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Abstract — We describe the design and development of an advanced 

reasoning framework employing semantic technologies, organized 

within a hierarchy of computational reasoning agents that interpret 

domain specific information. The CHAMPION reasoning framework 

is designed based on an inspirational metaphor of the pattern 

recognition functions performed by the human neocortex. The 

framework represents a new computational modeling approach that 

derives invariant knowledge representations through memory-

prediction belief propagation processes that are driven by formal 

ontological language specification and semantic technologies. The 

CHAMPION framework shows promise for enhancing complex 

decision making in diverse problem domains including cyber 

security, nonproliferation and energy consumption analysis. 
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I.  INTRODUCTION 

A major challenge for information analysis is to develop 
joint cognitive systems, described by Woods [1, 2] as systems 
in which humans interact with another, artificial, cognitive 
system. Cognitive systems are goal-directed, using knowledge 
about ―self‖ and the environment to monitor, plan, and modify 
actions in pursuit of goals. They are both data-driven and 
concept-driven. Woods observed that ―developments in 
computational technologies (i.e., heuristic programming 
techniques) have greatly increased the potential for automating 
decisions‖ and for ―… the support of human cognitive 
activities….‖ [1] A single, integrated system was envisioned at 
that time that could be composed of both human and artificial 
cognitive systems working collaboratively to perform complex 
decision making tasks. In the quarter-century that has passed 
since this vision was described, many different types of 
intelligent systems and processing frameworks have been 
proposed and developed, though it is not clear that the vision of 
joint cognitive systems has been realized. The current research 
and development effort represents a serious attempt to bring us 
closer to this vision utilizing semantic modeling.   

II. BACKGROUND 

Understanding how the human brain works is one of 
science’s grand challenges [3]. A great deal of effort has been 
devoted to the development of data-driven approaches to 

information analysis, inspired by neuroscience, in particular the 
neuron. A neuron is a cell in the brain whose principal function 
is collection, processing and distribution of signals. These 
signals are propagated through networks of neurons controlling 
brain activity and formulating the basis for human learning and 
intelligence including perception, cognition and action. 
Artificial intelligence (AI) as a field of inquiry has been around 
for decades and currently encompasses a large number of 
subfields intersecting biology, engineering and complex 
systems [4-6].  

Properties of biological memory systems motivate the sub-
field of artificial neural networks (ANN), one type of 
computational model representing a bottom up or data-driven 
approach [7]. Feed-forward or recurrent ANNs learn by 
example and are able to model nonlinear systems. They require 
data for training the network, which is not always available. 
From the decision support perspective they have the 
disadvantage of being ―opaque‖ to the user [8]—that is, the 
distribution and weights of the neural network connections are 
not sufficiently specified to offer insight into their operation; 
and this clearly doesn’t facilitate collaboration of joint 
cognitive systems.  

Machine learning is a mature field focused on programming 
computers to optimize performance based on past experience. 
The goal with this type of research is to develop general 
purpose systems that can adapt to new circumstances and 
domain knowledge [9]. A disadvantage of machine learning 
approaches, when coupled with human decision makers in a 
joint cognitive systems context, is similar to that described 
above for ANNs and connectionist solutions to the extent that 
the workings of the machine learning component are not 
readily understood or communicated to the human decision 
maker.  

In contrast to these data-driven approaches, research in 
knowledge-based/expert systems has focused more on concept-
driven or top-down reasoning. Top-down reasoning tries to 
mimic the brain’s functions such as memory. This area of AI is 
concerned with thinking; how knowledge is represented 
symbolically and manipulated and how it contributes to 
intelligence.  

Bayesian Network (BN) modeling approaches have become 
a rapidly growing area of research aimed at modeling human 
cognitive and decision making behavior, reflecting a 
perspective that use of probabilistic models and associated 



computational power of the Bayesian mathematical framework 
greatly facilitates the representation of human performance 
within a rational decision making framework. BN models can 
be viewed graphically to represent probabilistic relationships in 
a given domain; hence they are more readily comprehended by 
users.  Nevertheless, there are un-answered questions regarding 
the appropriateness of using the Bayesian probability construct, 
which reflects the assumption that human decision processes 
may be explained in terms of rational/normative models [10].  

Logic-based/rule-based systems comprise a structured 
collection of rules. A long-standing top-down approach is the 
use of logic, as represented in rule based expert systems. A 
major difficulty in implementing such knowledge-based 
systems is the difficulty of collecting expert knowledge that 
must be represented in the collection of rules that comprise the 
knowledgebase. The use of semantic web technology provides 
an expressive knowledge representation using ontologies, along 
with the application of Description Logics, which provides a 
formal knowledge representation language that facilitates 
generation of conclusions or predictions. 

Unlike most problem solving techniques in artificial 
intelligence, case based reasoning (CBR) is memory based. 
Solving a problem using the classic CBR cycle involves four 
major components - retrieve, reuse, revise and retain (see 
Figure 1) [11, 12]. CBR systems are concept-driven and rely on 
the recognition of previously-learned (hard-coded) or 
experienced representations to determine the system’s response 
to new information. A challenge for the CBR approach is the 
development of efficient and effective methods to search the 
repository of cases (stored in case memory).  

 

 

 

Figure 1. The CBR Cycle, adapted from [13]. 

 

A relatively recent top-down approach showing great 
promise is the memory prediction framework (MPF) [14, 15]. 
The MPF defines how the neocortex uses a feedback loop to 

store memory patterns which can lead to prediction of future 
events. These higher level concepts of cognitive processing 
have been applied in our work in development of the 
CHAMPION system.  

We advance many of the aforementioned artificial 
intelligence concepts through extensive use of semantic 
technologies. With our modeling architecture, we separate 
domain knowledge from the reasoning framework. This is 
done to maintain flexibility with domain knowledge, allowing 
it to be updated as needed, and to ensure domain agnosticism, 
allowing the system to be implemented in many fields of 
inquiry.  

 

III. SYSTEM DESIGN 

The neocortex was the inspirational metaphor for the 
design of our reasoning framework, called CHAMPION (for 
Columnar Hierarchical Auto-associative Memory Processing 
In Ontological Networks). This metaphor serves as a 
representation for a functional (not structural) design adopting 
the following requirements : 

 Stores sequences in an invariant form 

 Stores sequences of patterns 

 Stores sequences in a hierarchy 

 Retrieves sequences auto-associatively 

 

The CHAMPION architecture incorporates a significant 
variation on knowledge intense case based reasoning (KI-CBR) 
depicted in Figure 2. Modifications to the traditional CBR 
cycle were invented in order to meet the functional 
requirements of this metaphor. 

 Instead of iteration through the case library to find 
a useful solution, our system uses semantic 
expressions to represent the criteria for a case 
belonging in the case library. We consider this an 
invariant form of a concept belonging to the set of 
cases. 

 The functional requirement to store sequences of 
patterns is met by representing the problem and 
solution spaces in the form of semantic graphs. 
The nodes and edges constitute the patterns. 

 The architecture uses the query/construct 
capabilities of SPARQL and programming pattern 
paradigm of ―Publish and Subscribe‖ to 
implement an auto-associative mechanism. 

 The domain ontology of the system addresses the 
functional requirement to store the concepts in a 
hierarchy. 

 



 

Figure 2. The CHAMPION modified CBR cycle 

 

The CHAMPION reasoning framework consists of a 
hierarchy of reasoning agents called Auto-associative Memory 
Columns (AMCs). The hierarchy is formed as each agent 
subscribes to subgraphs of interest from a base graph and 
publishes subgraphs back to the base graph (i.e. making the 
base graph an inference graph).  

Agents interpret data in a similar fashion as subject matter 
experts. The lowest level agents in the hierarchy interpret the 
rawest form of data, and pass their interpretation of that data up 
the hierarchy. Primitive data goes in the bottom and higher 
level interpretations come out the top.  

A basic premise adhered to is the separation of the domain 
knowledge from the reasoning framework. If domain 
knowledge is hardcoded within the reasoning framework, then 
the framework’s source code must be changed and recompiled 
frequently as domain knowledge is updated. Equally important 
is the fact that this separation of domain knowledge from the 
reasoning framework maintains the domain agnostic quality of 
the system, which enables its application to diverse problems 
without modification to the reasoning framework. We use the 
Ontology Web Language (OWL) as our knowledge 
representation language, to implement the ontologies and 
knowledgebases of the system. 

The main components of the CHAMPION system, shown 

in Figure 3, are: 

 Ontologies, used for representing the specialized 

domain knowledge. 

 Reifiers, used for ingesting the primitive data as 

individuals of the types specified in the domain ontologies. 

 Memory, used to store the facts asserted from the 

primitive data and the facts inferred by the reasoning system. 

 Auto-associative Memory Columns (AMCs), 

reasoning components used to interpret the data assertions and 

infer new assertions. 

 

Figure 3. The components of the CHAMPION system 

 

A. CHAMPION Ontologies 

There are four key ontologies in the CHAMPION system, 

each having a unique purpose: Domain Ontology, Core 

Ontology, Bridge Ontology, and a collection of Rules 

Ontologies. 

1) Domain Ontology 

The content in the domain ontology is the knowledge of 

the subject matter expert in the domain of discourse to be 

reasoned about. It is expected that the specialized terminology 

of interest be captured in this T-Box ontology. If the domain 

of interest is Insider Threat, concepts used by experts in this 

field are defined here. Concepts specifically about aspects of 

trusted persons, their access, privileges, roles, responsibilities, 

and authorities would be defined. Additionally, concepts of the 

enterprise within which they function would be defined, such 

as concepts related to the infrastructure and business systems. 

2) Core Ontology 

The content of the core ontology is the knowledge of the 

reasoning framework and its elements. The definitions that 

describe what the necessary components of the AMCs are 

encoded into this ontology. The primary concept defined in 

this ontology is the AMC. The AMC is the primary reasoning 

agent of the framework and the class definition of the AMC is 

found in the core ontology. 

3) Bridge Ontology 

The bridge ontology associates concepts in the domain 

ontology with concepts from the core ontology. In other words, 

this is the place where domain concepts are assigned an AMC 

to reason about them.  

Continuing with the Insider Threat domain, let’s assume 

the concepts of access and unauthorized access are defined in 

the domain ontology as Access and UnauthorizedAccess 

respectively. In this example, Access is the superclass of 

UnauthorizedAccess. In the bridge ontology we encode that an 

AMC is assigned to reason about UnauthorizedAccess (the 

AMC class is subclassed to be an UnauthorizedAccess). The 

UnauthorizedAccess AMC is further defined to subscribe to 



Access individuals, and publish UnauthorizedAccess 

individuals.  Later in this paper, we will see that this is a 

subsumptive AMC. 

4) Rules Ontologies 

An AMC in the reasoning framework is to publish the 

appropriate assertions that are entailed in the local AMC’s 

graph. Two governing ontologies are applied to the local AMC, 

1) the domain ontology, and 2) an AMC specific ontology 

which contains knowledge that is relevant to the local AMC 

only. The consequence of having an ontology at the AMC 

granularity is that a rules ontology must exist for each AMC. 

B. Knowledgebases 

In addition to the ontologies, the following knowledgebases 

are required: Working Memory, AMC Knowledgebases 

(Binning Queue, Case Library), and a Contextual 

Knowledgebase. 

1) Working Memory 

The Working Memory knowledgebase is the semantic 

graph containing the state of the base-graph and the inference-

graph assertions. This is the location of all the individuals 

from reifiers and from AMCs. 

2) AMC 

Each AMC has to have a local knowledgebase over which 

it can reason. The local knowledgebase directly imports the 

bridge ontology, which in turn indirectly imports the core and 

domain ontologies. Additionally, each AMC has a dedicated 

ontology that contains semantic expressions specific to this 

AMC. These expressions include SWRL rules that the local 

AMC’s description logic reasoner evaluates. 

3) Contextual Knowledge 

Additional knowledge beyond the streaming problem data 

under analysis or search is stored in contextual 

knowledgebases. This type of knowledge needs to be accessed 

by the AMC in order to do informed searches or analysis. For 

example, to correctly reason about an activity associated with 

a username, the AMC must be able to access information 

about that username, such as the roles and access controls that 

are associated with that user. 

C. Auto-associative Memory Columns 

The analysis of real world data presents a challenge to 

computationally analyze very large graphs. The difficulty is 

not so much a data reduction problem as it is a data 

interpretation problem. A traditional approach to analyzing 

large graphs is to build the graph and then conduct reasoning 

over the entire graph. In contrast, the CHAMPION hierarchy 

of reasoners comprises a ―stack‖ of individual AMCs which 

reason over the data as it is introduced into the system in much 

smaller graphs than the entire dataset. The larger graph 

structure is built as data are analyzed; this produces a dynamic 

belief propagation network that takes in primitive data and 

pushes the interpretation of that data up the hierarchy. We can 

think of this as interpreting the current structure in the data 

and simplifying with abstracting semantics. Just as we can 

stack the AMCs, we can stack collections (regions) of AMCs 

that address reasoning or pattern recognition for different 

domains. Similarly, even higher level collections of AMCs 

enable reasoning across such regions, providing a natural 

mechanism for high level information fusion and analysis. 

Using a hierarchical framework of reasoners allows us to 

constrain the requirements of each reasoner to a narrowly-

defined purpose. There is almost a one to one relationship 

between AMCs and the classes defined in the domain 

ontology. With a well-formed domain ontology, we can 

overcome computational intractability by performing 

reasoning on subsets of the semantic graph. Rather than 

implementing a monolithic reasoner that is required to reason 

over all the concepts represented in the semantic graph, each 

reasoner in the hierarchy is only required to reason about a 

small set of relevant concepts.  

The belief propagation network performs a transformation 

of the low level literal inputs into higher level abstractions. 

Ingesting and properly formatting the input data for a given 

domain is performed by a reifier, which instantiates the input 

from a data source and packages the information into an OWL 

representation called an individual.  In turn these individuals 

are instantiated in Java objects called abstractions. The 

abstractions are added to the Working Memory of the 

CHAMPION system. 

D. Reifiers 

Reifiers are responsible for asserting individuals 

(primitives) into the Working Memory via abstractions. 

Although AMCs are domain agnostic, this is not possible with 

the reifiers. The reifier takes in raw literal data and forms an 

individual that is defined by the domain ontology. When raw 

data needs to be reified, specific code is required to convert 

the raw data into a data-type defined in the domain ontology. 

E. Provenance Information 

Provenance has been defined as the description of the 

origins of data and the process by which it came to exist [16, 

17]. Clearly this is an important requirement for the system 

that will facilitate the decision maker’s understanding of the 

reasoning process. The system has two locations where 

provenance information can be stored. The first is in the 

asserted individuals added to the graph. Reified individuals 

(i.e. individuals from a reifier) and inferred individuals (i.e. 

individuals from an AMC) can have data properties asserted 

specifying their time and source of instantiation. The second 

location for storing provenance information is the episodic 

memory of the AMCs. Each AMC has an instantiation history 

of all the individuals that it has classified as being a member 

of its governing class. This constitutes its case library, 

comprising each inference graph the AMC has asserted into 

the base graph. 

To date we have not focused on collection of provenance 

information. However, in future research we wish to use 

provenance information for two significant purposes: 1) 

intelligent rollback to a point of logical consistency, and 2) 



adaptive machine learning of higher level class resolutions 

based on case library analysis.    

IV. AN AGENT’S PURPOSE 

A. Initial Base Graph Assertions are “Primitives” 

The first assertions into the base graph are defined as 
―primitives.‖ These are not primitives in the same sense as how 
programming languages define them, but in the sense that they 
are defined by a subject matter expert. These primitives are 
nodes that are believed to be assertions with very low 
uncertainty. For example, the data reified into the base graph 
could be computer workstation events such as security events, 
application events, and system events. No assumptions are 
made about the events; they occurred and the information is 
reified into the base graph. However, as reasoning agents infer 
new assertions based upon these primitive assertions, 
uncertainty can be introduced into the graph. 

B. Inference Graph Assertions are “Abstractions” 

The AMCs are in fact ―classifiers‖. Each AMC in the 
hierarchy is configured by an ontology that defines classes that 
are the types of things in the domain of interest. In other words, 
the ontology contains the class definitions of the domain 
concepts. Class definitions are the abstract data types of the 
domain. Concepts are recognized by CHAMPION reasoners 
that have been configured to detect them. This means that for 
each AMC in the hierarchy there is a class definition in the 
governing ontology. 

The purpose of each AMC is to recognize the existence of 
an individual of the type that belongs to its assigned class. If 
the individual does exist, the agent publishes the appropriate 
assertions. 

V. THE TAXONOMY OF CHAMPION AMCS 

There are several types of AMCs in the CHAMPION 
system. Each AMC has the job of classifying the individuals 
that exist in the system. To deal with different kinds of 
concepts, it is necessary to define different kinds of reasoners 
within the AMCs. We have defined the following types of 
reasoning agents: 

 Subsumptive 

 Composite 

o Aggregate 

o Existential 

We will discuss each of these in the following sections. 

A. Subsumptive Reasoning Agents 

Subsumption is rather straight forward. The knowledge 
representation language (OWL) used to implement our 
governing domain ontology specifically defines the predicates 
for subclassing and superclassing. A subsumptive agent 
examines the state of subscribed subgraphs and determines if 
the subgraph is subsumed by a higher level class defined in the 
ontology. Consider the following example: 

A subsumptive reasoning agent would be used to recognize 
that an asserted Vehicle was in addition to being a Vehicle a 

Motorcycle as well. The reasoning agent would subscribe to 
individuals of type Vehicle, examine the state of that 
individual, and determine if the state of the individual meets 
the criteria for being a motorcycle. For instance, the Vehicle 
may have two wheels and handlebars, thus qualifying it as a 
Motorcycle. The reasoning agent would then publish the added 
assertion that the Vehicle was also a Motorcycle. 

B. Composite Reasoning Agents 

Composite reasoning agents are less straightforward. 
Unlike subsumption which is supported by explicit subclassing 
and superclassing predicates of standards based ontology 
languages, the composite reasoner examines user defined 
predicates to determine if the classification is valid. 
Subsumption only requires that a new typing assertion on an 
existing individual be made, not the creation of a new 
individual. A composite reasoner on the other hand may need 
to create a new named individual, not just new assertions on 
existing individuals. 

C. Aggregation Composite Reasoning Agents 

These agents must recognize when the requisite parts to an 
individual are present, and if so, create the new individual. An 
example of this kind of reasoning follows: 

Continuing with the Vehicle example, a composite 
reasoning agent would subscribe to subgraphs that represented 
parts of a Motorcycle. These would be individuals of type 
Wheel and Handlebar. When the reasoning agent recognizes 
that all the requisite parts of a specific Motorcycle exist it 
creates a new individual and makes the appropriate object 
property assertions. 

An important aspect of this aggregation process is the 
concept of making sure that the pieces are all parts of the same 
whole. In the CHAMPION system we refer to this notion as a 
―binning property.‖ This property can be thought of as a 
Vehicle Identification Number (VIN) on an automobile. The 
VIN is a number that is used to keep track of the parts that 
belong to a specific automobile. It is not true that any four 
wheels, any engine, any fender, or any two bumpers sensed as 
inputs are the parts that make up an automobile. There has to 
be a mechanism to assure us that these parts all belong to the 
same car. This is the purpose of the binning property of a 
CHAMPION Composite Reasoning Agent, to make sure that 
the parts are recognized as being parts of a specific whole. 

D. Existential Composite Reasoning Agents 

Existential reasoning agents are very similar to aggregation 
reasoning agents in the fact that they have the capability to 
create a new individual if it is appropriate to do so. However, 
the aggregate reasoning agent is looking for the sum of a 
whole, looking to entail the existence of a thing if its necessary 
parts exist. An existential reasoning agent is looking to entail 
the existence of a thing based on evidence that it should exist. 
As an example of existential reasoning, if we know that a 
traffic ticket exists which identifies a particular license plate, 
we can infer that a vehicle exists. In contrast, an example of 
aggregation reasoning would be if we watched for vehicle parts 
and when we found the parts necessary to make a vehicle we 
could infer a vehicle exists. 



The assertion that a traffic ticket exists carries little 
uncertainty. The inference that a vehicle exists based on the 
assertion of the traffic ticket carries with it a level of higher 
uncertainty than the existence of the traffic ticket. There could 
not have been a violation without the vehicle, but it may have 
been destroyed as a result of the violation. If we assert that it 
exists based on the fact that a traffic ticket refers to it, we are 
propagating a level of uncertainty. 

VI. AMC CLOCKWORKS – MAKING AMCS TICK 

CHAMPION AMCs comprise several components. The 
main component is a modified CBR mechanism. We have 
customized a traditional approach to CBR in order to meet the 
design criteria established early in our implementation. 

A. Traditional Case Based Reasoning Cycle 

A traditional CBR cycle iterates through instances of cases 
in a case library. As a new case is considered in traditional 
CBR it is compared to each of the cases in its case library. If a 
match is found it is considered to be a solution/match to the 
new case. If an exact match is not found in the case library, the 
closest match is modified to see if it can be made to match. If it 
can it is considered a solution and the modified case is added to 
the case library. 

B. CHAMPION’s Modified Case Based Reasoning Cycle 

We chose to alter the traditional CBR cycle because the 
iterations through the case library to find an exact match do not 
fit our functional requirement to use an invariant form to 
characterize solutions. 

The CHAMPION CBR cycle doesn’t iterate through 
instances of cases in a case library. As a new problem case is 
considered it is compared to semantic expressions to see if 
qualifies (i.e. it belongs to the appropriate class) to be in the 
case library. A Description Logic (DL) reasoner is used to 
examine the state of the new case, if that state entails that the 
classification is true, the new case is added to the case library, 
and published to the working memory (see Figure 2). 

  In traditional CBR the case library is used as a repository 
for cases that will be iteratively compared to new input cases. 
This is not the purpose of the case library in our modified 
version of CBR. The CHAMPION system maintains the case 
library for the purpose of statistical analysis. The results of the 
statistical analysis can be used to improve the semantic 
expressions that define whether or not the abstractions belong 
in the case library. 

C. Processes of the AMCs 

 The semantic expressions which define the class of objects 
recognized by the reasoning agents are implemented in the 
form of Semantic Web Rule Language (SWRL) and equivalent 
class expressions in OWL. The Reasoning Agents use a DL 
Reasoner to examine the state of the subscribed abstractions 
and modify the data and object properties of the abstractions. 

A basic flow of the processes of an AMC: 

1. Accept subscribed abstractions into local memory. 

2. Acquire the requisite/relevant knowledge from 
contextual knowledgebases and assert into local 
memory. 

3. Apply SWRL rules to abstractions to check and 
modify their state (i.e. their data and object 
properties).  

4. Check to see if the abstraction can be classified as 
the targeted type of the Reasoning Agent based on 
equivalent class expressions in the domain 
ontology 

5. If the DL reasoner has typed the abstraction as the 
targeted type, publish the abstraction to memory 
and add it to the case library of this agent.  

The purpose of the AMCs is to process abstractions 
(subscribed input) and decide if it is appropriate to publish 
additional assertions. The additional assertions are not limited 
to existing individuals, meaning that the AMCs can assert new 
named individuals if deemed appropriate. 

VII. AMC REGIONS 

The reasoning framework arranges the AMCs in a 
hierarchy. The lowest levels of the hierarchy contain AMCs 
that subscribe to the abstractions published to the working 
memory by the reifiers. The AMCs of the system have a 
publish and subscribe relationship with working memory (see 
Figures 4 and 5).  

When a low level AMC publishes an abstraction, a higher 
level AMC may be a subscriber of that type of abstraction. This 
is the method in which abstractions propagate up the hierarchy. 
As mentioned earlier, at the lowest levels in the hierarchy one 
expects that the abstractions contain very little uncertainty. As 
the AMCs are placed higher in the hierarchy the more 
uncertainty is likely in their output abstractions. 

 

 

 

Figure 4. AMCs Publish and Subscribe to and from Memory 



 

Figure 5. Abstractions passing up the AMC hierarchy 

VIII. APPLICATIONS  

The CHAMPION reasoning framework is being applied to 
a variety of advanced decision making problem domains, 
including cyber security/counterintelligence, counterterrorism/ 
weapons nonproliferation, and smart grid power consumption 
analysis. A cybersecurity/counterintelligence application 
focusing on countering the insider threat is illustrative. 

The insider threat refers to harmful acts that trusted 
individuals might carry out that may cause harm to the 
organization or those which benefit the individual. The insider 
threat is manifested when human behaviors depart from 
established policies, regardless of whether it results from 
malice or disregard for security policies. The annual e-Crime 
Watch Survey conducted by Carnegie-Mellon’s CERT 
program reveals that for both the government and commercial 
sectors, current or former employees and contractors pose the 
second greatest cybersecurity threat, exceeded only by hackers; 
the financial impact and operating losses due to insider 
intrusions are increasing [18,19].

Modeling employee computer behaviors of concern using 
knowledge engineering methods serves as a framework to 
explore the insider threat. A key to the identification of an 
insider threat is to understand the signatures of suspicious 
activity and to disrupt it in its early stages. The main objective 
of our research is the development, validation and 
improvement of knowledge discovery automation tools for 
cyber security personnel that will significantly reduce the 
amount of manual analysis while simultaneously improving the 
quality of perceived threat indicators [20]. 

To create useful models, information is acquired from 
multiple sources including specialized reports, open literature, 
and subject matter experts. This information is captured via 
interviews with subject-matter experts (SMEs) and the 
development of concept maps based on domain expertise and 
literature analysis.  

We conducted interviews of SMEs to capture information 
and priorities, to reveal how analysts intuitively conduct risk 
profiling, and to understand how they gather information about 
the purposes, goals and perceived risk mitigation outcomes of 
such activities. The information acquired is formally 
represented ontologically; some of the information is stored in 
contextual memory, and other information resides in ontologies 
that drive the AMCs and define the structure of the hierarchy of 
reasoners for this application. Figure 6 illustrates the 
CHAMPION system architecture within this application 
context. 

Another interesting application for this technology is 
understanding nuclear proliferation.  The nuclear fuel cycle is a 
large, complex process with many stages, dependencies, 
processes and signatures.  In the coming year the team will use 
the CHAMPION framework to provide a mechanism for 
exploring the nuclear fuel cycle (NFC) and the logical 
relationships between the activities, processes, and materials 
involved.  Working with SMEs, the team will encode the 
necessary knowledge into OWL to implement a proof-of-
concept demonstration that will focus on a portion of the NFC. 
As development continues, broader coverage of the NFC will 
be encoded. 
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Figure 6. CHAMPION Framework in an insider threat monitoring application 



IX. CONCLUSIONS 

We have described a new approach to computational 

reasoning models that combines key aspects of belief 

propagation networks, semantic web, Description Logics, and 

Case Based Reasoning to yield a system best characterized as 

a memory-prediction framework. This framework is 

functionally modeled after an interpretation of how the 

neocortex performs pattern recognition. It is implemented as a 

hierarchy of reasoning agents that retain certain critical 

functional requirements that produce a domain-independent 

model that may be applied to a variety of decision making 

problems. 

 

Earlier in this paper, we compared several extant 

approaches to problems in AI and noted the drawbacks of 

using rational decision making models to characterize human 

performance, such as represented in typical BN models that 

rely on probability theory constructs. Similar issues apply to 

models that apply other forms of probabilistic models such as 

subjective expected utility theory. Famous research programs 

conducted by Kahneman and Tversky [e.g., 21] demonstrate 

that human decision making is not rational and is rather 

characterized by the use of heuristics (or influenced by 

cognitive biases) that do not yield optimal decisions. The use 

of heuristics—and what has been described by Kahneman [22] 

as ―system 1 cognitive processes‖ – exploiting intuition and 

experience rather than procedural knowledge – is sometimes 

cited as a critical survival mechanism that accounts for expert 

decision making by firefighters and other highly experienced 

individuals who do not have time to systematically calculate 

and compare outcomes of alternative responses [23]. A 

conceptual model that reflects this view is the ―Recognition-

Primed Decision Making Model‖ (RPDM) offered by Gary 

Klein and collaborators [24]. In this regard, the basic structure 

of the CHAMPION reasoning framework, rooted in the notion 

of the memory-prediction system, is very compatible with this 

view of expert decision making. Indeed, the CHAMPION 

framework represents one method of implementing an 

operational version of a RPDM model. It is our hope that such 

a model, fortified by recent computational methods adopted 

from semantic Web technologies, will provide a major 

advancement in realizing the vision for joint cognitive systems 

for decision support.  
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