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Abstract—We describe a strategy for integration of data that is 
based on the idea of semantic enhancement. The strategy 
promises a number of benefits: it can be applied incrementally; it 
creates minimal barriers to the incorporation of new data into 
the semantically enhanced system; it preserves the existing data 
(including any existing data-semantics) in their original form 
(thus all provenance information is retained, and no heavy pre-
processing is required); and it embraces the full spectrum of data 
sources, types, models, and modalities (including text, images, 
audio, and signals). The result of applying this strategy to a given 
body of data is an evolving Dataspace that allows the application 
of a variety of integration and analytic processes to diverse data 
contents. We conceive semantic enhancement (SE) as a light-
weight and flexible process that leverages the richness of the 
structured contents of the Dataspace without adding storage and 
processing burdens to what, in the intelligence domain, will be an 
already storage- and processing-heavy starting point. SE works 
not by changing the data to which it is applied, but rather by 
adding an extra semantic layer to this data. We sketch how the 
semantic enhancement approach can be applied consistently and 
in cumulative fashion to new data and data-models that enter the 
Dataspace.  

Keywords: integration, intelligence data, ontology, semantic 
technology. 

I. INTRODUCTION 

The success of the war fighter and homeland defender in the 
Net-Centric Warfare environment is largely defined by the 
ability to quickly acquire and efficiently and accurately process 
intelligence information from numerous heterogeneous sources 
of different structure and modality. Traditional data integration 
approaches fail in the face of the scale, diversity, and 
heterogeneity of intelligence data sources and data-models 
because they fail to address one or more of the following 
requirements:  
• Integration must proceed without heavy pre-processing 
• Integration must proceed regardless of the data-models 

used (or not used) in the data sources to be integrated,  
• Integration must proceed regardless of the data modality, 

and without loss or distortion of data, of its associated 
data semantics, and of data-provenance information, 

• Integration must involve the ability to incorporate 
multiple points of view on the data to be integrated, 
including different views of the data, for example on the 
part of different analysts using different analytical tools.  

As a first step towards meeting these requirements we 
introduced in 2009 the Data Representation and Integration 
Framework (DRIF) [1, 2], which presents minimal barriers to 
the incorporation of new data into a data resource, thus 
requiring no heavy pre-processing and no data or data-model 
conditioning. DRIF embraces the full spectrum of data 
sources, types, models, and modalities, including text, images, 
audio, and signals, while supporting a variety of integration 
and analytic processes and tools. Details are presented below. 

 
The Dataspace store of intelligence data which is the subject 
of this communication is the result of applying the DRIF to the 
task of integrating very large heterogeneous primary data 
artifacts. As the Dataspace has evolved through time, so it has 
incorporated progressively ever larger quantities of data, and 
also more specific local implementations and data structures 
used by data analysts, some of which bring their own data 
semantics. For the purposes that the Dataspace is intended to 
serve, it is vital that no restrictions are imposed either on the 
types of source-artifacts and the associated models and media 
within the Dataspace, or on the processes by which the 
Dataspace is populated (whether by loading structured data 
from a database, by extraction from a text document through 
some Natural Language Processing application, by automatic 
analysis of signals, or through inference by a human analyst).  
 
The design of the Dataspace is such that it can incorporate 
hundreds of millions of unstructured documents and similarly 
large quantities of images, signals data, and other structured 
and unstructured primary data artifacts. Each of these artifacts, 
when it enters the Dataspace, is represented through a set of 
metadata, including labels specifying image type, MIME type, 
and so forth, as well as provenance information. Further 
processing may, for example, associate pixels in an image 
with the name of a person, or a range of characters in an 
unstructured text document with the name of a location, or 
extract a cell from a database table. The DRIF provides a 
common framework in which the results of all of these 
processes are represented in a unified way, details of which 
are provided below. As a result, primary data can be utilized 
immediately upon entering the Dataspace for a variety of 
different kinds of search and more sophisticated processing 
based thereon. DRIF is not, however, a magic bullet; many 
issues of data integration at the syntactic level will remain, 
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arising for example as a result of data formats which do not 
match, where we will need to normalize the format into an 
augmented model that will serve as the target of annotations. 
This will involve considerable effort to ensure that the needed 
actions are performed promptly and consistently whenever 
new data comes in. Here, however, we focus exclusively on 
those issues which arise at the stage of what we can loosely 
call the ‘representational’ aspects of data integration. 
 
Some primary artifacts within the Dataspace already 
incorporate useable semantic content – for instance a 
structured database which incorporates meaningful column 
headers, or a message with a structured payload incorporating 
meaningful tags. But such content is ad hoc. It is tied to 
specific local implementations and typically falls short of what 
is needed to secure semantic interoperability of the 
implementations involved because of the absence of a 
common formally coherent approach to semantics and of a 
common governance process. 
 
Moreover, full semantic integration is in any case prevented 
by the needs of openness of the Dataspace to ever new sorts of 
primary data and analytically derived data. It is to compensate 
for this problem that we have developed our strategy for 
semantic enhancement. We start out from the assumption that 
semantic data enrichment can be achieved only incrementally, 
through the step-by-step creation of ontology modules that are 
designed in coordinated fashion to work well both with each 
other and with specific bodies of Dataspace content. The 
vision is a lightweight, flexible approach comprising an extra 
ontology layer that leverages the contents of the Dataspace 
without adding storage and processing weight to what is an 
already storage- and processing-heavy resource. We discuss 
the details of semantic enhancement in section IV. First, 
however, we introduce the DRIF and the Dataspace to which 
the SE strategy will be applied. 

II. DATA REPRESENTATION AND INTEGRATION 
FRAMEWORK 

Our starting point is a body of U.S. Department of Defense 
(DoD) intelligence data within what we are here calling the 
Dataspace. The implementation in the specific context upon 
which we focus here is engineered around cloud computing 
paradigms and is primarily based upon open-source cloud 
software stack components. This cloud computing foundation 
leverages advantages of linear scaling and parallel distributed 
computation when faced with the reality of ever increasing 
data volumes and integration processing. All the work 
described is either deployed or in the final stages of testing 
prior to deployment. 
 
The Dataspace is built using the Data Representation and 
Integration Framework (DRIF), which has been designed to 
represent large quantities of data in a form that is useful to the 
end user both for direct inspection and for the application of 
various kinds of analytics. Representations of source data 
artifacts and their contents within the Dataspace are of two 

forms, which we call primary and derived, respectively. The 
Dataspace is divided into corresponding segments (see Figure 
1) in a way that supports a comprehensive approach to 
integration that allows accommodation of the multiple views 
of the primary and derived data and of the associated data-
semantics and metadata which arise for example as a result of 
the workings of multiple different sorts of analytical tools. 

A. Approach to Integration 
Our approach to integrating intelligence data starts with source 
artifacts consisting of primary data across a variety of 
representation modalities. This primary data is weakly 
integrated in the sense that indexes are provided to support 
simple (string-based) data search across all primary artifacts. 
 
Some primary data comes with its own native structure, and 
further structure will typically be added thorough analytical 
processing. The second integration step addresses the need for 
the unified storage of this structured data to support more 
complex structured search across both primary and derived 
artifacts. 
 
Importantly, we here embrace the diversity of domain-specific 
data-models employed throughout the Intelligence Community 
while at the same time reaping benefits from an approach that 
is data-model agnostic. This is because the unified 
representation provided by the DRIF allows analytic 
processing of data in highly diverse primary artifacts 
associated with different native data-models to be used as 
targets of cross-artifact analytics. For example, and most 
simply, it is possible to perform unrestricted string search 
across structured artifacts of highly different sorts. Examples 
of more sophisticated analytics include computer-aided data-
model harmonization, for example by allowing significant 
overlap of sets of values of attributes from different databases 
to be flagged by the analytic process as a potential indication 
that the attributes have the same meaning, thereby making it 
possible for the relevant portions of the two databases to be 
enriched through fusion. 

B. Dataspace Organization 
The organization of the Dataspace is schematically illustrated 
in Fig. 1.  
 
Segment 0 is a store of primary artifacts, including documents, 
images, signals, and analysts’ work products vetted for re-use 
as input for further processing. The physical implementation 
of Segment 0 may be such that all data is stored internally; or 
it may be distributed, so that source artifact data may for 
example be either contained in the cloud store or stored 
externally to the Dataspace and referenced in the cloud store. 
Primary data vary widely by nature; they may have different 
structures (for example of a relational database), or they may 
be unstructured (for example, free text, audio or video files), 
and they may be of different modalities (for example they may 
be cells of a relational database, audio sequences, assertions of 
an analyst). 



 
Segment 1 includes primary artifact registration data as well as 
specifications of relations between artifacts (for example, 
nesting of an image within a document, or attachment of one 
document to another). Segment 1 will include also data 
pertaining to the way each derived artifact of Segments 2 and 
3 is derived from primary artifact(s) in Segment 0. 
 
Segment 2 stores the structured data that is either already 
present in primary artifacts or derived therefrom through 
analytic processing resting on data-models represented in 
Segment 3. 
 
Segment 3 stores the descriptions of the data-models used in 
Segment 2. These data-models may include database schemas, 
message formats, or XML schemas. The data-models 
themselves are primary artifacts and are thus stored in 
Segment 0 and registered in Segment 1. 
 
The Dataspace is evolving continuously not only because of 
new primary data ingested from the outside, but also because 
new artifacts are being created, for example, through analysts’ 
reports based on processing of existing data. These artifacts 
themselves have a status of new primary artifacts. 

C. Segments as Abstractions Over the Artifacts 
Each of Segments 1-3 is an abstraction over the corpus of 
primary data artifacts (Segment 0) and supports analytics of a 
particular type: 
• Segment 1 is a high-level view of the entire artifact 

corpus including the relations between the artifacts, but 
with no reference to their internal contents.  

• Segment 2 is a collection of detailed views of the internal 
contents of the artifacts at the level of individual data 
items.  

• Segment 3 describes the data-models which support the 
two sets of views just mentioned as well as synoptic 
views (ultimately including SE-based views) of the type 
which can foster harmonization.  

D. Where Models and Primary Data Come Together  
We believe that the principal contribution of the Dataspace 
endeavor is to resolve certain problems of storage and thus of 
representation, enrichment, and evolution of large bodies of 
data. The goal is to provide room for both primary data and 
the multiple results of processing these data by different 
analysts or analytic methods. To achieve this we introduced in 
[3] a strategy for description of data that is designed to enable 
true data integration across a constantly evolving and highly 
heterogeneous resource comprehending extremely large 
volumes of data. As already recognized at the very beginning 
of contemporary high-level research in biomedical ontology 
[4], this end can be achieved only if data are exposed in a way 
that is independent of their original intended use. This must 
involve some means to represent original data-models at a 
level of abstraction that is higher than that of primary data. We 
accordingly propose an abstract data-model based on five core 
elements: sign, concept, term, predicate, and statement, which 
we believe is sufficient to represent any data-model in these 
terms.  
    
Sign: A sign gi is a string that is the abstracted proxy within 
the dataspace for one or more chunks of data used in some 
primary artifact with the intention of referring to some 
individual entity (e.g. person, location, organization, object, 
event). Examples include: a sign of the type proper name that 
is associated with an expression (for example ‘he’ or ‘Dr. 
Watkins’ occurring in a document; a label annotating an area 
in a pixel array as forming an image of some building; a label 
annotating a fragment of an audio stream or other signal as 
recording some explosion event. Each sign is associated with 
one or more physical extents within those primary artifacts 
with which it is associated, which we call mentions (the latter 
are what are elsewhere called tokens). The collection G = {gi} 
comprehends all signs extracted from primary data artifacts 
and changes with the incorporation of new artifacts. 
 
Concept: A concept ci is (for the purposes of this exposition) a 
string that is used in the Dataspace to represent some general 
category or grouping. The purpose of concept strings is to 
represent and allow reuse of classifications native to primary 
artifacts. Concepts are taken from data-models registered in 
Segment 1. Examples of concepts are: the classes of an 
ontology such as UCore SL, the tag set in an XML Schema 
Document (XSD), and the attribute or table names in a 
relational database. The collection C = {ci} comprehends all 
concepts within the Dataspace and changes as new data-
models are incorporated.   
 
Term: A term, tij, is an ordered pair of strings <gi,cj>, where gi 
∈ G and cj ∈ C. Each term results from a process of contextual 
disambiguation of a sign, a process which associates a sign 
with a concept, as in <123-45-6789, SSN>. The collection T = 

Figure 1. Organization of the Dataspace. Solid line: registration processes; 
curved solid lines: processes that ingest artifacts into the Dataspace, 
including feeding back into the Dataspace analysts’ products – results of the 
Dataspace processing ; dashed lines: derivation processes. 

Segment 1 – Structured 
descriptions of primary 

artifacts 
(e.g. registration data; 

relations to other artifacts) 

Segment 2 – Structured 
descriptions of data (results 
of processing of primary 
data, e.g. through NLP, 
image analysis, or other 

data extraction)  

Segment 3 – Structured descriptions of models associated with 
primary and derived artifacts (e.g. attributes of a relational table 

with associated functional dependencies)  

Segment 0 – Primary artifacts (stored in CloudBase, HDFS 
and elsewhere) (including documents, images, signals, 

databases; as well as analysts’ products, some with built in 
data models) 



{tij} comprehends all terms identified by analytic processing of 
primary artifacts.  
 
Predicate: A predicate (by which we mean here always: 
binary relational predicate) pi is a string that is used to 
connect terms in accordance with domain and range 
constraints. Predicates are used in the formation of statements 
(as described below). Examples of predicates are: hasSSN, 
hasLocation, hasBirthDate. Predicates are derived from data-
models registered in Segment 1, for example from table 
column headings or from XML tags. The collection P = {pi} 
comprehends all predicates within the Dataspace and changes 
as new data-models are added. 
 
Statement: A statement si is an ordered triple consisting of a 
subject, a predicate, and an object. The collection S = {si} of 
statements is recursively defined. At the lowest level, 
statements are ordered triples consisting of a term, a predicate, 
and a second term. In higher-level statements, subjects and 
objects may be lower-level statements. Examples: <[Bruno, 
PersonName] hasSSN [123-45-6789, SSN]> 
 
The five primitives of the DRIF (sign, concept, predicate, 
term, and statement) define a data reference model which, by 
effectively decoupling data from data-models, can represent 
any sort of data-model at the level that is useful for 
integration.  
 
Fig. 2 schematically illustrates the representation of structured 
data in accordance with the DRIF for three sample primary 
artifacts, two of them relational databases, the third an 
unstructured document. The example also shows how data-
semantics come to be added to the Dataspace in ad hoc 
fashion – here, because an analyst decides to to introduce a 
new Concept DBA (meaning: database administrator). 
Additional Statements establishing relationships between 
Terms using Predicates SameAs and Knows are also included 
in the Figure. 
 
The reader familiar with the Resource Description Framework 
(RDF/RDFS) may wonder what is different here. RDF 
employs a similar level of abstraction, but it is a language, 
while what we are offering here is a specific, albeit still highly 
abstract, data-model. This data-model could of course be 
specified very easily using the RDF language; but it could be 
specified also using relational database or some other storage 
technology. Our choice of data-model was motivated further 
by the fact that our implementation and security requirements 
dictated the use of a specific type of cloud storage solution [5, 
6] that is both highly scalable and offers highly granular 
security access controls.  
 

III. SEMANTIC ENHANCEMENT 

The DRIF focuses on the representational aspects of the 
Dataspace and on the basic types of data integration that such 
representation provides. In what follows we describe the 

current phase of evolution of DRIF, the phase of Semantic 
Enhancement (SE). SE, as we conceive it, is a light-weight 
and flexible solution that leverages the richness of the native 
source data and of any local semantics associated with these 
data without adding storage and processing weight. The SE 
strategy is compliant with and complements the DRIF.  

 

A. Goals of Semantic Enhancement 
SE is a strategy that is currently being implemented to 
improve our handling of the enormous heterogeneity of 
Dataspace content. It is centered on building a flexible and 
extensible framework of hierarchically organized, controlled 
structured vocabularies – called ‘ontologies’ – covering 
different areas of relevance to intelligence analysis. The 
framework will be constructed in part by reusing already 
existing resources, in part through collaboration with other 
defense and military organizations in the creation of new 
ontology modules. The ontologies will be used in an 
incremental process of annotation (or ‘tagging’) of those 
concepts and predicates already identified in data-models 
within the Dataspace along the lines described in our 

Figure 2. Simplified example of structured content derived from 3 
primary artifacts. 

Document X 

Database B Database A 

Sign  

key  label 
1 732 
2 Bill 
3 821 
4 William 
5 DC 
6 Scott 

Concept  

key  label 
1 ID 
2 Scientist 
3 PersonID 
4 Name 
5 Address 
6 DBA 

Predicate  

key  label 
1 hasName 
2 hasAddress 
3 sameAs 
4 knows 
 

ID PersonName 
 … 
732 Bill 

PersonID Name Address 
 …  
821 William DC 

 

Artifacts 

….Scott performed the database backup… 
 

Structured content 

Statement  

key term_Key_Subject predicate_Key term_Key_Object 
1  3 [821, PersonID] 1 hasName 4 [William, Name] 
2 3 [821, PersonID] 2 hasAddress 5 [DC, Address] 
3  3 [821, PersonID] 3 sameAs 1 [732, ID]] 
4  3 [821, PersonID] 4 knows 4 [Scott, DBA] 
 

Term  
key  sign_Key concept_Key 

1 [732, ID] 1 1 
2 [Bill, Scientist] 2 2 
3 [821, PersonID] 3 3 
4 [William, Name] 4 4 
5 [DC, Address] 5 5 
6 [Scott, DBA] 6 6 
 



discussion of Segment 3 above. The latter amount to what we 
referred to above as ‘ad hoc semantics’. Because the salient 
data-models derive from so many heterogeneous sources, they 
use a multiplicity of partially overlapping and partially 
conflicting vocabularies, which it is the task of SE to reconcile 
by associating co-referring concepts and predicates (strings) 
employed within distinct data-models in the Dataspace to 
single nodes within the external SE ontologies. 
 
To function in the needed way, annotations must be 
cumulative, in the sense that our strategy will ensure that tags 
created by different annotators will be consistent with each 
other. The value of annotations must also be preserved when 
the SE ontologies change, for example through refinements 
created to reflect advances in knowledge, and to this end the 
ontologies must be subject to strict versioning policies.  
 
Finally, the SE framework must be implemented in such a way 
that it can serve not merely as a tool of harmonization of the 
data-models internal to the Dataspace but also in a way that 
allows integration with other, external data resources wherever 
common ontologies are used for annotation.  
 
To address these constraints is by no means a simple matter. 
When data value codifications do not match – for example 
when we have 1,2,3 in one data source, R, G, B in another data 
source, and RED, GREEN, BLUE in our Color ontology, then 
annotation for each source to hierarchy values can be very 
labor intensive and require significant SME effort. 

B. Sample Benefits of Semantic Enhancement  
We can see the sorts of benefits that SE will provide already at 
the level of search, where problems arise because of the 
multiple different ways of describing data within the 
Dataspace. Problems that need to be confronted include:  
 
1. The need to find data items identified by means of terms 
which are narrower or broader in meaning than the terms 
analysts will standardly use when searching;  
2. The need to find data items in documents that are 
formulated using a language or technical jargon with which 
analysts are unfamiliar.  
 
To provide some very simple examples: we know that a given 
package ‘has been shipped with a red label’, but the 
documents that we have pertaining to this package use only 
the word ‘vermillion’; or we need to find references to a 
package identified as ‘containing furniture’, but the documents 
we have refer only to ‘chairs’; or we need to find a given 
package suspected of containing crack cocaine, but the audio 
recordings we have at our disposal relating to this package 
refer only to ‘bobo’ or ‘botray’ or ‘boubou’. If we are 
restricted to string search, our queries would not return the 
needed results. Hence, we need a framework which expands 
string search by capturing type and subtype information, and 
also incorporates synonym information. These needs are 
targeted along two dimensions; first, through the fact that all 
SE ontologies will be organized around a central backbone 

subtype (or is_a) hierarchy; and second through the 
progressive incorporation in all nodes of the SE ontologies of 
links to relevant synonyms derived through the annotations 
which will link ontology nodes to the rich collection of 
corresponding concepts and predicates in other areas of the 
Dataspace. 

C. The Strategy for Semantic Enhancement 
Our strategy is designed to achieve its goals not by changing 
the Dataspace, but rather by adding an extra semantic layer 
thereto. The strategy is thus similar to that underlying the 
Universal Core (UCore), which arose out of the National 
Information Sharing Strategy supported by multiple U.S. 
Federal Government Departments, by the intelligence 
community, and by a number of other national and 
international organizations [7, 8]. Here, a small controlled 
vocabulary was provided for multi-community use to associate 
simple summary tags to message payloads for purposes of data 
search and integration.  
 
Reflecting the extreme diversity of intelligence data, multiple 
subject-matter expert communities will be contributing to the 
SE. For the strategy to work and provide useful and efficient 
integration, these multiple distributed teams must use the SE 
approach in a consistent fashion. Previous efforts to create a 
broad-based, multi-community ontological approach to data 
integration in defense and intelligence domains have failed 
because the incompatible, and often over-simplistic, views of 
reality incorporated into legacy databases and data-models led 
to incompatible development of ontologies in ways that 
precluded interoperability. Many advocates of semantic 
approaches to data integration have still failed to appreciate 
the tremendous challenges, both technical and human, created 
by the entrenched predisposition on the part of ontology 
developers to create ontologies each on the basis of their own 
potentially idiosyncratic data representations. 
 
The solution which we advocate is modeled on the successful 
semantic annotation approach pioneered in the field of 
bioinformatics by the Gene Ontology [9]. This approach is 
now being pursued systematically within the framework of the 
OBO Foundry [10, 11], which starts out from the idea that the 
most effective way to ensure mutual consistency of ontologies 
created by multiple independent groups over time and to 
ensure that these ontologies are maintained in such a way as to 
keep pace with advances in knowledge is to organize 
ontologies as a collection of modules with discrete (non-
overlapping) subject-matters maintained by subject-matter 
experts, according to a strategy outlined in [12]. To ensure 
consistency, these ontologies should be created as extensions 
of more generic higher level ontologies, subject to common 
rules for example concerning the treatment of definitions, and 
they should be based on a small common upper-level ontology 
(ULO), whose domain and content neutral. For example, it 
will include relations such as is-a (for subtype), member-of, 
part-of, and so on. As initial ULO we choose the Basic Formal 
Ontology (BFO) [13], which has been implemented in more 



Examples of MLO cross-domains  
• Geospatial 
• Biometrics  
• Person  
• Provenance and Trust 
• Organization 
• Signals and Sensors 
• Equipment 
• Facility  

Examples of LLO domains 
Subsumed by Geospatial 
• Geospatial Feature 
• Country 
Subsumed by Biometrics 
• Fingerprint  
• Iris 
Subsumed by Person 
• Employment Data 
• Criminal Data 
• Medical Data 
• Ethnicity and Tribe 
• Skill 
Subsumed by Provenance and Trust 
• Data Quality 
• Access Permissions 
• Data Source 
• Evidence 

 
Table 1: Sample Ontologies within the SE 

Structure 

than 100 similar projects, and which serves as the basis of the 
already mentioned UCore Semantic Layer [8].  
 
The ULO will be associated with a small number of Mid-
Level Ontologies (MLOs) defined by downward population 
from the ULO. The MLOs will serve in turn as bridge to a 
number of Low-Level Ontologies (LLO), which will specify 
narrow content domains. Each MLO represents cross-domain 
entities, such as Person or Information, and will be constructed 
in tandem with the LLOs which it subsumes in order to ensure 
the mutual consistency and interoperability of the subsumed 
LLOs. The MLOs and LLOs must in turn be associated with 
the resources of a relation ontology, providing for the 
representation of content-specific relations such as Owns, 
WorksFor, Audits, and so on. 
 
Initial due diligence efforts in our strategy of semantic 
enhancement requires us to identify an initial collection of 
authoritative codifications at Mid- and Lower Levels – along 
roughly the lines depicted in Table 1 – and to begin the 
process of formalizing them within the BFO common upper-
level ontological framework. In some areas ontologies will 
need to be created de novo, since no adequate authoritative 
codifications will exist. 
 

D. Implementation of the SE Strategy 
We can now outline the steps which are involved in realizing 
this strategy in the specific context of the Dataspace, where 
we already have data structured using the DRIF. 
 
First Step: Review the contents of the Dataspace, specifically 
that concepts and predicates in Segment 1, and identify a 
subset of topic areas where data integration is a priority for 
analytics.  
 
Second Step: Formulate a list of MLOs that would be needed 
to annotate the data in corresponding areas. As far as possible 
identify existing ontologies which may potentially be reused 
for this purpose, and build initial versions of new ontologies 
where needed.  
 
Third Step: Identify a specific subset of the content of the 
source data-models, and identify LLOs that will capture this 
subset in a semantically coherent fashion, ensuring that each 
LLO is subsumed by some MLO. Subject matter experts 
should be recruited to take charge of creation and maintenance 
of the LLOs and MLOs and of their use in annotations. In this 
way we can create a cadre of SMEs with expertise in 
annotation and in supporting semantic enhancement.  
 
In realizing the above we need to maximize as far as possible 
the reuse of ontologies which are already being used by 
relevant communities. This is because the strategy will be 
successful only to the degree that a critical mass of potential 
users are able to be convinced of its utility and thus 
incentivized to engage in advancing it further for example by 
extending it new types of data and by disseminating the 
resource to new groups of analysts. Reusing already existing 
ontologies will not merely provide a core of familiar terms 
which analysts can use for search purposes, it will also 
increase the degree to which we can integrate into the 
Dataspace data that has already been annotated in consistent 
fashion by external bodies. 
 
Fourth Step: When once a stable, initial set of ontologies has 
been created, we use these ontologies to annotate the data-
models in corresponding portions of the Dataspace. As should 
by now be clear, the entire strategy is an incremental one, 
based on a principle of low hanging fruit: the idea is not to 
import the above ontologiesas a whole; rather we examine 
the existing Dataspace resources and identify expressions 
therein for which counterparts in the ontologies already exist 
or can easily be added. In constructing the ontologies these 
expressions will be provided with a  common logical 
architecture and a common set of relations defined through 
the ULO top level and in terms of which logical definitions 
for terms in the ontologies can then be formulated. The result 
can be used as a basis for the application of general-purpose 
tools, including standard OWL reasoners FaCT++, RACER, 
or Pellet, which can be used to check ontologies in the SE 
resource for mutual consistency. 



 
Stage 4 of the SE process consists in associating each set of 
equivalent data source concepts with a single common MLO 
or LLO expression (which will be added at the appropriate 
level within the SE ontology structure where not already 
present). Further types of integration are thereafter  brought 
about automatically. Whenever any Dataspace resource 
becomes linked to one of our chosen ontologies in a way that 
can be used to generate corresponding annotations, it thereby 
becomes linked to all the other Dataspace ( a n d  
e x t e r n a l )  resources that have already been annotated with 
the same SE ontologies. This creates a snowball effect, 
whereby each new annotation increases the value of existing 
annotations [9], and provides further incentives for the use of 
the SE ontologies by new groups of users.  

E. Organization of the SE Ontologies 
Fig. 3 illustrates the organization of the SE ontology space. 
Each LLO represents the reality of a particular narrowly 
defined domain, for example in an area such as Education and 
Skills.  
 
An MLO is a container of LLOs. Since we will be developing 
LLOs in step-by-step fashion to address what are at any given 
time the most urgent needs of Dataspace users, there will be 
data which cannot as yet be annotated with the full granularity 
of detail which the annotator requires. The strategy is to use 
such cases to advance the further development of the ontology 
resource base, again following the model tested in the 
bioinformatics domain [9]. For example, an analyst may want 
to use the SE resources to extract and disambiguate data from 
a particular document. For different reasons the analyst may 
not be able to use the most detailed semantics and will use a 
more general one. LLO taxonomies will also be used by 
analytics to produce results of different level of detail: from a 
fine-grained view of narrow areas within the Dataspace to 
coarse grained pictures of larger domains.  
 
Because original data and data-semantics are in every case 
preserved without loss or distortion in the Dataspace as it 
exists prior to Semantic Enhancement, there is no need to 
represent all details of original storage data structures in the 
SE stage. This means that complex ontologies are not needed 
– a common and shared vocabulary is sufficient for virtual 
semantic integration and search/analytics, while underlying 
details are maintained by the authors of specific primary 
artifacts. Similarly, the collection of SE ontologies does not 
need to cover all of the ad hoc local semantics within the 
Dataspace – content that is unlikely to be used in search or is 
not important for integration can be excluded from the 
Enhancement step, since it will still be available in the source 
data-models and can be accessed when drilling down to the 
appropriate level. 
 
The SE approach is highly flexible. It represents a “pay-as-
you-go” approach in the sense that investments can be made 
only in specific areas according to identified need. It is also 
tunable in the sense that, if a given body of annotations for a 

particular subset of a source data-model is too general for data 
analyst purposes, then the respective LLOs can be further 
developed as needed. 
 

 

IV. CONCLUSION 

Together, the DRIF and SE provide what we believe is a 
workable data-integration solution. The DRIF is a highly 
flexible framework, with few constraints and including an 
RDF-style decomposed representation of structured data 
which allows the collection of data resources without loss or 
distortion in a way that achieves syntactic integration and 
preserves the local semantics of primary sources and of 
analytics software. SE provides semantic integration in a light-
weight yet incrementally extendible fashion, and in a way that 
can foster global integration without adding storage and 
processing weight to already storage- and processing-heavy 
Dataspace. 
 
The SE approach provides a strategy to allow the Dataspace to 
be understood as evolving cumulatively as it accommodates 
new kinds of data. It provides a more consistent, 
homogeneous, and well-articulated representation of 
structured content that originates in multiple internally 
inconsistent and heterogeneous models. And while it involves 
considerable initial SME investment in ontology creation and 
annotation, we believe that it will allow the management and 
exploitation of the Dataspace to become more cost-effective 
over time. 
 
In addition, the use of the selected MLOs and LLOs brings 
integration with other government initiatives and brings the 
Dataspace endeavor closer to the federally mandated net-
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centric data strategy; it also makes the integrated Dataspace 
more effectively searchable and provides an expanding body 
of content to which more powerful analytics can be applied in 
the future. 
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