-art algorithms developed by Medelyan [12],
Frank et al. [13] and Witten et al. [14]. We employ external lexical resources,
such as WordNet [15] and the Getty’s Art and Architecture Thesaurus4 to pro-
vide semantic background knowledge for the term extraction process. Like many
3 http://developer.yahoo.com/search/content/V1/termExtraction.html
4 http://www.getty.edu/research/tools/vocabularies/aat/about.html
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natural language processing applications, we employ a pipeline architecture for
term extraction, shown in Fig. 2.

We source a collection of 15,000 objects using the Brooklyn Museum’s API.
These objects are an amalgation of 12 collections from the museum. The com-
pleteness of the object records vary considerably – some objects have full de-
scriptions and interpretive labels to a depth and standard typically found within
exhibition catalogues and are often procured for exactly that purpose. These
descriptions often provide the cultural context of the object, how it was used,
where it came from and its significance. Given the time and cost associated with
their research, objects of these descriptions would naturally only occupy a small
portion of the collection. Therefore, 1000 objects were selected as objects having
exhibition quality metadata. Likewise, the entire collection of 15,000 objects were
documented, in the very least, with notes and details of its medium, title, cul-
ture and classification – denoted as basic metadata. As the amount of metadata
present within an object determines the kinds (and types) of terms that could be
extracted from them, we create two instances of our framework to accommodate
these two classes.

Fig. 2. Overview of the term extraction process used to generate formal contexts,
shown anti-clockwise from the top-left
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To perform the term extraction, we use a program called KEA++. KEA++
has proven to be a high performance extraction program [12] that combines
keyphrase extraction: identifying features and prominent keyphrases from a doc-
ument and keyphrase assignment: where terms are selected from a controlled
vocabulary using a trained model. We employ the Getty’s Art and Architecture
Thesaurus (AAT) as the controlled vocabulary. The AAT contains over 34,800
unique concepts under 33 hierarchies for describing object categories, materials,
activities and functions, styles and periods and other abstract phenomena asso-
ciated with material culture and artworks. It can be used as a single ontology
for unifying disparate collections and digital archives. Where appropriate, we use
specific hierarchies to perform term extraction on certain types of data fields.
For example, the object’s ‘medium’ data field (shown in Fig. 2) would employ
only a sub-section of the thesaurus, mainly the ‘physical attributes’ and ‘mate-
rials’ hierarchies. This is to reduce the likelihood of a document being assigned
an incorrect term due to overstemming (e.g. ‘painting (visual works)’ was often
incorrectly assigned instead of ‘paint (medium)’). For basic metadata, each data
field (‘medium’, ‘title’, ‘culture’ etc.) was provided with a set of 60 training doc-
uments. For the exhibition quality metadata fields, 60 training documents where
used to generate a model that produced 180 documents, which were then refined
to produce the final model.

For each object record, KEA++ generates a set of candidate terms. However,
many of these terms are ambiguous – over 16% of terms extracted from the
collections referred to more than one sense within the AAT. For example, the
term ‘gold’ refers to two senses of the word, referring to both the material and
the color property of an object. As described by Palmer et al. [16], the common
linguistic problem of word-sense disambiguation is a particularly challenging one.
To solve this problem, we adapt a method proposed by Klavans et al. [3] that
uses an external algorithm called SenseRelate::AllWords [17]. This algorithm is a
Perl module that identifies the correct WordNet sense of each word in a sentence,
using the surrounding text as its context. This AAT sense is then selected by
performing a word overlap of the definitions of the AAT record and the WordNet
sense – the AAT sense with the highest match is assigned to that word.

Once the terms are extracted and disambiguated, we then use them to con-
struct the formal context. As hierarchical term relationships are naturally em-
bodied within FCA, we exploit the broader-narrow relationships within the AAT
to enrich the formal context with parent tags so that for example, ‘streetscapes’
→ ‘cultural landscapes’ → ‘landscapes’. These hierarchical relations comple-
ment the similarity and distance metrics described in Section 2 as these metrics
favour objects that share attributes with common parents so that for example,
‘streetscapes’ is notionally similar to ‘suburban landscapes’.

The final step is to prune the formal context in order to reduce its com-
plexity. Although FCA is theoretically robust, applications that employ it for
data analysis and communication commonly apply a number of techniques to
remove extraneous data points while retaining meaningful representation of its
information space [18]. It is also necessary to employ these complexity reduction
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measures given the high computational cost of FCA-based operations with re-
spect to the size of the formal context [19]. While more elaborate approaches for
reducing complexity in fully formed concept lattices exist [20] [18], our approach
needs to rely on more rudimentary measures of complexity reduction as each
similarity / distance operation traverses only part of the data-set as required.
We use an approach called context reduction – it removes rarely occurring tags,
which, despite their ‘insignificance’, reduces the size and complexity of the for-
mal context considerably. This makes sense as the “aboutness” of the objects
are dictated by the attributes that they have in common, rather than the at-
tributes that they don’t have in common. We remove tags that do not belong
to a threshold percentage of objects, with the threshold value set by default at
0.05%.

4 Results and Scalability of our Approach

A key design requirement of our framework is to induce an explorative brows-
ing experience by computing the similarities and differences between objects,
deriving natural pathways within collections, and highlighting key concepts –
showing collections within collections. Furthermore, its implementation needs to
be scalable with a performance requirement to suit real time interactive browsing
over the Web. To show the results of our work, we have developed a light-weight
prototype collection browser5, shown in Fig. 3. The browser shows a detailed
catalogue description, with links to conceptually similar objects and object clus-
ters.

In the example shown in Fig. 3, the extracted terms of the artwork:
{photographs, rituals,women,power,fishing} are used to compute the following
similar formal concepts, order ranked from most similar to least similar:

– { women, photographs, power }
2 objects (Similarity: 0.55, Distance: 0.99)

– { women, fishing }
2 objects (Similarity: 0.45, Distance: 0.99)

– { women, power }
5 objects (Similarity: 0.30, Distance: 0.99)

– { photographs, power }
6 objects (Similarity: 0.28, Distance: 0.99)

– { women, photographs }
7 objects (Similarity: 0.27, Distance: 0.99)

5 Two prototype collection browsers are publicly available for the two collections:
1,000 objects with exhibition quality metadata:
http://epoc2.cs.uow.edu.au/brooklyn r 1000 ws/similarity/

15,000 objects with basic metadata:
http://epoc2.cs.uow.edu.au/brooklyn m 15000 ws/similarity/
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Fig. 3. Screenshot of the prototype collection browser with links to conceptually sim-
ilar objects and object clusters
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From these results, the algorithm derives all objects as a unique set6, and
clusters them according to their member concept. Each similar formal concept
consists of the object we are comparing plus member objects of that same formal
concept, i.e., the first two results indicate individual objects tagged
{ women, photographs, power } and { women, fishing }, respectively. These ob-
jects are presented as ‘related objects’ as shown in Fig. 3. Other formal concepts
are shown as ‘object clusters’ with a series of thumbnails indicating other focal
points of interest within the collection.

We employ natural language labels to describe the objects and object clus-
ters. These labels are generated from the tags from the formal concepts’ tags,
while their semantics are inferred from their hierarchical membership within the
AAT. For example, for a given set of tags { women, photographs, power }, one
may assume that they describe photographic works that depict women and are
also associated with power, given that ‘women’ exists in the ‘Agents’ hierarchy;
‘photographs’ exists in the ‘Visual Works’ hierarchy and that ‘power’ exists in
the ‘Associated Concepts’ hierarchy. Within each hierarchy, its member tags in-
dicate what aspect of an artwork they describe. However, a problem with this
approach lies in the inherent ambiguity of whether a term is object-oriented (de-
scribing the object itself, its properties) or subject-oriented (describing what the
work is about or what it depicts) [21] [22]. In some cases, terms such as ‘water’
could refer to both a work that is made with water or a work that depicts water
features – an apparent shortcoming of many tag based systems. Currently, the
AAT only recognises water in the former sense, and further curation of these
sorts of tags may be necessary to prevent these semantic ambiguities.

Performance and scalability are important factors for real world implemen-
tation. As theorized by Carpineto and Romano [19], the computational cost of
FCA-based operations increases as the size of the formal context gets larger.
The results of our performance testing have indicated that dynamically perfom-
ing these computations is unsuitable for a collection of more than 200 objects,
with average query times approximating 60 seconds on the full collection of
15,000 objects. To solve this problem, we have adopted a caching method where
similar formal concepts are pre-computed and cached with each object record.
The system updates these caches as new objects are added, or their tags change.

5 Conclusion and Future Work

We have presented a term extraction and browsing framework as applied to the
Brooklyn Museum’s collection, using objects and tags as a core data structure.
We have also developed a prototype browsing application to demonstrate our
framework. It is scalable to a collection of 15,000 objects and it can dynamically
generate links to neighbouring objects and object clusters, expressed in natural
language. With a focus on concepts rather than objects, it follows a contemporary

6 Similar formal concepts have a high overlap of common objects. Based on user feed-
back, we’ve adopted a design decision to not show duplicate objects within the UI.
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data-driven approach of collections browsing, and it can be suitably adopted for
experiments and applications in collections visualisation.

Given that we use a common vocabulary for tagging objects, this work could
be extended to cover multiple collections from different institutions with an as-
sessment on if or how our framework could scale, along with how it can adapt
to the varying kinds of metadata each collection presents. Tags present a simple
and versatile data structure that can be provided or derived from free text. Se-
mantic tagging [23] introduces an interesting possibility of solving the previously
mentioned semantic ambiguity problem described in Section 4.

Social tagging in museum collections is gaining traction and has proven to
add worthwhile community knowledge to museum collections [4] – for example,
the Brooklyn Museum provides programs such as “Tag You’re It!”7, and these
social tags are commonly used on their website to assist searching and browsing.
As an extension of our work, leveraging social meta-data not only closes gaps
in museum documentation and opens up interpretation to visitors, but it can
also induce dynamic relationships among objects, allowing for a self-evolving and
community-driven approach to the display and interpretation of collections.
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