
Anomaly Detection in DiaFlux Models

Reinhard Hatko1 and Gritje Meinke2 and Joachim Baumeister3 and Stefan
Mersmann2 and Frank Puppe1

1 University of Würzburg, Institute of Computer Science, Dept. of Artificial
Intelligence and Applied Informatics

97074 Würzburg, Germany
{hatko, puppe}@informatik.uni-wuerzburg.de

2 Dräger Medical GmbH, 23558 Lübeck, Germany
{gritje.meinke, stefan.mersmann}@draeger.com

3 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
joachim.baumeister@denkbares.com

Abstract. In recent years, the use of graphical knowledge representa-
tions more and more proved to be suitable for building diagnostic and
therapeutic knowledge systems. When building such systems, the quality
assurance of the knowledge base is an integral part of the development
process. In this paper, we present the flowchart-based language DiaFlux
and we describe a collection of anomalies, that can occur when using the
language for knowledge base development. The naming of many shown
anomalies was motivated by the experiences made in real-world projects.

1 Introduction

In recent years, intelligent systems have been established in a variety of domains.
When building such systems the developers no longer depend on pure rule-based
representations, but more and more use graphical approaches that often allow
for a more intuitive knowledge elicitation process. In the medical domain, for
instance, workflow-oriented representations emerged in the last years to build
systems based on existing guidelines and standard operating procedures (SOPs),
see for instance [1].

In an industrial setting, the development of such knowledge bases is integrated in
a predefined knowledge engineering process, that shows similar phases to general
software engineering processes, see for instance [2,3]. All these process models
also propose a quality assurance phase, where the developed artifact is tested by
validation and verification methods. Here, usually the expected system behav-
ior is tested with regression-based methods, such as empirical tests [4], but also
checks at the component level are performed. The most commonly used veri-
fication method for component-based tests is the detection of (already known)
anomalies. In Software Engineering such anomalies are related to object-oriented
metrics [5] and bad smells [6]. Some typical examples for general anomalies
are cyclic dependencies between classes and packages, infinite recursion, and



long/unmaintainable methods. The automated detection by a static code analy-
sis and the (manual) elimination of such anomalies can prevent serious malfunc-
tions of the built application.
It is easy to see, that the ideas of anomalies in general software code can be
transfered to the artifacts produced in a knowledge engineering process. Here, the
knowledge base is investigated in order to find deficient parts of the knowledge.
In the past, verification methods for detecting anomalies in different knowledge
representations were introduced, for instance see [7,8].
Approaches for the verification of workflow models are described, e.g., in [9].
In addition, some of the anomalies we identified represent a mixture of data-
and control-flow anomalies and also involve a Truth Maintenance System. In
this paper, we introduce the workflow-based knowledge representation DiaFlux
for building diagnostic and therapeutic knowledge systems. The language is pre-
sented in Section 2 and Section 3 describes possible anomalies. We report a small
case study in Section 4 and conclude the paper with a discussion in Section 5.

2 Graphical Knowledge Models with DiaFlux

This section first describes the application scenario. Then, we introduce the
representation language DiaFlux.

2.1 Application Scenario

DiaFlux is a graphical guideline language intended to be used in mixed-initiative
devices, that continuously monitor, diagnose, and treat a patient in the setting of
an Intensive Care Unit (ICU). The clinical user interacts with such a semi-closed
loop system during the care process. Actions on the patient can be initiated by
both parties, the clinician and the device. Continuous reasoning is performed, as
some data is continuously available as a result of the monitoring task. An exe-
cution environment for automated clinical care in ICUs and the implementation
of a guideline for weaning from mechanical ventilation are presented in [10].

2.2 Language Description

Two kinds of knowledge have to be effectively combined for the specification
of a clinical protocol, namely declarative and procedural knowledge [11]. The
declarative part encompasses the facts and their relationships. The procedural
knowledge reflects how to perform a task, i.e., the correct sequence of actions.
The declarative knowledge particularly consists of the terminology, i.e., findings,
solutions, and sometimes also therapies and their interrelation. The procedural
knowledge is responsible for the decision which action to perform in a given
situation, e.g., asking a question or carrying out a test. The appropriate sequence
of actions is mandatory for efficient diagnosis and treatment, as each action has
a cost (monetary or associated risk) and a benefit (for establishing or excluding
currently considered solutions) associated with it. For the representation of the



procedural aspects, guideline languages employ different kinds of Task Network
Models [1]. They constrain the ordering of decisions and actions in a guideline
plan. Flowcharts are a common formalism to explicitly express this control flow.
In DiaFlux models, a domain-specific ontology represents the declarative knowl-
edge. It contains the definition of findings and solutions. This application ontol-
ogy extends the task ontology of diagnostic problem-solving, as described in [12].
Due to its strong formalization, it provides the semantics necessary for the exe-
cution of the guidelines. The procedural knowledge is represented by flowcharts,
that consist of nodes and edges. Different types of actions are represented by
nodes. Connecting edges create possible sequences of actions. To constrain these
sequences, an edge can be guarded by a condition that evaluates the state of the
current session and thus guides the course of the care process.

Fig. 1. The main model and starting point of a protocol for monitoring and treating
overweight. The state of the current testing session is highlighted in green and yellow
colors (black and grey in this figure, respectively).

In the following, we give a simple example of a protocol for the diagnosis and
treatment of overweight, modeled in DiaFlux.
Figures 1 and 2 show parts of a protocol for the diagnosis and treatment of
overweight modeled in DiaFlux. When a consultation session starts, the main
module, as depicted in Figure 1, is activated. The execution begins at the start
node (1), labeled “Begin consultation”. It points to the composed node “Anam-
nesis” (2). When this node is reached, the according submodule (cf. Figure 2)



is called and its start node labeled “Start” is activated. The execution of the
main module awaits the completion of the called submodule. Reaching the test
node “Height” (3) data is acquired from the user. After entering the value for
body height, the execution can continue to the next test node “Weight”. As the
weight is supposed to change from one session to the next, this test node acquires
new data each time it is activated. Therefore, the specific testing action used is
“always ask” instead of “ask”. The first one triggers data acquisition even for
inputs that are already known in order to update their value. After the value for
“Weight” has been entered, the abstraction node (4) calculates the body mass
index (BMI) from the acquired data and assigns the value to the input “BMI”.
An appropriate next action is chosen depending on the value of the BMI. For a
value contained in the range of [25; 30[ the execution progresses to the solution
node (5) which establishes the solution “Overweight”. The following exit node
(6) labeled “Weight problem” terminates the execution of the module. The con-
trol flow then returns to the superordinate module. For other values of “BMI”
the appropriate solution is established and the according exit node is returned
as result of the “Anamnesis” protocol.

Fig. 2. The anamnesis module for acquiring data and establishing the current diagnosis.

Upon completion of the “Anamnesis” module, the appropriate successor node is
chosen based on the returned result. In case of “Weight ok” the execution of the
protocol ends by reaching the exit node “Finished”, as there is no superordinate
module to return to. Otherwise, a proper treatment is chosen based on the history
of values of the BMI. The decision node (7) tests the gradient of BMI values.
For a declining BMI (i.e., the patient is loosing weight), the previously selected
therapy is continued. Otherwise, another therapy is chosen within the module



“Select Therapy”1. Both paths reach the snapshot node (8). On activation of
this node, the execution state of the protocol is saved and truth maintenance
will not retract any conclusion beyond this point. Furthermore all active nodes
on the incoming path are deactivated, to allow their repeated execution. Next,
the execution is suspended by the wait node (9), until the given time of 7 days
has lapsed. Afterwards, a second anamnesis is conducted and the current BMI
is calculated based on the newly acquired body weight. If it has decreased, so
will the BMI and the current therapy is continued. Otherwise, a new therapy is
selected and applied until a normal body weight is obtained.

A more detailed description of the DiaFlux language and the execution engine
can be found in [13].

3 Anomaly Detection

There exists a large body of research concerning the detection of anomalies by
verification methods, for instance for rule bases [14], for ontologies [15], for mixed
verification of rules and ontologies [8]. In general, we distinguish the following
types of anomalies for knowledge bases:

1. Redundancy defining duplicate or subsuming elements of the knowledge
base

2. Inconsistency caused by contradicting elements of the knowledge base

3. Missing knowledge are absent parts of the knowledge base, that can pre-
vent the proper execution of the knowledge

4. Deficiency comprising parts of the knowledge base, that worsen the design
of the knowledge

In the following, we discuss these types in more detail and we introduce par-
ticular anomalies, that explain redundant, inconsistent, deficient, and missing
knowledge especially in DiaFlux models.

It is important to notice, that the following presentation of anomalies is not an
exhaustive set but more or less a collection of problems, that occurred during
the development of industrial knowledge bases.

3.1 Redundancy

Redundant knowledge may be removed from the knowledge base without change
in the semantics of the derivation behavior. Each found anomaly, however, needs
to be considered carefully by a human knowledge engineer, since some kinds of
redundancy can be used to increase the robustness of the knowledge base.

1 The gradient of a single value is 0 and a therapy is chosen for the first time.



Redundant Calculation Abstraction nodes can be used to assign a value to
a finding. That value can either be a constant number or can be calculated by
a formula, aggregating the values of the others findings. The assignment of a
constant value is redundant when the same value is assigned more than once on
a given path. The assignment of a value derived from a formula is redundant, if
the second calculation will yield the same result. This is the case if the second
abstraction uses the same formula and if there is no path between the first and
the second calculation that leads to the acquisition of new values for the findings
used in the calculation.

Redundant Test Depending on the frequency the values of a finding may
change, two different kinds of actions can be used for test nodes, “ask” and
“always ask”, respectively. The first one triggers the acquisition of data only if
no value has been assigned to the finding so far. The latter demands new data
each time the node is activated in the flowchart. If two test nodes are located on
a connecting path and trigger an “ask” action on the same finding, the second
test action is ignored and therefore redundant. In case the second node has more
than one outgoing edge with different guards, the developer should consider to
convert the node to a decision node.

3.2 Inconsistency

Inconsistent knowledge often yields unexpected and contradictory inferences dur-
ing execution. Detected inconsistencies should be investigated thoroughly by the
knowledge engineer and be considered for elimination in most cases.

Inconsistent Calculation As described in the anomaly Redundant Calcula-
tion, abstraction nodes can be used to assign a value to a finding. The assignment
contains either a constant value or a formula that is evaluated. Such a calcu-
lation is inconsistent, if different values are assigned to one finding on a single,
connected path of nodes. In the worst case, the assignment of the second value
may force the truth maintenance system to illegally retract the followed path
until the first assignment, and thus creates a truth maintenance cycle.

Inconsistent Test Action Two different types of testing actions are provided
in DiaFlux for collecting data. For findings containing high frequency data (e.g.
“blood pressure” in the medical domain), the testing action “always ask” is
appropriate to be used; the action “ask” is appropriate for the single acquisition
of data (e.g. when asking the age or sex of a patient). Using both types of testing
actions for the same finding most likely hints to a design flaw. If the finding
contains high frequency data, the value of the finding will not be updated upon
reaching the node, that performs the “ask” action. Therefore an old value will
be used, instead of acquiring new data. In the case of low frequency data, the
value for the finding is acquired more often than necessary, if the action “always
ask” is used.



3.3 Missing Knowledge

Some anomalies may point to unfinished areas of the knowledge base, for instance
elements of the knowledge that are never used in problem-solving sessions.

Uninitialized Value Values of findings are calculated in the DiaFlux represen-
tation by using abstraction nodes. To conduct such a calculation, proper values
have to be available for all findings that are included in the calculation. If at
least one necessary finding is not acquired (or calculated itself) on at least one
path leading to the abstraction node, then the calculation will not succeed and
the execution of the path may stop at the abstraction node.

Missing Start Node A flowchart in DiaFlux can have several distinct entry
points. Each one must begin with a start node. A flowchart not defining at least
one start node, cannot be activated during execution and thus is isolated from
the rest of the knowledge base.

Unconnected Node Every flowchart defines a process that begins at a start
node and ends at an exit node. The activation of the nodes in between depends
on the connecting edges and their respective guards. Any node (except a start
node) that is missing an incoming edge cannot be activated during the problem-
solving process. All successors of such a node are also unreachable unless they
have an alternative incoming edge, which is itself connected to at least one start
node.

Open Path End Every possible path in a flowchart has to be terminated
by an exit node. Although, an open path end does not influence the execution
of this particular flowchart, it will prevent the continuation of a superordinate
flowchart. Thus, the flowchart is not returning to the super-flowchart, that called
it. After reaching a composed node during execution, the calling flowchart awaits
the termination of the called module by an exit node. If this does not exists, then
the execution of the calling flowchart will not continue.

No Startup Flow Defined The execution of the knowledge base begins in
a distinct flowchart, which has to be marked as autostart by the knowledge
engineer. If no flowchart is marked accordingly, then none is activated at the
start of a problem-solving session. Therefore, the execution will end immediately.

Unused Flowchart For improving the structure of the knowledge base, flowcharts
can be nested. Composed nodes allow the execution of another flowchart module.
A flowchart, that is neither marked as autostart nor is called by any composed
node will never be executed during runtime.



Incompleteness of Edge Guards The definition of edge guards allows to
select one of multiple outgoing paths at a node, depending on the current value
of a finding. As the execution will continue only along an edge whose guard
is evaluated to true, the entirety of guards defined at one node has to cover
the complete range of possible values of the examined finding. Otherwise, the
execution of the flowchart will stop at this node, if the current value does not
match with an edge guard.

3.4 Deficiency

Deficiencies point to subtle parts in the knowledge base, that may benefit from
a design improvement. The existence of such an anomaly, however, often does
not affect the reasoning behavior in a bad manner.

Dead Path The possible paths through a flowchart are given by the edges
between nodes. Every edge can be guarded by a condition that evaluates the
values of findings entered into the system. An edge is activated, if its starting
point is active and its condition evaluates to true. If a finding is used multiple
times on a single path, then the guards at later edges have to be consistent to
the possible values at that point. Otherwise such edges cannot be activated for
certain values. An example is given in Figure 3.

Impossible Path When new findings are entered into the system, a truth
maintenance system checks the state of all flowcharts. If the value of a finding
has changed, all edges and nodes change their activation state according to the
new values. In case an abstraction node calculates a value for a finding, that is
used to guard an edge in the active path, the calculated value must not contradict
that guard. Otherwise, the truth maintenance system will collapse the path to
the abstraction node undoing its calculation. Therefore, the path starting at the
abstraction node is impossible to continue.

Fig. 3. A minimal example of a Dead Path. After setting the question “Gender” to
“Male”, the following decision node branches depending on its value. As it can only
be “Male”, the path leading to the exit node “Woman” can never be taken, and is
therefore dead.



Disjointness of Edge Guards The guards on the outgoing edges of every node
must be disjoint with respect to the possible outcomes of a node. If the domains
of guards overlap, all belonging edges will be activated for according values.
This easily happens, when defining intervals at a decision node that examine a
numerical finding.

In this section, we introduced a selection of anomalies that can occur in DiaFlux
knowledge bases. In the next section, we describe an implementation of a part
of the shown anomalies and we report on some experiences.

4 Case Study

The DiaFlux development environment is integrated into the Semantic Wiki
KnowWE [12]. KnowWE is a wiki aimed at building intelligent systems, offering
methods to capture and execute strong problem-solving knowledge. A Contin-
uous Integration (CI) tool supports the modeler during the development of the
knowledge base by executing a configurable set of tests after each edit. The re-
sults of the recent build of the knowledge base are indicated to the user in an
unintrusive manner. A detailed report is available on demand. The frequently
running test procedures help to find modeling errors at an early stage.
We recently integrated detection algorithms for selected anomalies as described
in Section 3 into the CI tool. The system was used in a couple of projects and
received very positive feedback, from unexperienced as well as advanced users.
A common mistake among modelers, that are new to the DiaFlux language, is to
miss marking the autostarting flowchart. As a result the knowledge base seems
to simply do nothing. In more complex knowledge bases, that are hierarchically
structured and contain different possible paths of execution, the detection of
anomalies like Uninitialized Value or Dead Path is very helpful as those are not
only tested within each flowchart module but also across their boundaries along
paths through composed nodes.

5 Conclusions

The development of knowledge-based software systems is similar to general soft-
ware engineering approaches. We motivated that today’s knowledge bases are
often built using workflow-based languages; this especially holds in the med-
ical domain, where existing guidelines and standard operating procedures are
transfered into computer-interpretable models. In this paper, we discussed the
problem of quality assurance of such models and we described the detection of
anomalies in the models as an important aspect of quality assurance. We de-
scribed the practical guideline language DiaFlux by an example protocol for
overweight treatment. Furthermore, we introduced a selection of anomalies for
this language. The selection of these anomalies is not exhaustive, but was moti-
vated by our experiences in the development of industrial knowledge bases.



In the future, we plan to define a more exhaustive set of anomalies, including
temporal ones, and relate the particular artifacts to anomalies already known in
classical verification research. Often, a found defect is the start of a refactoring
of the knowledge base. We are currently working also on refactoring methods
for DiaFlux models, that are used to eliminate found deficiencies but also other
kinds of anomalies.

References

1. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Miksch, S.,
Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M., et al.: Comparing
computer-interpretable guideline models: A case-study approach. JAMIA 10
(2003) 2003

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,
de Velde, W.V., Wielinga, B.: Knowledge Engineering and Management - The
CommonKADS Methodology. 2 edn. MIT Press (2001)

3. Baumeister, J., Seipel, D., Puppe, F.: Agile development of rule systems. In Giurca,
Gasevic, Taveter, eds.: Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches. IGI Publishing (2009)

4. Baumeister, J.: Advanced empirical testing. Knowledge-Based Systems 24(1)
(2011) 83–94

5. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Software
Maintenance and Reengineering, 2001. 5th European Conference on. (2001) 30–38

6. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley
(1999)

7. Ayel, M., Laurent, J.P.: Validation, Verification and Test of Knowledge-Based
Systems. Wiley (1991)

8. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Semantics:
Science, Services and Agents on the World Wide Web 8(1) (2010) 55–68

9. Aalst, W.M.P.v.d.: Workflow verification: Finding control-flow errors using petri-
net-based techniques. In: Business Process Management, Models, Techniques, and
Empirical Studies, London, UK, Springer-Verlag (2000) 161–183

10. Mersmann, S., Dojat, M.: SmartCaretm - automated clinical guidelines in critical
care. In: ECAI’04/PAIS’04: Proceedings of the 16th European Conference on
Artificial Intelligence, including Prestigious Applications of Intelligent Systems,
Valencia, Spain, IOS Press (2004) 745–749

11. de Clercq, P., Kaiser, K., Hasman, A.: Computer-interpretable guideline for-
malisms. In ten Teije, A., Miksch, S., Lucas, P., eds.: Computer-based Medical
Guidelines and Protocols: A Primer and Current Trends. IOS Press, Amsterdam,
The Netherlands (2008) 22–43

12. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: A semantic wiki for knowl-
edge engineering. Applied Intelligence (2011)

13. Hatko, R., Baumeister, J., Belli, V., Puppe, F.: Diaflux: A graphical language for
computer-interpretable guidelines. In: KR4HC’11: Proceedings of the 3th Interna-
tional Workshop on Knowledge Representation for Health Care. (2011)

14. Preece, A., Shinghal, R.: Foundation and application of knowledge base verifica-
tion. International Journal of Intelligent Systems 9 (1994) 683–702

15. Gómez-Pérez, A.: Towards a framework to verify knowledge sharing technology.
Expert Systems with Applications 11(4) (1996)


