
Model-Driven Rich User Interface Generation
from Ontologies for Data-Intensive Web

Applications

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Agrifood Campus of
International Excellence, ceiA3. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communications Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. Building data-intensive Web applications is a complex task
widely explored during the last decade. Many approaches have been pro-
posed, mainly based on conceptual models as well as on domain on-
tologies and knowledge models. This work describes a method for rich
user interface development for data-intensive Web applications based
on OWL2 ontologies, which applies model-driven engineering to derive a
user interface from the domain ontology, incorporating modern rich com-
ponents for Web-based interfaces. A tool supporting the ideas presented
this paper has been developed.

Keywords: user interfaces, model-driven engineering, ontologies

1 Introduction

Data-intensive Web applications are Web-based information systems for ac-
cessing and maintaining large amounts of structured data, typically stored in
database management systems [4]. Its development involves the definition of
data models representing the information structure of the problem domain, as
well as the design of user interfaces (UIs) to enable end-users to properly in-
teract with the system when managing the collection of data, e.g. UIs for data
presentation, data acquisition and data querying.

In general, the usage of data models for domain specification suffers of poor
expressivity. To address this problem, ontologies are typically applied to domain
modeling in which a conceptualization of a particular domain is given. Ontology
formalisms such as OWL2 (Web Ontology Language 2) [22] are the backbone
of Semantic Web and are growing in importance in software development [9].
Ontologies can describe the relevant concepts, relations and properties of an
application domain adding assertions and constraints, increasing the amount of
knowledge that can be represented by data models.

In this work we describe a model-driven method for deriving rich Web-based
UIs for data management from domain models based on domain ontologies.

We apply Model-Driven Architecture (MDA) [15], or using the general concept,
Model-Driven Engineering (MDE) [20], as the software development approach
in which models are used as first class entities and transformations between
models and from models to code can be defined and executed. MDA/MDE is
currently being applied in many domains, such Web Engineering [14], Ontology
Engineering [8], and UI development [11].

Recent technologies for improving end-user experience in Web 2.0 include
the so called Rich Internet Applications (RIAs) [7] which provide advanced and
more interactive UIs, similar to desktop applications, while minimizing network
traffic overhead and increasing user usability and efficiency [23]. In our approach,
the UI derived from OWL2 is based on frameworks of reusable components for
RIAs. To enrich the UI generation, a presentation model tightly coupled to the
domain ontology provides modeling support to customize presentation features
of UIs for data-intensive Web applications. For practical implementation, two
different Java-based frameworks for RIAs have been considered.

A tool supporting the method presented has been developed using MDE tools
provided by the Eclipse Modeling Project3, and it is supported by the TwoUse
Toolkit [17] for ontology creation and management.

The rest of this paper is organized as follows: Section 2 reviews related work.
Next, Section 3 introduces RIAs frameworks for Web-based UI implementation.
The presentation model and the proposed mapping from OWL2 to UI compo-
nents are detailed in Section 4. Finally, main conclusions and future work are
summarized.

2 Related work

There have been many earlier approaches on UI generation based on models and
MDE. We can distinguish between those from the field of Web Engineering and
those from the field of Human-Computer Interaction (HCI).

Web Engineering approaches the design and development of Web applications
based on conceptual models [3], focusing on content, navigation and presentation
models as the most relevant concerns in Web applications design [19]. Based on
these models, the full Web application can be developed applying a model-driven
approach, including the presentation layer composed of web pages, web forms,
links, and so on.

Web Engineering offer rather mature and established methodologies for tra-
ditional Web applications, and the UI layer has been explicitly addressed in most
approaches. But when we move to Semantic Web information systems, method-
ologies are still in a development phase [1]. Examples like SHDM [12], Hera [21]
and WebML+Sem [1] offer a wide support for ontology languages, basically RDF
(Resource Description Framework) and OWL, and focus on different semantic
web technologies such as semantic model description, advanced query support,
flexible integration, ontology reasoning, and more, but leaving UI aside. In this
paper we address that open issue.

3 http://www.eclipse.org/modeling/

In HCI field a number of model-driven approaches for UI development have
also arisen [18]. They are commonly based on models created with extensions of
UML (Unified Modeling Language) for UIs modeling [5], but can also use textual
formats based on XML (eXtensible Markup Language), as is widely explored in
[11].

Among these approaches, the PEGASUS method [13] presents an effort to
supply end-users with mechanisms for authoring Web-based applications using
ontologies to specify knowledge for building data models together with presenta-
tion models. Moreover, it enables the generation of a Web UI from the ontology in
basic HTML (HyperText Markup Language) and JSP (JavaServer Pages) code.
In our approach we also use ontologies as domain models and a presentation
model, but we focus on current rich Web UI generation using modern compo-
nents of RIA frameworks which are richer in functionality than basic HTML and
JSP.

In a recent work [6], the same authors provide a way of modeling UIs based
on semantic models of domain problem, deriving a Web application for display-
ing content. The method is based on document transformation through a set of
XSLT (Extensible Stylesheet Language Transformations) applied to XML files
to generate documents for the UI. The result can incorporate AJAX (Asyn-
chronous JavaScript And XML) components to have a better interactive result.
Our proposal has similarities with this approach in sense that we also focus UI
development with rich AJAX components, but has important differences with
respect to the model-driven approach applied since we use MDE transformation
languages and tools for defining the approach instead of XSLT transformations,
as well as we derive a UI not only for displaying content but also for content
acquisition and querying.

3 Frameworks for RIAs in JavaEE

Modern UI development requires the usage of extensive software libraries and
frameworks, and code becomes rather platform-specific [11]. In this work we focus
on Java Platform Enterprise Edition (JavaEE4) technology and the JavaServer
Faces framework (JSF) [10] as implementation platform. To fit once of the most
important characteristics of RIAs, a richer interaction is achieved adding AJAX
technology to provide improved user experience. Several rich UI frameworks for
JSF applications are available, some of them are well established such as Rich-
Faces5 (JBoss project), ICEfaces6 (ICEsoft project), MyFaces7 (Apache project),
ADF Faces8 (Oracle project) and Google Web Toolkit9 (Google project). In this

4 http://java.sun.com/javaee
5 http://www.jboss.org/richfaces
6 http://www.icefaces.org/
7 http://myfaces.apache.org/
8 http://www.oracle.com/technetwork/developer-tools/adf/
9 http://code.google.com/webtoolkit/

work, only RichFaces and ICEfaces have been considered, although the approach
can easily adapted to other frameworks.

JBoss RichFaces is an advanced JSF based framework that provides a com-
plete range of rich AJAX enabled UI components. RichFaces is made up of
two component tag libraries: a4j: represents core AJAX functionality, and rich:
represents self contained and advanced components such as calendars, datata-
bles, trees and more (see the RichFaces showcase10 for details). Current version,
RichFaces 4.0, can be used in any container compatible with JSF 2.0.

ICEsoft ICEfaces is an integrated AJAX application framework that enables
JavaEE application developers to easily create and deploy thin-client RIAs in
Java. ICEfaces 2 is the current version of the open-source framework based on
the JSF 2.0 standard. It offers a vast set of rich components included in the ice:
tag library, to create rich advanced UIs (see the ICEfaces showcase11 for details).

4 Model-driven rich user interface generation

4.1 Process overview

Our approach is based on the assumption that a UI can be induced from the
ontology classes, properties and assertions. Since OWL2 semantics is richer than
semantics of UI components, only a part of OWL2 can be represented in the UI
and supported by the proposed mapping.

Fig. 1 shows the model-driven schema proposed for deriving rich Web UI from
OWL2 ontologies. The process starts with the specification of an OWL2 ontology
of the problem domain. In a first step, a presentation model with default pre-
sentation values is derived from the ontology applying a model-to-model (M2M)
transformation. Developers can customize this presentation model to drive a
better UI generation. Later, a model-to-text (M2T) transformation produces
the final code.

The model-driven process proposed was implemented using MDE tools of
Eclipse Modeling Project, and it is supported by the TwoUse Toolkit12 for
OWL2 authoring and management. The TwoUse Toolkit is a free, open source
tool bridging the gap between Semantic Web and MDE, that supports OWL2
authoring based on the Ontology Definition Metamodel (ODM) [16]. In this en-
vironment, metamodels are defined with EMF13 (Eclipse Modeling Framework)
in ecore format. The ODM metamodel is provided by TwoUse whereas the Pre-
sentation metamodel has been designed by the authors of this work.

M2M transformation is designed with ATL14 (Atlas Transformation Lan-
guage), where as final code is generated by a M2T transformation implemented
in JET15 (Java Emitter Templates). As a result, the code for the rich Web UI

10 http://richfaces.org/showcase
11 http://component-showcase.icefaces.org
12 http://code.google.com/p/twouse/
13 http://www.eclipse.org/modeling/emf/
14 http://www.eclipse.org/m2m/atl/
15 http://www.eclipse.org/modeling/m2t/?project=jet

JSF pages
+ configuration files Code

Rich
user interface

Web

M2M
Transformation

M2T
Transformation

Presentation model

conforms to
Presentation metamodel

OWL2 ontology

conforms to
ODM metamodel

TwoUse Toolkit

Eclipse
Modeling

EMF

JET

Default
presentation
(css, fonts,...)

 +
 framework of

rich UI
components

Models
&

Metamodels

Fig. 1. MDE schema for rich Web user interface generation

is obtained as a set of JSF web pages based on the selected framework of rich
components, RichFaces or ICEfaces. Default configuration is injected to provide
presentation templates for pages, styles and css files.

4.2 The Presentation metamodel

To drive a powerful UI generation, the Presentation model captures features of
UI components used in data-intensive applications, for example, in what other
they are to appear, their visual appearance and layout, and more. Basically we
propose three main types of presentation elements in the UI for data-intensive
Web applications:

– a menu, including a hierarchy or tree with the class taxonomy
– a list page per ontology class, listing all instances of the class,
– a form page per class for viewing and editing instances of the class.

Fig. 2 shows the Presentation metamodel using a simplified UML class dia-
gram notation. It defines the primitives that can be used in the modeling lan-
guage, that is, in presentation models. Metaclasses in this metamodel are de-
signed to allow the extension of presentation models by adding new features or
modifying existing ones, enabling the process to evolve. For that purpose, a Class
is related to a MenuItem which stores the feature(s) for displaying the class in
the menu page, and to a TableList which stores the feature(s) for displaying
the class in the list page. Similarly, a Property is related to a FormField which
stores the features for displaying the property as a field in the form page, and to
a ListColumn which stores the features for displaying the property as a column
in the list page.

Tables 1 and 2 describe the main metaclasses and attributes that can be
specified in a presentation model. How they are used in the generation of UI
elements is explained in following section.

Fig. 2. Presentation metamodel

Table 1. Presentation metamodel: Class features

Metaclass Feature Type Used in
Page

Description Default
value

Class

name string all name of the class OWL2
subClasses Class[0..*] menu collection of subClasses OWL2

superClasses Class[0..*] menu collection of superClasses OWL2
properties Property[0..*] form, list collection of properties having

the class as domain
OWL2

menuFeatures MenuItem menu link to presentation features for
a class in the menu page

listFeatures TableList list link to presentation features for
a class in the list page

MenuItem showInMenuTree boolean menu true if the class is showed in the
menu (tree)

true

TableList tablePaginatorSize integer list rows per page in the list 10

4.3 Mapping OWL2 to user interface components

This section describes how the menu tree, list and form pages are derived.

Menu tree. Domain concepts are represented in OWL2 as named classes,
which can have subclasses, conforming a hierarchy of classes. To display such
a hierarchy a tree is commonly used. For that purpose, RichFaces provides a
rich:tree component which renders a tree control on the page. Similarly, ICEfaces
has the ice:tree component that displays hierarchical data as a tree of branches
and leaf nodes. Only classes with the presentation feature showInMenuTree true-
valued are shown in the tree.

Form page. For displaying and editing instances of a particular class, a
rich form with the properties of the class is generated. In OWL2 each prop-
erty has a domain and a range, and two types of properties are distinguished:
datatype properties, relations between instances of classes and primitive data

Table 2. Presentation metamodel: Property features

Metaclass Feature Type Used in
Page

Description Default
value

Property

name string form, list name of the property OWL2
label boolean form, list text to show in the property

field (form) or the table col-
umn (list)

prop. name

fromFeatures FormField form link to presentation features
for a property in a form field

columnFeatures ListColumn list link to presentation features
for a property as a column of
the table list

FormField

isInferred boolean form true if the value is not ed-
itable

false

notEmpty boolean form true if the value can not be
empty

true

showInForm boolean form true if the form includes a
field for the property

true

formOrder integer form field order in the form null
textInputLegth integer form field size for the property

value
30

rangeMaxValue real form maximum value allowed for
number type properties

null

rangeMinValue real form minimum value allowed for
number type properties

null

isDataProperty boolean form true if the property type
is primitive, false otherwise
(object property)

OWL2

isFunctional boolean form true if the property cardinal-
ity is as much one, false oth-
erwise

OWL2

selectorType SelectorType form for object properties, kind of
selector showing related in-
stances

menu

richTableSelector boolean form for object properties, use a
rich datatable for selecting
related instances

false

ListColumn

showAsColumn boolean list true if the property is showed
as a column in the list

true

tableColumnOrder int list column order of the property
in the table

null

isSortableColumn boolean list true if the table can be sorted
by column values

true

isFilterableColumn boolean list true if the table can be fil-
tered by column values

false

types (e.g. integer or string); and object properties, relations between instances
of two classes. The default behavior in OWL determines that a property can
relate an instance of the domain to multiple instances of the range, but defining
the property as functional the relation is from an individual to only one primitive
value (functional datatype property) or individual (functional object property).
Similarly, a cardinality constraint can set the property range to 1. The form
page for a particular class contains fields for all the properties having the class
as domain and with a true value in the presentation feature showInForm.

The mapping of object properties to the UI implies that for non-functional
properties, common selectors are used, such as selectManyCheckbox,
selectManyListbox and selectManyMenu widgets, whereas for functional proper-
ties, selectOneListbox, selectOneMenu and selectOneRadio widgets can be used.

The widget used for an object property is set in the presentation feature se-
lectorType. In case that a property has a true value in the presentation feature
isInfered, a selector widget is not generated for it because its value can not be
modified by users.

When an object property has the feature richTableSelector to true, then
the values to be selected are shown in tables instead of in selectors. Rich-
Faces provides the rich:extendedDataTable component for a powerful selection
of one or many items. Similarly, ICEfaces includes the ice:rowSelector tag in the
ice:dataTable component to provide that functionality. Fig. 3 shows an example
of multiple data table selection.

Fig. 3. Multiple data table selection (3 rows selected)

To fulfill the list of values to be selected, individuals of the range type are
listed. When an object property has the same class as domain and range types,
then reflexive or irreflexive property axioms must be considered. In a irreflexive
object property, the self individual (domain) is not included in the list of values
to be selected (range), whereas in a reflexive one, all individuals are listed.

OWL2 provides several class extension constructs to define unnamed anony-
mous classes. The “oneOf” expression enables the definition of an enumerated
class through the list of individuals that constitute the instances of the class.
When the range of a property is an enumerated defined through a “oneOf”
anonymous class, the enumeration literals obtained from the individuals linked
to the enumeration are used as the list of allowed-values that can be selected. An
example is the hasSex functional property from the Person class to the enumer-
ated class with values {female, male}. In this case, one of the three selectOne
selectors can be used in the interface.

It is possible to further constrain the range of a property with property
restrictions. The “has-Value” restriction specifies an anonymous class based on
the existence of particular property value. Other classes can be a subclasses
of such a property restriction. As example, the Woman class is a subclass of
“hasSex has female” property restriction, and similarly, the Man class is subclass

of “hasSex has male”. In the UI, this is mapped to default values that can not
be editable by end-users.

List page. Finally, for listing all the instances or individuals of each named
class, a page with a rich data table component is generated. Table columns are
those properties of the class with a true value in the showAsColumn feature of
the presentation model, and the column position in the table is established by
the tableColumnOrder value. Both RichFaces and ICEfaces provide a datatable
component with advanced functionality including a paginator widget for viewing
the table as multiple pages of rows instead of as one large table, a sortColumn
feature allowing the user to sort of data in the table, and filterValue feature for
filtering data rows (only available in RichFaces). The corresponding features in
the presentation model allow to customize these elements.

5 Conclusions and future work

In this work a model-driven method for generating rich Web UIs from OWL2
domain ontologies was presented, continuing a research focused on model-driven
development of Web applications from ontologies and rules [2]. Our approach
is based on the assumption that a UI for a data-intensive application can be
induced from the domain ontology classes, properties and axioms. To obtain an
enhanced result, a presentation model captures presentation features related to
the UI. Since UI development is platform-specific task, JavaEE and JSF technolo-
gies for Web application development were chosen as target implementation in
our research. Two frameworks of rich UI components were considered, although
the approach can be extended to other frameworks. The proposal is tested with
a proof of the concept tool.

The extension of the proposal to cover a larger set of OWL2 elements is
considered as future work, as well as enhanced UI functionality to provide full
Semantic Web information system generation from ontologies. Enriching the
ontology with SWRL rules and analyzing how rules can affect to the UI is also
considered as future work, focusing on how rules can provide UI adaptivity.

Acknowledgments. The authors wish to thank the Spanish Ministry of Ed-
ucation and Science for funding received under projects TIN2009-14372-C03-01
and PET2007-0033, and the Andalusian Regional Government under project
P06-TIC-02411.

References

1. Brambilla, M., Facca, F.M.: Building semantic web portals with WebML. In: Web
Engineering, 7th International Conference, ICWE 2007, Como, Italy. Lecture Notes
in Computer Science, vol. 4607, pp. 312–327. Springer (2007)

2. Cañadas, J., Palma, J., Túnez, S.: A MDD approach for generating rule-based
web applications from OWL and SWRL. In: 3rd Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2010). vol. 604.
CEUR Workshop Proceedings, Málaga, Spain (June 2010)

3. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web
applications. Internet Computing, IEEE 6(4), 20–30 (2002)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, 1 edn. (Dec 2002)

5. Cerny, T., Song, E.: A profile approach to using UML models for rich form gener-
ation. In: Information Science and Applications (ICISA), 2010 International Con-
ference on. pp. 1–8 (2010)

6. Chavarriaga, E., Maćıas, J.A.: A model-driven approach to building modern seman-
tic web-based user interfaces. Advances in Engineering Software 40(12), 1329–1334
(2009)

7. Driver, M., Valdes, R., Phifer, G.: Rich internet applications are the next evolution
of the web. Tech. rep., Gartner Research Note. G (2005)

8. Gašević, D., Djurić, D., Devedžić, V.: Model Driven Architecture and Ontology
Development. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

9. Gašević, D., Kaviani, N., Milanović, M.: Ontologies and software engineering. In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 593–615. Springer Berlin
Heidelberg (2009)

10. Geary, D., Horstmann, C.S.: Core JavaServer Faces. Prentice Hall, 2 edn. (2007)
11. Hussmann, H., Meixner, G., Zuehlke, D.: Model-Driven Development of Advanced

User Interfaces. Springer-Verlag New York Inc (2011)
12. Lima, F., Schwabe, D.: Application modeling for the semantic web. In: LA-WEB.

pp. 93–102. IEEE Computer Society (2003)
13. Maćıas, J.A., Castells, P.: Providing end-user facilities to simplify ontology-driven

web application authoring. Interacting with Computers 19(4), 563–585 (2007)
14. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of Model-Driven Web En-

gineering and the MDA. In: Web Engineering: Modelling and Implementing Web
Applications, pp. 353–382. Springer London (2008)

15. Object Management Group: MDA Guide Version 1.0.1. OMG document:
omg/2003-06-01 (2003)

16. Object Management Group: Ontology Definition Metamodel. Version 1.0. OMG
(2009), available at http://www.omg.org/spec/ODM/1.0/

17. Parreiras, F.S., Staab, S.: Using ontologies with UML class-based modeling: The
TwoUse approach. Data & Knowledge Engineering 69(11), 1194–1207 (Nov 2010)

18. Pérez-Medina, J.L., Dupuy-Chessa, S., Front, A.: A survey of model driven en-
gineering tools for user interface design. In: Task Models and Diagrams for User
Interface Design, 6th International Workshop, TAMODIA 2007, Toulouse, France.
Lecture Notes in Computer Science, vol. 4849, pp. 84–97. Springer (2007)

19. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Mod-
elling and Implementing Web Applications. Human-Computer Interaction Series,
Springer London, London (2008)

20. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 25–31 (2006)

21. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Engineering 2(1-2), 3–26 (2003)

22. W3C OWL Working Group: OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation (2009), available at
http://www.w3.org/TR/owl2-overview/

23. Wright, J.M., Dietrich, J.: Requirements for rich internet application design
methodologies. In: Web Information Systems Engineering - WISE 2008, 9th Inter-
national Conference, Auckland, New Zealand. Lecture Notes in Computer Science,
vol. 5175, pp. 106–119. Springer (2008)

	Model-Driven Rich User Interface Generation from Ontologies for Data-Intensive Web Applications
	Introduction
	Related work
	Frameworks for RIAs in JavaEE
	Model-driven rich user interface generation
	Process overview
	The Presentation metamodel
	Mapping OWL2 to user interface components

	Conclusions and future work

