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ABSTRACT
We present the three approaches submitted to the Spoken
Web Search. Two of them rely on Acoustic Keyword Spot-
ting (AKWS) while the other relies on Dynamic Time Warp-
ing. Features are 3-state phone posterior. Results suggest
that applying a Karhunen-Loeve transform to the log-phone
posteriors representing the query to build a GMM/HMM
for each query and a subsequent AKWS system performs
the best.

Categories and Subject Descriptors
H.3.3 [Information systems]: Information Storage and
Retrieval, Information Search and Retrieval, Search process

General Terms
Experimentation

Keywords
query-by-example spoken term detection, acoustic keyword
spotting, dynamic time warping, spoken web search

1. MOTIVATION
The Spoken Web Search (SWS) task aims at building a

language-independent query-by-example spoken term detec-
tion system without any knowledge of the target language
and query transcriptions. In so doing, our approaches are
based on the combination of as many language-dependent
“recognizers” as possible. 1

2. FEATURE EXTRACTION
Our feature extractor outputs 3-state phone posteriors as

features [2]. The phone posterior estimator [5] contains a
Neural Network (NN) classifier with a hierarchical structure
called bottle-neck universal context network. It consists of
a context network, trained as a 5-layer NN, and a merger

1Part of this work was done will JT was a visitor research
at Speech@FIT, BUT.
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which employs 5 context net outputs. Relevant parameters
are in Table 1 and more details are in [5].

Table 1: Language parameter specifications: Number of phones, |UC|

which represents the size of the hidden layer in the universal context

NN, |Mer| which represents the size of the hidden layers in the merger

with 3-state phone posteriors output, and |out| which represents the size

of the 3-state phone posteriors output layer.
Language Phones |UC| |Mer| |Out|
Czech 37 1373 495 114
English 44 1298 488 135
Hungarian 64 1128 470 193
Levantine 32 1432 500 99
Polish 33 1408 498 105
Russian 49 1228 481 157
Slovak 41 1305 489 133

3. APPROACHES

3.1 Parallel Acoustic Keyword Spotting
(PAKWS)

We combined decisions from 6-language dependent Acous-
tic Keyword Spotters (AKWS) (from all the languages in Ta-
ble 1 except the Polish one due to its worse performance on
dev data). One AKWS consists of two steps: Query recogni-
tion done by a phone recognizer and query detection done by
AKWS. They only differ in the decoder. Features (3-state
phone posteriors) extracted from the audio are fed into a
phone decoder – unrestricted phone loop without any phone
insertion penalty. AKWS filler model-based recognition net-
works [4] are built according to the detected phone string per
each query. The filler/background models are represented by
a phone loop. Each phone model is represented by a 3-state
HMM tied to 3-state phone posteriors. The output of the
AKWS is a set of putative hits. The score is logarithm of
likelihood ratio normalized by the length of the detection.
These detections are converted into a matrix for each ut-
terance. The size of this matrix is #queries × #frames.
Next, matrices for all 6 languages are “log added”. Finally,
the combined matrix is converted back to the list of detec-
tions and the detection for which all 6 detectors agree has a
higher score.

3.2 GMM/HMM term modeling
Inspired in the previous approach, this relies on a sin-

gle AKWS as query detection with these differences: (1)
the background model is a GMM/HMM with 1-state mod-
eled with 10-GMM components, (2) the query model is rep-



resented with a GMM/HMM whose number of states is 3
times the number of phones according to the phone recogni-
tion with 1 GMM component each and (3) all the languages
in Table 1 have been employed to produce the final fea-
ture super-vector. Queries represented by a single phone
have been modeled with 6 states, as if the query contained
2 phones. We used the number of phones output by the Slo-
vak recognizer due to its best performance in terms of the
Upper-bound Term Weighted Value metric (UBTWV) [3].
Features used for background and query modeling were got
as follows: (1) the log-phone posteriors got from the feature
extractor are applied a Karhunen-Loeve transform (KLT)
for each invididual language, (2) we keep the features that
explain up to 95% of the variance after KLT for each individ-
ual language, (3) we build a 152-dimensional feature super-
vector, from them. The KLT statistics have been computed
from the dev data and next applied over both the dev/eval
queries and dev/eval data.

3.3 Dynamic Time Warping (DTW)
A similarity matrix from phonetic posteriorgrams [5] stores

the similarity between each query frame and each utterance
frame with the cosine distance as similarity function and a
DTW search hypothesises putative hits. DTW is run iter-
atively starting in every frame in the utterance and ending
in a frame on the utterance [5]. The features that represent
the phonetic posteriorgrams are the concatenation of the 3-
state phone posteriors corresponding to every language in
Table 1.

4. FILTERING AND CALIBRATION
To deal with the score calibration and some problem-

atic query length under certain approaches issues, detections
were post-processed in the following steps: 1]“Filtering” de-
tections according to length difference from“average length”.
Average length of a query is calculated as the average length
of speech (phones) across the 6 phone recognizers used in
the PAKWS approach. It was applied on all the approaches
except the DTW as follows:

ScF (det) =
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where Q identifies the query to which the detection be-
longs, Sc(det) is the original score, ScF (det) is the “fil-
tered” score, L(det) is the length of the detection in frames,
LQ

min = 0.8LQ
aver is 80% of the average query length and

LQ
max = 1.4LQ

aver is 140% of the average query length. The
detection score remains the same if the detection length is
longer than 80% and shorter than 140% of the average query
length. Otherwise the score is lowered the shorter/longer the
detection is according to the original query.
2] Calibration, applied only in our PAKWS approach, pro-

duces the final score of each detection as follows:
ScC(det) = ScF (det) + A1 + A2 ∗ Occ(Q), (2)

where Occ(Q) is number of query detection occurrences in
the data, and A1 = −1.0807 and A2 = −0.0001 are calibra-
tion parameters. These were estimated from best thresholds
(UBTWV) on dev data using linear regression.

5. RESULTS AND DISCUSSION

Results for the required runs [1] are given in Table 2. The
PAKWS approach has two versions (with and without score
calibration). We clearly see that the GMM/HMM term
modeling approach outperforms the two other in a great
extent for unseen queries/data even with score calibration
applied on the PAKWS approach. We consider this is due
to: (1) The KLT statistics, computed from dev data and
applied on queries and data, plays the role of “adaptation”
towards the target domain, which differs from that used to
train the phone estimators from which the 3-state phone
posteriors are computed, (2) the use of a single example to
train the query model is more robust against uncertainties
than the set of features itself (used in the DTW approach)
and the phone transcription got from phone decoding (used
in the PAKWS approach), (3) the prior combination of the
most relevant features after KLT given to the GMM/HMM
approach, opposite to the PAKWS approach, based on a
posterior combination from the detections got from each in-
dividual AKWS system and (4) by comparing the MTWV
(pooled) and UBTWV (non pooled) for PAKWS Qdev-Ddev
0.133 and 0.253, Qeval-Ddev 0.002 and 0.056, Qdev-Deval
0.030 and 0.157 and Qeval-Deval 0.033 and 0.223 respec-
tively, suggests that the PAKWS system is the most sensi-
tive to data mismatch. The GMM/HMM-based term mod-
eling approach is less sensitive to data mismatch with the
following values: Qdev-Ddev 0.103 and 0.238, Qeval-Ddev
0.019 and 0.035, Qdev-Deval 0.010 and 0.179 and Qeval-
Deval 0.131 and 0.267 respectively. For the DTW similar
pattern as that of GMM/HMM is observed: Qdev-Ddev
0.020 and 0.106, Qeval-Ddev 0 and 0.011, Qdev-Deval 0 and
0.099 and Qeval-Deval 0.014 and 0.055.

Table 2: ATWV results for the approaches. “PAKWS-cal” denotes the PAKWS ap-

proach with score calibration and “PAKWS-nocal” denotes the PAKWS approach without score

calibration. “Qx-Dy” denotes the set of “x” queries searched on the set of “y” data.

Approach Qdev-Ddev Qeval-Ddev Qdev-Deval Qeval-Deval
PAKWS-cal 0.133 −0.221 −1.141 −0.307
PAKWS-nocal 0.093 −0.359 0.009 −0.110
GMM/HMM 0.103 0.008 0.024 0.101
DTW 0.020 −0.005 −0.032 −0.115

6. CONCLUSIONS
Our GMM/HMM-based term modeling approach achieves

the best performance, whereas the two other, PAKWS and
DTW, fail due to the unreliable phone transcription derived
in the former and the “meaningless” phone posteriors by
themselves used in the latter when facing to the language-
independency issue. Future work will investigate new fea-
tures to enhance the performance of the best approach.
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