
Proceedings of the
Workshop “Ontologies come of Age in

the Semantic Web” (OCAS2011)
10th International Semantic Web

Conference
Bonn, Germany, October 24, 2011

edited by Ken Baclawski, John Bateman, Alexander García Castro,
Christoph Lange, and Kim Viljanen

October 24, 2011

Preface

This volume contains the papers presented at OCAS2011 (http://ocas.mywikipaper.
org), the Workshop “Ontologies come of Age in the Semantic Web” held on October 24,
2011 in Bonn, Germany.
There were 17 submissions. Each submission was reviewed by at least 2, and on the

average 3.6, program committee members. The committee decided to accept 12 papers,
9 of which were presented during the workshop.
The program also included one keynote, given by Deborah McGuinness.
We would like to thank

• our peer reviewers for carefully reviewing the submissions and giving constructive
feedback

• our keynote speaker for giving the audience further inspiration on the question
whether ontologies have come of age

• the sponsors of the OCAS challenge for their prizes

• EasyChair for their reviewing and proceedings generation support

• CEUR-WS.org for publishing the workshop proceedings

November 16, 2011
Bremen

Ken Baclawski
John Bateman

Alexander García Castro
Christoph Lange

Kim Viljanen

iii

http://ocas.mywikipaper.org
http://ocas.mywikipaper.org

Program Committee

Ken Baclawski VIStology, Inc.
John Bateman University of Bremen
Oscar Corcho Universidad Politécnica de Madrid
Mike Dean Raytheon BBN Technologies
Li Ding Rensselaer Polytechnic Institute
Alexander Garcia Postdoctoral fellow
Leyla Garcia Universitaet der Bundeswehr
Raul Garcia Universidad Politecnica de Madrid
Benjamin Good The Genomics Institute of the Novartis Research Founda-

tion
Michael Gruninger University of Toronto
Peter Haase fluid Operations
William Hogan University of Arkansas for Medical Sciences
Matthew Horridge The University of Manchester
Michael Kohlhase KWARC
Oliver Kutz University of Bremen, SFB/TR 8 Spatial Cognition
Christoph Lange Jacobs University Bremen
Riichiro Mizoguchi University of Osaka
Fabian Neuhaus NIST
Raul Palma Poznan Supercomputing and Networking Center
Carlos Pedrinaci Knowledge Media Institute, The Open University
Steve Pettifer The University of Manchester
Nigam Shah Stanford University
Carlos Toro Vicomtech
Jouni Tuominen Aalto University School of Science
Kim Viljanen Aalto University, School of Science
Boris Villazón-Terrazas Universidad Politecnica de Madrid

iv

Additional Reviewers

L

Le Pendu, Paea
N

Normann, Immanuel

v

Contents

Preface iii

Generic Multilevel Approach Designing Domain Ontologies based on XML Schemas
Thomas Bosch, Brigitte Mathiak 1

Extending Ontologies with Free Keywords in a Collaborative Annotation Envi-
ronment
Matias Frosterus, Eero Hyvönen, and Mika Wahlroos 13

Folksonomies behind the scenes
Leyla Jael García Castro and Alexander Garcia 19

Ontologies Come of Age with the iKUP Browser
Simon Jupp, Julie Klein, Panagiotis Moulos, Joost Schanstra, and Robert
Stevens 25

Dynamic is-a Hierarchy Generation for User Centric Semantic Web
Kouji Kozaki, Keisuke Hihara, and Riichiro Mizoguchi 29

MUTU: An Analysis Tool for Maintaining a System of Hierarchically Linked On-
tologies
Sini Pessala, Katri Seppälä, Osma Suominen, Matias Frosterus, Jouni Tuomi-
nen, and Eero Hyvönen 41

Ontology-Based Features Recognition and Design Rules Checker System
Luis Ramos, Alexander García, and John Bateman 48

Socio-technical Ontology Development for Modelling Sensemaking in Heteroge-
neous Domains
Dhavalkumar Thakker, Fan Yang-Turner, Lydia Lau, and Vania Dimitrova 60

iCAT: A Collaborative Authoring Tool for ICD-11
Tania Tudorache, Csongor I Nyulas, Natasha F. Noy, Timothy Redmond, and
Mark Musen 72

vi

Generic Multilevel Approach Designing Domain
Ontologies based on XML Schemas

 Thomas Bosch1 and Brigitte Mathiak2,

1 GESIS - Leibniz Institute for the Social Sciences, Square B2, 1,
68159 Mannheim, Germany

2 GESIS - Leibniz Institute for the Social Sciences, Lennéstr. 30,
53113 Bonn, Germany

{Thomas.Bosch, Brigitte.Mathiak}@gesis.org

Abstract. Designing an ontology for a specific domain is a time-consuming
process. In many cases, information sources like XML Schemas serve as a basis
for ontology engineers to conceptualize the intended ontologies. The ontology
design process is sped up significantly when XML Schemas are transformed
automatically into generated ontologies. An XML Schema Metamodel
Ontology has been designed to represent the components of the XML Schema
abstract data model. The generated ontologies’ classes are defined as sub
classes of this ontology. The classes specified for the generated ontologies are
intended to be further supplemented with additional semantic and domain
specific information defined in domain ontologies. The resulting ontologies are
as usable as ontologies that were constructed completely manual, but with a
fraction of necessary effort.

Keywords: Semantic Web, Ontology Design, XML Schema

1 Introduction

XML has reached wide acceptance as a data exchange format in e-business. Data and
metadata structured by ontologies can be published in the increasingly popular LOD
cloud to get linked with a huge number of other RDF datasets [1]. As RDF is an
established standard there is a plethora of tools which can be used to interoperate with
data and metadata represented in RDF. An effective and efficient cooperation
between e-business partners is only possible if they agree on a common syntax and
have a common understanding of the domain classes. XML Schema and OWL
support differing modeling goals. The data model of XML describes a node labeled
tree [2], the syntactic structure of XML document instances. OWL, however, is based
on the subject-predicate-object triples from RDF [3], based upon formal logic, and
describes semantic information about domain classes as well as their relations and
therefore allows the sharing of conceptualizations. XML represents a large set of
information in many domains. This fact has driven the development of general-
purpose tools for converting XML Schemas to OWL ontologies. The direct mapping
from XML and XML Schema to RDF and OWL is not sufficient, since it only

1

transports information about the syntactic structure of XML document instances.
Semantic information has to be added in a further step. The aim of this paper is to
bridge the gap between XML and OWL by lifting the syntactic level of XML
documents to the semantic level of OWL ontologies. The process of designing
domain ontologies is extremely time-consuming. XML Schemas describing specific
domains are often existent in early stages of the ontology design process. In this
paper, the authors describe a generic multilevel approach which accelerates the
process of designing domain ontologies from scratch based on already available
XML Schemas. The intention is to create generated ontologies automatically based on
any possible XML Schemas of an underlying domain data model using XSLT
transformations. Initially defined generated ontologies are linked to an ontology of the
appropriate domain used to specify supplementary semantic information not covered
in the XML Schemas. Domain experts enrich the domain ontology with additional
semantics needed for tasks typically performed in the particular domain.

2 Designing Domain Ontologies based on XML Schemas

Figure 1 sketches the devised underlying concept of the generic multilevel approach
for designing domain ontologies based on XML Schemas.

Fig. 1. Generic multilevel approach for designing domain ontologies based on XML Schemas

XSLT transformations map any XML Schemas to generated ontologies automatically.
The XML Schema Metamodel Ontology serves as a basis for this process. Domain
ontologies are related to generated ontologies in order to append semantic information
not expressed in the XML Schemas. Further, you may integrate external ontologies’

2

semantics. The relationships between the separate levels of XML and between the
distinct ontologies are delineated. You can derive generated ontologies and
corresponding XML Schemas simultaneously, automatically and model-driven from
the data model of the domain ontologies. The ensuing paragraphs present the different
levels of XML, the individual ontologies and their relationships in more detail.

2.1 XML Schema and the XML Schema Metamodel Ontology

XML [4] documents are commonly used to store and transfer information in
distributed environments. XML documents may be instances of XML Schemas [5]
determining their terminology and syntactic structure. The W3C has defined XML
Schema, the class of XML documents, recursively using the XML Schema language
to describe the XML Schema language [6], just like XML Schema documents are
XML documents describing XML documents. Generated ontologies are based on the
components of the XML Schema abstract data model, the meta-model of XML
Schema. Table 1 outlines the mappings between the XML Schema meta-model and
the XML Schema Metamodel Ontology. In order to visualize OWL language
constructs, Description Logic syntax is used.

Table 1. Mapping of the XML Schema meta-model to the XML Schema Metamodel Ontology

XML Schema for XML Schemas XML Schema Metamodel Ontology
meta-element information items classes: <meta-element information item>
attributes of meta-element information
items

datatype properties and associated
universal restrictions: <domain meta-
element information item> ⊑
∀<attribute>_<domain meta-element
information item>_String.String

texts contained in meta-element
information items

datatype property and associated
universal restriction: <domain meta-
element information item> ⊑
∀valueXSD_<domain meta-element
information item>_String.String

texts contained in XML document
instances’ components

datatype property and associated
universal restriction: <domain meta-
element information item> ⊑
∀valueXML_<domain meta-element
information item>_String.String

attributes of meta-element information
items referring to meta-element
information items

object properties and associated universal
restrictions: <domain meta-element
information item> ⊑
∀<attribute>_<domain meta-element
information item>_<range meta-element
information item>.<range meta-element
information item>

attributes ‘type’ and ‘base’ object properties and associated universal

3

restrictions: <domain meta-element
information item> ⊑
∀type|base_<domain meta-element
information item>_Type.Type

meta-element information items’ part-
of relationships

object properties and associated universal
restrictions: <domain meta-element
information item> ⊑ ∀contains_<domain
meta-element information item>_<range
meta-element information item>.<range
meta-element information item>

The authors have mapped the meta-element information items corresponding to the
XML Schema abstract data model components (e.g. ‘element’) directly to classes of
the XML Schema Metamodel Ontology (e.g. ‘Element’). Attributes of meta-element
information items have been mapped to datatype properties ‘<attribute>_<domain
meta-element information item>_String’ (e.g. ‘name_Element_String’) with the
classes representing the meta-element information items as domains and the built-in
primitive datatype ‘string’ as range. Universal restrictions on datatype properties have
been defined, since all range individuals of these datatype properties have to be of the
primitive datatype ‘string’: <domain meta-element information item> ⊑ ∀
<attribute>_<domain meta-element information item>_String.String (e.g. Element ⊑
∀ name_Element_String.String). As XML Schemas’ components can not only have
child elements as content, but also plain text, the datatype property
‘valueXSD_<domain meta-element information item>_String’ (e.g.
‘valueXSD_Documentation_String’) and the associated universal restriction <domain
meta-element information item> ⊑ ∀ valueXSD_<domain meta-element information
item>_String.String (e.g. Documentation ⊑ ∀ valueXSD_Documentation_String.
String) have been added, since the class representing the meta-element information
item is a sub-class of the anonymous super-class of all the individuals which have
only relationships along this datatype property to individuals of the class ‘String’
corresponding to the built-in datatype ‘string’ or have no relationships along this
datatype property. The XML Schema Metamodel Ontology includes the datatype
property ‘valueXML_<domain meta-element information item>_String’ and the
corresponding universal restriction <domain meta-element information item> ⊑ ∀
valueXML_<domain meta-element information item>_String.String, since XML
document instances’ components may contain text. Considering the OWL assertional
knowledge, the XML document fragment <VariableName ... lang="en">EF1
</VariableName> is mapped to the property assertions valueXML_Attribute_String
(Lang-Individual, 'en') and valueXML_Element_String (VariableName-Individual,
'EF1'). Attributes of meta-element information items such as ‘ref’ referring to meta-
element information items, have been transferred to object properties
‘<attribute>_<domain meta-element information item>_<range meta-element
information item>’ with corresponding universal restrictions <domain meta-element
information item> ⊑ ∀ <attribute>_<domain meta-element information item>_<range
meta-element information item>.<range meta-element information item> (e.g.
Attribute ⊑ ∀ ref_Attribute_Attribute.Attribute). Diverse meta-element information

4

items include the attributes ‘type’ or ‘base’. These attributes may have simple ur-type,
simple type or complex type definitions as possible attribute values. According to the
specified naming conventions, each attribute would be transformed into three
different object properties with the ranges ‘AnySimpleType’, ‘SimpleType’ and
‘ComplexType’. XSLT transformations, building generated ontologies automatically
based on XML Schemas, would have to determine the range of the object properties
belonging to specific ‘type’ and ‘base’ attributes at runtime. It is complicated and
error-prone to determine if type references either point to simple or complex type
definitions which are part of external XML Schemas’ namespaces. During the
transformation process, XML Schemas with appropriate target namespaces have to be
available and it has to be iterated over each simple and complex type. Due to these
reasons, the authors have decided to map the attributes ‘type’ and ‘base’ to the object
properties ‘type|base_<domain meta-element information item>_Type’ with the class
‘Type’ as range. ‘Type’ represents the super-class of all three possible type
definitions. As a consequence, each specific type definition can be in the range of the
‘type’ and ‘base’ object properties. Universal restrictions on these object properties
have been specified as well: <domain meta-element information item> ⊑
∀type|base_<domain meta-element information item>_Type.Type (e.g. Element ⊑ ∀
type_Element_Type.Type). Part-of relationships to child meta-element information
items as content of meta-element information items have been transferred to object
properties ‘contains_<domain meta-element information item>_<range meta-element
information item>’. Universal restrictions on each object property have been defined,
because the range of relationships along these object properties is assumed as fixed:
<domain meta-element information item> ⊑ ∀ contains_<domain meta-element
information item>_<range meta-element information item>.<range meta-element
information item> (e.g. ComplexType ⊑ ∀ contains_ComplexType_SimpleContent.
SimpleContent).

2.2 Generated Ontologies

Executing an XSLT script, the declarations and definitions of any XML Schemas are
transformed into classes of generated ontologies directly and automatically. As all
components of the normative XML Schema for XML Schemas are included in the
XML Schema Metamodel Ontology, this works with all valid XML Schemas. The
mapping process takes seconds and requires no human interaction. The generated
ontologies’ classes are defined as sub-classes of the XML Schema Metamodel
Ontology. Hence, all generated ontologies are based on the same reusable classes.
Like heavyweight ontologies [7], the generated ontologies consist of a hierarchy of
classes as well as relations with domains and ranges. Moreover, the generated
ontologies include universal restrictions on object properties, hasValue restrictions on
datatype properties and complex classes consisting of the union of multiple classes’
individuals, if universal restrictions on object properties have more than one class in
the range. Table 2 depicts the mappings between XML Schemas and the generated
ontologies.

5

Table 2. Mapping of XML Schemas to generated ontologies

XML Schemas Generated Ontologies
element information items sub-classes of XML Schema Metamodel

Ontology’s classes:
<element information item> ⊑
<meta-element information item>

values of element information items’
attributes

hasValue restrictions on XML Schema
Metamodel Ontology’s datatype
properties: <element information item> ⊑
∃<attribute>_<domain meta-element
information item>_String.{<String>}

texts contained in element information
items

hasValue restrictions on XML Schema
Metamodel Ontology’s datatype
properties: <element information item> ⊑
∃valueXSD_<domain meta-element
information item>_String.{<String>}

values of element information items’
attributes referring to other element
information items

universal restrictions on XML Schema
Metamodel Ontology’s object properties:
<domain element information item> ⊑
∀<attribute>_<domain meta-element
information item>_<range meta-element
information item>.<range element
information item>

values of attributes ‘type’ and ‘base’ universal restrictions on XML Schema
Metamodel Ontology’s object properties:
<domain element information item> ⊑
∀type|base_<domain meta-element
information item>_Type.<range element
information item>

element information items’ part-of
relationships

universal restrictions on XML Schema
Metamodel Ontology’s object properties:
<domain element information item> ⊑
∀contains_<domain meta-element
information item>_<range meta-element
information item>.<union of range
element information items>

XML Schemas’ element information items are mapped to sub-classes of the XML
Schema Metamodel Ontology’s classes: <element information item> ⊑ <meta
element information item>. The element information item ‘element’ with the assigned
name ‘VariableName’ (<xs:element name="VariableName" ... />), for example, is
tranferred to the class ‘VariableName’ with ‘Element’ as super-class (VariableName ⊑ Element), since all ‘VariableName’ individuals are also part of the ‘Element’ class
extension. Values of element information items’ attributes are transformed into
hasValue restrictions on the XML Schema Metamodel Ontology’s datatype properties

6

<element information item> ⊑ ∃ <attribute>_<domain meta-element information
item>_String.{<String>}, as the element information item is the sub-class of the
anonymous super-class of all the individuals which have at least one relationship
along the datatype property ‘<attribute>_<domain meta-element information
item>_String‘ to the specified individual of the primitive datatype ‘string’. For
instance, the value of the attribute ‘name’ of the element information item ‘element’
(<xs:element name="VariableName" ... />) is converted to the datatype property
hasValue restriction VariableName ⊑ ∃ name_Element_String.{'VariableName'},
since each element ‘VariableName’ has at least one associated name, namely
‘VariableName’. Texts contained in element information items are mapped to
hasValue restrictions on the XML Schema Metamodel Ontology’s datatype property
<element information item> ⊑ ∃ valueXSD_<domain meta-element information
item>_String.{<String>}. For example, the text included in the element information
item ‘documentation’ (<xs:documentation>Indicates the language of
content.</xs:documentation>) is translated into the datatype property hasValue
restriction Documentation1 ⊑ ∃ valueXSD_Documentation_String. {'Indicates the
language of content.'}. As element information items may contain more than one
element information item of the same meta-element information item, the contained
element information items’ identifiers are sequential (e.g. Documentation1). Values
of element information items’ attributes referring to other element information items
are converted to universal restrictions on the XML Schema Metamodel Ontology’s
object properties <domain element information item> ⊑ ∀ <attribute>_<domain
meta-element information item>_<range meta-element information item>.<range
element information item>. The reference to the element information item ‘attribute’
called ‘lang’ (<xs:attribute ref="lang"/>) is transformed into the object property
universal restriction Lang-Reference ⊑ ∀ ref_Attribute_Attribute.Lang. The values of
the attributes ‘type’ and ‘base’ are transferred to universal restrictions on XML
Schema Metamodel Ontology’s object properties: <domain element information
item> ⊑ ∀ type|base_<domain meta-element information item>_Type.<range element
information item>. The attribute ‘type’ of the element information item ‘element’
named ‘VariableName’ (<xs:element name="VariableName" type="NameType"/>),
for example, is converted to the object property’s universal restriction VariableName ⊑ ∀ type_Element_Type.NameType. Element information items’ part-of
relationships are realized by universal restrictions on XML Schema Metamodel
Ontology’s object properties <domain element information item> ⊑ ∀
contains_<domain meta-element information item>_<range meta-element
information item>.<union of range element information items>. The complex type
definition ‘InternationalStringType’ includes only one ‘simpleContent’ element
information item (<xs:complexType name="InternationalStringType">
...<xs:simpleContent>...</xs:simpleContent></xs:complexType>). As a consequence,
the range of the object property can only consist of individuals of one class
(InternationalStringType ⊑ ∀ contains_ComplexType_SimpleContent.Simple
Content1). If element information items like ‘extension’ have more than one element
information item as content (e.g. <xs:extension...><xs:attribute name="translated"...>
...</xs:attribute><xs:attribute name="translatable"..>..</xs:attribute></xs:extension>),
the domain element information items can only have relationships along the object

7

property to individuals of the complex class consisting of the union of individuals of
multiple classes representing the contained range element information items
(Extension1 ⊑ ∀ contains_Extension_Attribute.(Translated ⊔ Translatable)).

2.3 Domain Ontologies and Integration of Other Ontologies

In domain ontologies, the semantics of classes are specified as exactly as needed
using formal logic [7]. Each data model of a specific domain can be expressed in the
form of a domain ontology. Classes of any number of generated ontologies of a given
domain can be annotated as equivalent to classes of the domain ontology (<domain
ontology class> ≡ <generated ontology class>). Thus, the information of a particular
domain stored in generated ontologies and in corresponding XML Schemas can be
reused during early stages of the domain ontology design process. Ontology engineers
can add further domain specific semantic information to the domain ontology
subsequently in a continuous way. You can perform queries on domain ontologies
using the semantics of the particular domain without knowledge of complex XML
Schemas’ structures. Requests on domain ontologies are propagated to the underlying
generated ontology or ontologies (if the domain data model consists of more than one
XML Schema) via equivalence relationships. Hence, there is no need to query each
associated generated ontology individually using different classes, object and datatype
properties. Classes of domain ontologies can be annotated as being equivalent to
existing similar and widely adopted classes of external ontologies (<domain ontology
class> ≡ <external ontology class>; other types of relationships are also possible).
Due to this, reasoners may use additional semantic information defined in external
ontologies for deductions [8].

3 Related Work

The XML Schema Metamodel Ontology, although much more complex, corresponds
to the general database ontology designed by Kupfer et al. [8]. These ontology
engineers have defined a database schema-to-ontology mapping, which means that
specific database ontologies are generated automatically from any database schemas.
Kupfer et al. have specified the conceptual model of the general database ontology as
follows: databases can consist of multiple tables and tables can comprise diverse
attributes. The authors used the three classes ‘Database’, ‘Table’, and ‘Attribute’ as
well as the object property ‘consistsOf’ to describe database schemas. The classes’
identifiers serve as links to all tables and attributes of the underlying database
schemas. Kupfer et al. depicted domain ontologies in the context of the developed
general database ontology. Using domain ontologies, semantic information about
specific domains is annotated and added supplementary to database ontologies. The
relation between database ontologies’ classes and classes of domain ontologies has
been conceptualized using the object property ‘containsDataAbout’.
Several strategies lifting the syntactic level of XML documents to the semantic level
of OWL ontologies can be distinguished. The authors have clustered appropriate tools

8

implementing these transformations into three classes depending on the kind of
conversion either at the instance, the conceptual, or both the instance and the
conceptual level. At the instance level, Klein has developed the so-called RDF
Schema mapping ontology enabling a one-way mapping of XML documents to RDF.
Relevant XML documents’ content can be identified [9]. Extending this approach,
Battle has introduced a bidirectional mapping of XML components to RDF [10]. The
WEESA system implements an automatic transformation from XML to RDF using an
OWL ontology, manually created from corresponding XML Schemas and manually
defined rules. XML document instances are not mapped to OWL equivalents [11].
O’Connor and Das developed an approach transforming XML documents to
individuals of an OWL ontology describing the serialization of the XML document.
SWRL [12] is used to map these instances to individuals of a domain ontology [13].
At the conceptual level you can distinguish between approaches converting XML
schema languages to RDFS or OWL. Several languages for writing schemas like
DTD [4], XML Schema [5], DSD [14] and Relax NG [15] exist. The prototype
OntoLiFT [16] offers a generic means for converting arbitrary XML schema
languages to RDFS ontologies semi-automatically. In a first step, XML schema
languages are transformed into regular tree grammars consisting of non-terminals,
terminals, start symbols and production rules [17]. In a second step, non-terminals as
well as terminals are converted to RDFS classes and production rules are mapped to
RDF properties. In comparison with our approach, OntoLiFt converts any XML
schema language and not just XML Schema to ontologies. Anicic et al. evolved an
approach based on meta-models transforming between the different models of XML
Schema and OWL [18].
At the instance and the conceptual level, there are methods transforming XML to
RDF and XML Schema to either RDFS or OWL. Within the EU-funded project called
‘Harmonise’ the interoperability of existing standards for the exchange of tourism
data has been achieved by the transformation of XML documents and XML Schemas
into RDF and RDFS ontologies which have been mapped to each other [19]. Using
the approach of O’Connor and Das [20], XML document instances are transformed to
OWL ontologies even though associated XML Schemas not exist. As a consequence,
unstructured contents can be mapped to OWL ontologies as well. XML Schemas can
also be mapped to OWL ontologies, as XML Schema documents are represented in
XML, too. New OWL ontologies can be generated from scratch and existing ones can
be extended. O’Connor and Das evolved XML Master, a language describing OWL
ontologies declaratively. XML Master combines the Manchester OWL Syntax [21]
and XPath [22] to refer to XML content. O’Connor and Das criticize the limited and
unsatisfactory number of OWL constructs supported by current tools converting XML
Schemas to OWL ontologies. Thus, all OWL constructs are covered. One
shortcoming associated with this method is that you have to write mapping language
expressions manually and therefore you cannot transform XML documents and XML
Schemas to OWL ontologies automatically. Another drawback is that ontology
engineers have to be familiar with the Manchester OWL Syntax and XPath in order to
express the mappings. Ferdinand et al. propose both mappings from XML to RDF and
XML Schema to OWL which are independent of each other. This means, OWL
individuals do not necessarily correspond to the OWL conceptual model, since XML
documents’ declarations and definitions may be transferred to differing OWL

9

constructs [23]. In addition, another system can be stated transferring XML Schema
components to OWL language constructs at the terminological level and XML
document instances to OWL individuals at the assertional level. XPath expressions
are applied selecting XML documents’ content [24]. Besides that, the approach of
Tous et al. is very similar to this method [25]. The authors of [26] devised a mapping
between XML and RDF and between XML Schema and OWL .The authors assume
that XML documents are structured like relational databases. Thus, XML documents’
relational structures are discovered and represented in OWL. Relations correspond to
classes, columns to properties, and rows to instances. XML data model elements are
mapped automatically to components of the OWL data model. Named simple and
complex types, for instance, are transferred to classes. Elements, containing other
elements or having at least one attribute, are converted to classes and object properties
between these classes. Both elements, including neither attributes nor sub-elements,
and attributes, assumed to represent database columns, are transformed into datatype
properties with the surrounding element as their domain. Also, XML cardinality
contraints are transformed into equivalent OWL cardinality restrictions.
Many approaches try to extrac semantics from XML Schemas. The suggested
approach, in contrast, only gains information about the syntactic structure of XML
document instances contained in XML Schemas. Generated ontologies are connected
with domain ontologies which are enriched with semantic domain specific
information in a further step. The majority of the tools attempt to convert either
schemas to ontologies at the conceptual level or XML to RDF at the instance level.
The method, presented in this paper, follows a complete approach transforming XML
document instances’ content to OWL individuals as well as XML Schemas to OWL.
In comparison with our approach, many others transform XML to RDF and/or XML
schema languages to ontologies in a manual or at most in a semi-automatic and not
automatic manner. Furthermore, diverse existent methods generate RDFS ontologies
and not the more expressive OWL ontologies.

4 Conclusion

The aim of this paper is to bridge the gap between XML and OWL. XML Schema and
OWL ontologies follow differing modeling goals. While XML Schema describes the
syntactic structure of XML document instances, OWL is based on formal logic and
describes the semantics of data models. In this paper, the authors demonstrated a
generic multilevel approach designing domain ontologies when XML Schemas are
provided as input sources for the ontology design process. This process of designing
ontologies from scratch requires considerable effort. The normal procedure of
ontology engineers is specifying the domain ontologies’ semantics in collaboration
with domain experts already at the beginning of the process. Applying our approach,
ontology engineers are allowed to pursue a different path. They can rely on existent
information located in XML Schemas of a given domain data model. To realize this,
generated ontologies are built in an automatic way based on already available XML
Schemas. Therefore, time-consuming work is already done and can be reused by the
ontology engineers who do not have to define the domain data model anew. The

10

generated ontologies’ classes are based on super-classes of the XML Schema
Metamodel Ontology. This ontology consists of classes representing the components
of the XML Schema abstract domain model and the corresponding element
information items. The components of the XML Schema abstract data model are used
to describe XML Schemas recursively using XML Schema language constructs.
Based on interviews with domain experts, the information stored in the generated
ontologies can be extended in a continuous manner. This supplemental semantic
domain specific information is defined in domain ontologies whose classes are linked
to the generated ontologies’ classes via equivalence relationships. Domain ontologies’
classes can be annotated as equivalent to classes of widely adopted external
ontologies. As a consequence, reasoners may use additional semantics for deductions.

5 Future Work

A complete use case designing a specific domain ontology using the devised
multilevel approach based on already existing XML Schemas will be described in
detail. The underlying data model of the application domain is called the Data
Documentation Initiative (DDI) [27]. DDI in its current version 3 is an international
standard for describing data from the social, behavioral and economic sciences.
Furthermore, more use cases from different domains will be shown to prove the
generality of the developed approach. The main benefit associated with this approach,
saving time for ontology engineers in the process of designing domain ontologies
from scratch, will be evaluated as well.
The authors will develop an XSLT framework to implement a complete stylesheet-
driven approach to generate OWL ontologies. So far, XSLT transformations build
generated ontologies automatically based on arbitrary XML Schemas. Moreover, the
authors will write XSLT transformations, converting XML documents without
corresponding XML Schemas determining their syntactic structure to generated
ontologies. The first step is creating suitable XML Schemas out of XML document
instances automatically. These XML Schemas will then be converted to generated
ontologies in a second step. Another XSLT stylesheet will convert XML document
instances’ data to OWL instances according to the generated ontologies. Generated
ontologies and corresponding XML Schemas will be derived automaticly from
designed domain ontologies using XSLT transformations. These scripts will be
evolved realizing the model-driven development of generated ontologies and
underlying XML Schemas associated with the domain ontologies.

References

1. Linked Data, http://linkeddata.org
2. The XML data model, http://www.w3.org/XML/Datamodel.html
3. Resource Description Framework (RDF): concepts and abstract syntax,

http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/

11

4. Extensible Markup Language (XML) 1.0 (fifth edition) - W3C recommendation 26
November 2008, http://www.w3.org/TR/2008/REC-xml-20081126/

5. XML Schema part 0: primer second edition - W3C recommendation 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

6. XML Schema part 1: structures second edition - W3C recommendation 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

7. Stuckenschmidt, H.: Ontologien: Konzepte, Technologien und Anwendungen. Springer-
Verlag, Berlin Heidelberg (2009)

8. Kupfer, A., Eckstein, S., Störmann B., Neumann K., Mathiak B.: Methods for a
synchronised evolution of databases and associated ontologies. In: Proceeding of the 2007
Conference on Databases and Information Systems IV. (2007)

9. Klein, M.C.A.: Interpreting XML documents via an RDF Schema ontology. In: 13th
International Workshop on Database and Expert Systems Applications, Aix-en-Provence
(2002)

10.Battle, S.: Gloze: XML to RDF and back again. In: 1st Jena User Conference, Bristol (2006)
11.Reif, G., Gall, H, Jazayeri, M.: WEESA - web engineering for Semantic Web applications.

In: 14th World Wide Web Conference, Chiba (2005)
12.SWRL: a Semantic Web Rule Language combining OWL and RuleML,

http://www.w3.org/Submission/SWRL/
13.O'Connor, M.J., Das, A.K.: Semantic reasoning with XML-based biomedical information

models. In: 13th World Congress on Medical Informatics, Cape Town (2010)
14.Karlund, N., Moller, A., Schwartzbach, M.I.: DSD: a schema language for XML. In: ACM

SIGSOFT Workshop on Formal Methods in Software Practice. (2000)
15.Clark, J., Cowan, J., Fitzgerald, M., Kawaguchi, J., Lubell, J., Murata, M., Walsh, N.,

Webber, D.: Information technology – document schema definition language (DSDL) – part
2: regular-grammar-based validation – RELAX NG. ISO/IEC 19757-2:2003(E). (2003)

16. Volz, R., Oberle, D., Staab, S., Studer R.: OntoLiFT Prototype – WonderWeb: ontology
infrastructure for the Semantic Web. Karlsruhe (2003)

17.Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages using
formal language theory. In: ACM Transactions on Internet Technology. vol. 5, New York
(2005)

18.Anicic, N., Ivezic, N., Marjanovic, Z.: Mapping XML Schema to OWL. In: Enterprise
Interoperability, Part V, pp. 243--252, Springer, Berlin (2007)

19.Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H.: Harmonise: a solution for data
interoperability. In: Proceedings of the 2nd IFIP Conference on E-Commerce, E-Business,
E-Government I3E. (2002)

20.O’Connor, M. J., Das, A. K.: Acquiring OWL ontologies from XML documents. In:
Proceedings of the Sixth International Conference on Knowledge Capture, New York (2011)

21. OWL 2 Web Ontology Language Manchester Syntax, http://www.w3.org/TR/owl2-
manchester-syntax/

22. XML Path Language (XPath) 2.0 (second edition), http://www.w3.org/TR/xpath20/
23.Ferdinand, M., Zirpins, C., Trastour, D.: Lifting XML Schema to OWL. In: Web

Engineering - 4th International Conference, Munich (2004)
24.Kobeissy, N., Genet, M.G., Zeghlache, D.: Mapping XML to OWL for seamless

information retrieval in context-aware environments. In: International Conference on
Pervasive Services, Istanbul (2007)

25.Tous, R., Garcia, R., Rodriguez, E., Delgado, J.: Architecture of a semantic XPath
processor. Application to digital rights management. In: 6th E-Commerce and Web
Technologies, Copenhagen (2005)

26.Bohring, H., Auer, S.: Mapping XML to OWL Ontologies. In: Leipziger Informatik Tage,
vol. 72, Leipzig (2005)

27.Data Documentation Initiative, http://www.ddialliance.org

12

Extending Ontologies with Free Keywords in a
Collaborative Annotation Environment

Matias Frosterus, Mika Wahlroos, and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Aalto University School of Science, Dept. of Media Technology, and

University of Helsinki, Dept. of Computer Science
http://www.seco.tkk.fi/

firstname.lastname@aalto.fi

Abstract. Semantic web technologies have introduced the idea of annotating
content in terms of concepts taken from ontologies. Since concepts are defined
in terms of properties and relations to other concepts, descriptions grow up into
larger RDF graphs that can be used as a basis for data integration and intelligent
information retrieval. Since ontologies do not typically contain all the possible
concepts needed for annotation, it is usually necessary to offer the annotator the
possibility to introduce new free keywords or tags in addition to the predefined
ontology concepts. The problem then is that free keywords/tags do not have onto-
logical connections to the rest of the RDF graph, unless such relations are defined
by the annotator. We present a process for integrating free keywordsinto the onto-
logical framework, and a practical tool implementation of it, discussing thechal-
lenges and possibilities introduced by the system. We also describe a case study
performed for the Finnish Defence Forces, where the tool is used forcreating a
faceted semantic search portal featuring the free keywords and the ontological
concepts at the same time.

1 Introduction

1.1 Position Statement

A large amount of metadata is being produced through free keywords, or tags, on the
web allowing for a robust, easy-to-use, and flexible annotation of content. Ontologies
offer an easy way to impose structure and meaning to the free keywords linking the
annotated material into the larger framework of the Semantic Web.

1.2 The challenges of free tagging

A common practice in community-based annotation is to allowthe users to create the
needed terms, or tags, freely when describing objects. Thisfacilitates flexibility in an-
notations and makes it easier for novice users to describe things. On the other hand, in
the professional metadata world (e.g., in museums, libraries, and archives) using shared
pre-defined thesauri is usually recommended for enhancing interoperability between
annotations of different persons, and enhancing search precision and recall in end-user

13

applications. Both approaches are usually needed, and can also be supported to some
extent by e.g. suggesting the use of existing tags.

A more advanced approach than using thesauri is to use ontologies [6] for harmo-
nizing content indexing. Then indexing is based on language-independent concepts re-
ferred to by URIs, and keywords are labels of the actual underlying concepts. Defining
the meaning of indexing terms by their properties and relations to other concepts allows
for better interoperability of contents and their use by machines. This is important in
application areas, such as semantic search, recommending,linking, and automatic in-
dexing. With even a little extra work, e.g. by just systematically organizing concepts
along subclass hierarchies and partonomies, substantial benefits can be obtained [2].

Free keywords are needed in many situations:

1. There can be omissions in the ontology that should be added, but are not currently
there.

2. Concepts for new things and phenomena that have not yet been added to the ontol-
ogy may be needed in annotations.

3. The number of concepts, e.g., the names of plants, can be too numerous to be
included in the ontology, but can still be needed in annotations.

4. Instance data, e.g., persons, places, events etc. can be needed in annotations.

There is a need for a system that integrates new free keywordsinto the wider framework
of ontologies in an annotation environment. As a solution, we present a system and its
implementation for introducing free keywords into ontologies. The next section presents
a general overview of the process. After this a specific implementation in a case study
done for the Finnish Defence Forces is presented. Finally, we conclude with discussing
related and future work.

2 Using Free Keywords in Annotations

Our key problem is how to incorporate metadata with free keywords into an ontology-
driven annotation environment in a simple way that does not require ontology modeling
knowledge from the annotators. This requires that the free keywords must be turned
into a compatible, machine-readable RDF form, and that the relations between the free
keywords and the existing ontologies must be established.

The first step in the process depicted in Figure 1 is to go through the free keywords
used in the annotations (1) and match as many as possible to existing ontological con-
cepts (2). Keywords should be transformed into the base formand the strings compared
to the labels in the ontology.

Keywords that did not match to ontology concepts are then made into RDF objects
with the original keyword as the label (3). The class for these should be kept separate
from the class of the concepts in the ontology since these have not been approved by on-
tology developers, and are therefore less reliable than theproper ontological concepts.
At this stage, the keyword object can be used in further annotations, and the list can be
edited and pruned as needed. However, at this point it does not offer much additional
usability compared to existing tagging systems based on using isolated tags.

14

Fig. 1.The process of utilizing free annotations in an ontology-driven annotationenvironment

In order to take full advantage of using ontologies, the keyword objects should be
mapped to the existing ontology (4), typically through therdfs:subClassOf property.
Also other relations such as partonomy or equivalence can beused. The keyword objects
also do not need to be connected directly to the ontology, butrather can be connected
to other keyword objects that are in turn connected to the ontology. When the ontology
is developed further (5), the keywords that have been used the most make for prime
candidates to be included into the next version of the ontology.

There should be a way, however, for the annotators to keep some keywords out from
ontological development if the annotator knows that the keyword will not be of interest
to the ontology developers or if the keyword itself is such that it is not wanted to be
accessible to the wider public. This latter case is more likely in situations where the
annotators are working with sensitive data. The same mechanics can be used by the
ontology developers themselves to mark free keywords that they have reviewed but not
deemed fit for the ontology.

When new free keywords are needed, the annotator can align them with other onto-
logical concepts straightaway and thus make its meaning explicit within the annotation
framework used, leading to less ambiguity. Furthermore, byusing literal properties,
the annotator can provide detailed explanations of the concept to human readers, and
include e.g. labels in different languages, acronyms, and synonyms for the keyword.

A system realizing the process should fulfill the following requirements:

– facilitate finding ontological concepts and free keyword objects for annotations,
– allow the creation of new free keyword objects,
– facilitate the mapping of new free keyword objects to each other and to ontological

concepts, and
– instantly show new keyword objects to other annotators and allow their use.

Finally, all of this should be doable without technical expertise, with the application
hiding the complexities of the RDF model in the background.

3 Case Study: The Finnish Defence Forces’ Norms

The process was implemented in a project done for the FinnishDefence Forces’ norms
database. The norms comprise of documents describing procedures and regulations as

15

well as the associated metadata in XML format. The goal of theproject was to imple-
ment a faceted search portal for the norms utilizing the semantic web technologies.

Metadata about documents included annotations about the subject of the norms us-
ing keyword from the Defence Administration’s Thesaurus aswell free keywords cho-
sen by the annotators. The free keywords contained some spelling mistakes as well as
multiples of some keywords (i.e. a singular and a plural formof the same keyword).

For the ontology we used the Finnish Defence Administration’s Ontology PUHO1

which is a domain ontology comprised of concepts relevant tothe Finnish Defence
Forces developed from the Defence Administration’s Thesaurus that has been in use for
the annotations of the organization’s documents. PUHO extends the General Finnish
Upper Ontology YSO2 so it was also included in the project. For easy use in different
applications, the ontology is hosted in the ONKI ontology service[9], which contains
several different interfaces for easy integration into other systems and applications.

The metadata was transformed into RDF using a custom conversion process which
involved matching keywords present in the metadata with concepts defined in the ontol-
ogy. Lemmatized forms of the keywords were first obtained in order to identify differ-
ent inflected forms of the same word, and the lemmatized keywords were then matched
with similarly lemmatized labels of ontological concepts using strict string matching.
Keywords that did not match the label of any ontological concept were included as new
RDF resources with their own URIs.

Once the conversion was ready, the RDF was loaded into the SAHA3 metadata
editor [4], which is easily configurable to different schemas, can be used by multiple
annotators simultaneously, and works in a normal web browser, therefore needing no
special software to be installed. The support for multiple annotators is implemented
in a robust way with synchronization and locks which guarantee that the annotators
don’t interfere with each other’s work. The tool also includes a chat channel in case
online dicussions between annotators are needed. Using SAHA3, the annotators can
collaboratively clean up the free keywords as needed and mapthem to the ontology,
and SAHA3 realizes the requirements set in section 2. SAHA3 is available as open
source at Google Code3.

For the publication of the metadata, SAHA3 is integrated with the multi-faceted
search portal generator HAKO that provides easy access to the datasets from different
faceted viewpoints. The facets are built automatically based on the properties of the
metadata according to a simple configuration description, and the faceted search ap-
plication is complemented by free text search. HAKO works ina normal web browser
allowing easy access to the data from anywhere. For machine use, SAHA3 and HAKO
have two machine APIs: one for using the content as an ONKI ontology service [7] for
annotation work, and one for using the content via a SPARQL end-point, which can be
used by other applications to access all the metadata as needed.

In our case, one of the facets was the subject of the norms featuring both the onto-
logical concepts from PUHO as well as the new free keyword objects. The hierarchical

1 http://onki.fi/en/browser/overview/puho
2 http://www.seco.tkk.fi/ontologies/yso/
3 http://code.google.com/p/saha/

16

facet contains both types of concepts integrated so that a user does not see a difference
between them since the inner workings of the system are of no interest to the user.

4 Discussion and Related Work

This paper presented a process of bringing free keyword annotations into the framework
of an ontology-driven annotation system, detailing the different steps necessary as well
as the requirements for the tools that facilitate this process. A case study where this was
done was presented and the tools used.

Folksonomies and ontologies have been combined before [3, 8, 5] but much of the
focus has been on blogs and similar domains where the annotations have been done by
the public within a completely free framework, as opposed toprofessional annotators
working with free keywords in tandem with a controlled vocabulary. Others have built
domain ontologies based on partially controlled and partially free tagging data and dis-
cussed the need to merge future development of the controlled tag vocabulary with the
ontology [1]. Our work is more focused on the process of bringing the free keywords
into the ontological framework as opposed to using them to build new ontologies or to
permanently extend existing ones.

In addition to processes for manually defining relations between isolated tags and
ontological concepts, ontologies have also been derived from folksonomies using au-
tomatic or semi-automatic methods based on machine learning [3]. Much of the work
has focused on discovering implicit semantic relations between tags based on statistical
analysis of connections between users, tags, and the objects tagged by the users. The
focus of our work is on relatively sparse free keyword data which may not lend itself
well to using statistical analysis of the tagging data as theprimary technique.

Next, our goal is to try to devise ways to facilitate mapping the free keywords into
the ontology easier by trying to reason possible relations from their usage alongside
the ontology terms. This could also be used to find out relations between the keywords
themselves. We also intend to evaluate the benefits of the system described in the case
study from the perspective of practical use cases in document management and search
of the norms database.

AcknowledgementsThis work is part of the National Semantic Web Ontology project
in Finland4 FinnONTO (2003–2012), funded currently by the National Technology and
Innovation Agency (Tekes) and a consortium of 35 public organizations and companies.

References

1. Mihai Codescu, Gregor Horsinka, Oliver Kutz, Till Mossakowski, and Rafaela Rau. OSMonto
- an ontology of OpenStreetMap tags. InState of the map Europe (SOTM-EU) 2011, 2011.

2. Eero Hyv̈onen, Kim Viljanen, Jouni Tuominen, and Katri Seppälä. Building a national se-
mantic web ontology and ontology service infrastructure—the FinnONTO approach. InPro-
ceedings of the ESWC 2008, Tenerife, Spain. Springer–Verlag, 2008.

4 http://www.seco.tkk.fi/projects/finnonto/

17

3. Hak Lae Kim, Simon Scerri, John G. Breslin, Stefan Decker, and Hong Gee Kim. The state of
the art in tag ontologies: a semantic model for tagging and folksonomies. In Proceedings of the
2008 International Conference on Dublin Core and Metadata Applications, pages 128–137.
Dublin Core Metadata Initiative, 2008.

4. Jussi Kurki and Eero Hyv̈onen. Collaborative metadata editor integrated with ontology ser-
vices and faceted portals. InWorkshop on Ontology Repositories and Editors for the Semantic
Web (ORES 2010), the Extended Semantic Web Conference ESWC 2010, Heraklion, Greece.
CEUR Workshop Proceedings, http://CEUR-WS.org, 2010.

5. Alexandre Passant. Using ontologies to strengthen folksonomies and enrich information re-
trieval in weblogs. InICWSM’2007, 2007.

6. S. Staab and R. Studer, editors.Handbook on ontologies (2nd Edition). Springer–Verlag,
2009.

7. Jouni Tuominen, Matias Frosterus, Kim Viljanen, and Eero Hyvönen. ONKI SKOS server for
publishing and utilizing SKOS vocabularies and ontologies as services. InProceedings of the
6th European Semantic Web Conference (ESWC 2009), 2009. Springer–Verlag.

8. Céline Van Damme, Martin Hepp, and Katharina Siorpaes. FolksOntology: An Integrated
Approach for Turning Folksonomies into Ontologies. InBridging the Gep between Semantic
Web and Web 2.0 (SemNet 2007), pages 57–70, 2007.

9. Kim Viljanen, Jouni Tuominen, and Eero Hyvönen. Ontology libraries for production use:
The Finnish ontology library service ONKI. InProceedings of the ESWC 2009, Heraklion,
Greece. Springer–Verlag, 2009.

18

Folksonomies behind the scenes

Leyla Jael García-Castro1, Alexander García2

1 Universität der Bundeswehr München, Werner-Heisenberg-Weg 39,

85779 Neubiberg, Germany
w31blega@unibw.de

2 University of Arkansas for Medical Sciences, Biomedical Informatics.
agarcia@uams.edu /alexgarciac@gmail.com

Abstract. In this position paper we analyze the similarities amongst
folksonomies, semantic wikis, and ontology building; we also propose an
alignment and orchestration of ontologies representing these scenarios. We
argue that such alignment enables a more direct application of folksonomy-
based approaches over these set-ups. The rationale behind folksonomies is
shared across environments such as collaborative ontology building and
semantic wikis. The three of them aim to facilitate knowledge sharing across
communities; a social environment in which individual and community
objectives are achieved supports them all.

Keywords: Ontology engineering, social web, semantic web, folksonomy, wiki

1 Introduction

Social tagging systems (STS) have become increasingly popular within the Web 2.0
era; they allow users to freely associate terms, i.e. tags, to resources. Tags support a
variety of tasks such as information retrieval, personal organization strategies, and
share-ability. Conceptual structures emerging from STS are known as folksonomies
[1, 2]; they have been used mainly to improve the retrieval on tagged resources [3-5]
as well as to discover shared conceptualizations and make explicit the semantic
behind tags [6, 7]. Simplicity and immediate benefits for end users, e.g. bookmarks
available online, are part of the rationale behind the fast adoption of STS [8].

Ontologies are shared conceptualizations that aim to represent an abstraction of a
particular domain [9, 10]. Ontologies play a central role in Semantic Web because
they are intended to enable data and information exchange in a machine-accessible
format; establishing in this way common vocabularies and semantic interpretations of
concepts [11]. Whilst agreements in folksonomies are implicit and mainly reached by
common use and popularity; agreements in ontologies are explicit as well as
documented and supported on evidences.

Wikis enable users to collaboratively create, share, and edit information via a
browser interface, thus the final content is the result of everybody’s effort [12].
Semantic Wikis, introduced in 2004 [13], aim to facilitate ontology content
integration in Wiki as well as to support the evolution of knowledge: moving from
term lists to logical constraints while granting users the freedom over the creative

19

process. Most of the existing semantic Wikis rely on RDF and mainly support
subject-predicate-object structures [13]. Semantic Wikis exhibit a similar structure as
folksonomies supporting both semantic annotations and selection within documents: a
semantic annotation takes as subject a document or a portion of it and relates it to an
object by means of a semantic qualifier, e.g. skos:broader. This structure could also
be extracted from links in traditional Wikis; in this case the annotations would
establish a relatedTo relation.

In this position paper we analyze the similarities amongst folksonomies, semantic
wikis, and ontology building; we also propose an alignment and orchestration of
ontologies representing these scenarios. We argue that such alignment enables a more
direct application of folksonomy-based approaches over these set-ups.

2 Folksonomies behind the scenes

Annotation Ontology. The Annotation Ontology (AO) [14] represents the annotation
process within social environments. AO is built upon the Annotea Project
(http://www.w3.org/2001/Annotea/); it is also compatible with Newman’s tagging
ontology (www.holygoat.co.uk/projects/tags/), the Meaning of a Tag ontology
(http://moat-project.org/), and the Simple Knowledge Organization System (SKOS)
(http://www.w3.org/2004/02/skos/). AO supports both free as well as semantic
annotations, namely qualified annotations in AO. It enables users to freely attach
terms to resources –free annotations, as well as terms related to ontological entities –
semantic annotation. Annotations can be attached to the entire resource as well as to
portions of it, e.g. text, images, or tables. As annotations on specific parts of a
document do not necessarily apply to the whole document, implementations should
take care of it by enabling users to define whether or not such annotations should be
also global. AO also supports the curation process over the annotations and offers
different types of annotations such as notes, comments, erratum, etc. It offers
provenance support by reusing the Provenance Authoring and Versioning ontology
(PAV, http://swan.mindinformatics.org/spec/1.2/pav.html).
Collaborative Ontology Building. The Changes and Annotations Ontology (ChAO)
[15] provides a model to track the modifications on ontology classes, properties and
instances. It contains two main classes: Change represents changes –add, edit, and
delete, in the ontology, and Annotation that stores related information such as
comments, examples, explanations and votes. ChAO is currently in use by the
collaborative Protégé project (http://protegewiki.stanford.edu/wiki/Collaborative_
Protege). The ontology building process entails negotiation practices, i.e. ontologies
are social agreements to accomplish shared objectives. When building ontologies,
people are pursuing: (i) retrieving related information, (ii) sharing information, and
(iii) improving and broadening both knowledge and performance. Interestingly, these
are also the motivations for tagging resources [16]. We consider the ontology building
process as a structured folksonomy in which the main document being tagged is that
one representing the ontology; also, the participants are aware of the purpose of their
contributions, i.e. annotations.

Mapping ChAO and AO makes it possible to use the flexibility of folksonomies

20

into the ontology building process; Fig. 1 shows the proposed mapping. Users in
ChAO are identified by user names or accounts whilst AO uses foaf:Agent for that
purpose; this brings benefits such as a unique URI to identify a contributor
participating in different ontology developments, regardless of the methodology or
editor. AO can also facilitate reusing information from other folksonomies as it is
compatible with Newman’s ontology, MOAT, and SKOS.

Fig. 1 AO and ChAO mapping

Fig. 2 shows an annotation from the ChAO and AO perspectives: a user named
Daniel works on the Pizza ontology document; he creates a property #hasTopping,
chao:Property_Created, on a chao:Ontology_Component, and adds an annotation,
chao:Annotation, explaining why the property was created. From the AO perspective
Daniel is represented as a foaf:Agent; he creates an annotation, ao:Annotation,
corresponding to a creation, ao:hasTopic, on a portion of the ontology named
#hasTopping, ann:context. In AO, the property #hasTopping is represented by means
of XPointer (www.w3.org/TR/xptr/) selector, i.e. an element in an XML document.

Fig. 2 Changes on an ontology component, ChAO and AO perspectives

During the ontology building, contributors perform activities such as adding,
editing, and deleting ontological entities; those activities produce classes, properties
or axioms that can be seen as portions of the ontology, easily identified by a URI.
Annotations such as comments, notes, and votes are attached to particular entities.
Consequently, it is possible to identify a contributor attaching annotations to pieces of

21

a document, i.e. the ontology; this process is fully supported by AO. Conjugation of
ChAO, AO, PAV and FOAF makes it possible to use SPARQL in order to answer
questions such as who has worked on this class, on which ontologies have contribute
Andy and Tony, or what ontologies have been created for a particular domain.
Wikis. SweetWiki [17] proposes an ontology to represent the wiki structure; concepts
include document, page, tag, link, backward link, contributor, version, attached file,
etc. These concepts are found in both semantic and non semantic wikis; most of them
are also covered by well known vocabularies such as Dublin Core, SKOS, SIOC, and
FOAF. Semantic annotations within semantic wikis follow the structure subject-
predicate-object [13]; by using AO, it is possible to model those annotations as
qualified ones: the contributor corresponds to the annotator –pav:createdBy and
foaf:Agent, the subject to the wiki page or a portion of it –ao:onDocument and
ann:context, the topic to the type of the annotation –skos:broader,
dcterms:isVersionOf, sioc:attachment, etc., and the object to the annotation –ao:body.
AO currently supports semantic annotations corresponding to skos:exactMatch,
skos:closeMatch, skos:broader, and skos:narrower; however, it is possible to extend
AO in such a way that other qualifiers are also allowed. This extension is based on
Hypertag [18] and consists of a new type of annotation Relationship that relates either
two resources, or one resource as subject and the other one as object; it also enables
both reusing relations, e.g. dcterms:isVersionOf, or creating new ones.

3 Conclusions and Future Work

We have presented an alignment between folksonomies and collaborative ontology
building that facilitates collaboration across decentralized settings, pacing with
dynamics on evolving domains, and monitoring the quality and consistency of the
model by using the wisdom of crowds. The proposed alignments will likely facilitate
the use of folksonomy-based approaches in wiki environments and vice versa as well
as the knowledge emergence from both of them. Semantic annotations as well as
provenance do not solve all semantic issues that folksonomies lack of; however, it
reduces the gap between the social and the semantic web. The proposed alignment
makes it easy to integrate knowledge gathered from social platforms into knowledge
elicitation phases in ontology development methodologies. The alignment fits into
methodologies with a collaborative component reusing non-structured or semi-
structured existing knowledge such as Mature Project [19], NeOn Methodology [20],
and Melting Point [21]. Integrated to the Mature Project, our approach makes it easier
to consolidate and axiomatize the ontology built by the community as it includes
semantic links; facilitating in this way the extraction of hierarchies as well as ad hoc
relationships and mappings. Similarly, our approach facilitates reusing and
reengineering non-ontological resources; one of the phases proposed by the NeOn
methodology, as well as the conceptualization activity proposed in the Melting Point.
The aforementioned methodologies reuse knowledge while our alignment facilitates
to add and extract semantics from social environments. This combination makes
possible the evolution of the extracted ontology as this one becomes part of the
ontologies used to qualify annotation, thus new mappings and relations can emerge.

22

In this a way, users contribute to the ontology building process without being aware
of the process in which they are taking part.

We have identified three scenarios that could benefit from such an alignment,
improving the way that content from folksonomies is currently exploited. The first
scenario belongs to the bioinformatics domain and is related to the collaborative
annotation of proteins. In such a scenario, documents representing protein sequences
are enhanced by semantic annotations that can be applied to the whole sequence or a
portion of it as well as to other annotations on the protein. In this way, users provide
content in the form of annotations, facilitating the publication of experimental data
related to proteins. It also enables the immediate discovery of such information as
annotations are modeled with AO and linked to protein specialized vocabularies; thus,
it will be available as part of the Linked Open Data cloud. It will also facilitate
ontology evolution by using an AO extension that enables the representation of
relationships.

The second scenario belongs to the biological domain, it is related to annotations in
laboratory notebooks. Tags4Labs [22] is a prototype supporting the annotation of
experimental data for some of the processes routinely run at the Center for
International Tropical Agriculture (CIAT) biotechnology laboratory. With the
proposed alignment it will be also possible to use annotations as an enrichment
mechanism for those ontologies being used to annotate experimental procedures. The
third scenario belongs to the medical domain and is related with the annotation of
medical images. Ceballos et al. [23] (http://72.167.51.20:8888/webprotege/) propose
and environment in which medical images can be annotated with ontological terms or
just by “tagging”. With the proposed alignment it will be also possible to enrich
existing ontologies by capturing the evidence behind a “tag” so that ontology
engineers can decide on the inclusion of the term in the ontology. Also, other users
will be able to access such information, making it easier for them to evaluate the
relevance of the term and its corresponding use.

Documents should be able to “know about” their own content for automated
processes in order to “know what to do” with them. With the proposed alignment we
aim to make it possible, i.e. both knowledge discovery and knowledge emergence.

References

1. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared
conceptualizations in folksonomies. Web Semantics: Science, Services and Agents on the
World Wide Web 6 (2008) 38-53
2. Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic evaluation of
folksonomies. International World Wide Web Conference. ACM, Hyderabad, India (2011)
3. Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and
exploration in the tag space. World Wide Web Conference - Collaborative Web Tagging
Workshop, Scotland (2006)
4. Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical
Taxonomies in Social Tagging Systems Stanford University (2006)
5. Yeung, C.A., Gibbins, N., Shadbolt, N.: Understanding the Semantics of Ambiguous Tags in
Folksonomies. International Workshop on Emergent Semantics and Ontology Evolution, Korea
(2007)

23

6. Angeletou, S., Sabou, M., Specia, L., Motta, E.: Bridging the Gap Between Folksonomies
and the Semantic Web: An Experience Report. European Semantic Web Conference - Bridging
the Gap between Semantic Web and Web 2.0 Workshop, Austria (2007)
7. Van Damme, C., Hepp, M., Siorpaes, K.: FolksOntology: An Integrated Approach for
Turning Folksonomies into Ontologies. European Semantic Web Conference - Workshop
”Bridging the Gap between Semantic Web and Web 2.0", Austria (2007)
8. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies:
Search and Ranking. The Semantic Web: Research and Applications (2006) 411-426
9. Gruber, T.: What is an Ontology? , Vol. 2009 (1992) Retrieved May. 23, 2009, from
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
10. Guarino, N., Poli, R., Gruber, T.: Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Workshop on Formal Ontology. Kluwer Academic
Publishers (1993)
11. Gendarmi, D., Lanubile, F.: Community-Driven Ontology Evolution Based on
Folksonomies. On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,
Vol. 4277. Springer (2006)
12. Schaffert, S., Gruber, A., Westenthaler, R.: A Semantic Wiki for Collaborative Knowledge
Formation. Semantics 2005, Vienna, Austria (2005)
13. Kuhn, T.: AceWiki: A Natural and Expressive Semantic Wiki. Semantic Web User
Interaction, Florence, Italy (2008)
14. Ciccarese, P., Ocana, M., Garcia Castro, L.J., Das, S., Clark, T.: An Open Annotation
Ontology for Science on Web 3.0. BmC Bioinformatics (accepted) (2010)
15. Noy, N., Chugh, A., Liu, W., Musen, M.: A Framework for Ontology Evolution in
Collaborative Environments (2006)
16. Braun, S., Schmidt, A., Walter, A., Nagypal, G., Zacharias, V.: Ontology Maturing: a
Collaborative Web 2.0 Approach to Ontology Engineering. International World Wide Web
Conference - Workshop on Social and Collaborative Construction of Structured Knowledge
(CKC), Canada (2007)
17. Buffa, M., Gandon, F.: SweetWiki: semantic web enabled technologies in Wiki.
International Symposium on Wikis. ACM, Odense, Denmark (2006)
18. García-Castro, L.J., Hepp, M., García, A.: Tags4Tags: Using Tagging to Consolidate Tags.
International Conference on Database and Expert Systems Applications, Linz, Austria (2009)
19. Braun, S., Schmidt, A., Walter, A., Nagypal, G., Zacharias, V.: Ontology Maturing: a
Collaborative Web 2.0 Approach to Ontology Engineering. International World Wide Web
Conference - Workshop on Social and Collaborative Construction of Structured Knowledge
(CKC), Canada (2007)
20. Suárez-Figueroa, M., Dellschaft, K., Montiel-Ponsoda, E., Villazón-Terrazas, B., Yufei, Z.,
Aguado-de-Cea, G., García, A., Fernández-López, M., Gómez-Pérez, A., Espinoza, M., Sabou,
M.: NeOn Methodology for Building Contextualized Ontology Networks (NeOn Deliverable
D5.4.1.). NeOn Project (2008)
21. Garcia, A., O’Neill, K., Garcia, L.J., Lord, P., Stevens, R., Corcho, O., Gibson, F.:
Developing Ontologies within Decentralised Settings. In: Chen, H., Wang, Y., Cheung, K.-H.
(eds.): Semantic e-Science, Vol. 11. Springer US (2010) 99-139
22. Garcia Castro, A., Giraldo, O., Garcia Castro, L.J.: Annotating experimental records using
ontologies. International Conference on Biomedical Ontology, Buffalo, NY, USA (2011)
23. Ceballos, O., Garcia Castro, A., Garcia Castro, L.J., Millan, M.: Anotación semántica de
imágenes médicas. Acta Biológica Colombiana 15 (2010)

24

Ontologies Come of Age with the iKUP Browser

Simon Jupp1, Julie Klein2, Panagiotis Moulos2, Joost Schanstra2, and Robert
Stevens1

1 School of Computer Science, The University of Manchester, UK
2 Institut National de la Santé et de la Recherche Médicale, Toulouse, France

first.last@manchester.ac.uk

The iKUP browser, a web-based interface to the kidney and urinary path-
way knowledge base (KUPKB) [4], shows ontologies coming of age by enabling
biologists to ask questions of integrated data that form hypotheses that are be-
ing tested in the laboratory. That is, semantically annotated data have been
delivered to the target users in a form that they can use to change how they
undertake their job. iKUP uses a browsing approach to query the KUP data
as its users are usually not bioinformaticians that will design and use sophisti-
cated scripts or workflows, and they are almost certainly not users familiar with
semantic web technologies. The KUPKB contains data from high-throughput ex-
periments on the kidney and the urinary system. The experimental data is richly
interconnected to other biological data to form a single integrated repository for
querying and exploration. The KUPKB uses multiple biomedical ontologies that
act as a controlled vocabulary for standardised annotation of the datasets. These
ontologies’ semantics are used to ask queries that return intelligent answers that
form part of the biologists’ hypothesis generation process. By reducing the data
to common representation languages like the Web Ontology Language (OWL)
and the Resource Description Framework (RDF), we have shown semantic web
technologies offering novel opportunities for data analysis.

The iKUP browser supports renal biologists in finding data integrated from
many disparate data sources, providing a simple interface to survey a large set
of the KUP domains ’omics experiments simultaneously. At present, biologists
must gather and integrate many data sets by hand and this integration is vital
as genes, proteins, and small molecules have to be co-ordinated across many
’omic levels through investigations reported by many people. By hand, this kind
of integration and querying is long, tedious and error prone. Users can use the
iKUP browser to search for a molecule (mRNA, miRNA, Protein) or list of
molecules. The query box exploits the label and synonym tags for molecules to
guide the user with their search via a dynamic suggestion box that pops up as
users type. Once users confirm the molecules they are looking for are present in
the KUPKB, the application performs a SPARQL query based on these search
terms to generate the results. The results show known information about each
molecule from the range of datasets in the KUPKB. For each result, the user
can see where anatomically the molecule is active and under what conditions.

The metadata for each experiment is captured using ontologies. Datasets are
collected in spreadsheet based templates that have ontologies embedded inside
them. By using a spreadsheet template we provide a lightweight and familiar
mechanism for the community of renal biologist to submit data. By embedding

25

II

the ontologies inside the spreadsheets, we are able to collect ontological annota-
tions from the users by stealth. These semantic spreadsheets are created using
RightField [7] which provides a mechanism to embed ontology based restrictions
on values inside the spreadsheet. These consistent and precise metadata help to
integrate the different experiments and are presented to the user on querying the
KUPKB via iKUP. Every search result is accompanied by a navigable polyhier-
archy that is generated from the ontological metadata. This hierarchy provides
a faceted browser that exploits the semantics of the ontology to perform intel-
ligent filtering of the data. For example, filtering the results on experiments on
the glomerulus of the kidney will include in the results any experiments where
the sample is glomerular or any part of the glomerulus, thus spanning from gross
anatomy to the cellular level.

The KUPKB is public and open-access, and biologists are encouraged to sub-
mit new datasets to the KUPKB. So far, over 160 experiments have been sourced
from the literature and public databases. All biological identifiers are normalised
to a common identification scheme based on de facto URIs sourced from linked
data resources, such as Bio2RDF [1] and OBO ontologies. To provide deeper
querying and more flexibility, the knowledge base is also accessible through a
SPARQL endpoint. The iKUP application is online at http://www.kupkb.org
and the SPARQL endpoint is at http://www.e-lico.eu/kupkb/sparql. Many of
the datasets and ontologies are sourced from public repositories, however, a spe-
cific KUP Ontology (KUPO) was developed and is available from http://www.e-
lico.eu/kupo. The source code for the KUPKB website is open source and avail-
able from http://code.google.com/p/kupkb-dev. Both the KUPO and the KUPKB
were built by engaging our non-Semantic Web savvy users in the building pro-
cess using tools such as Populous [3] and RightField. Using such tools enables
iKUP’s users to engage with the building process, delivering the annotated data
for the KUPKB and extensions to the KUPO without having to have knowledge
of OWL, RDF, SPARQL and related tools. We have taken this approach in an
attempt to make the KUPKB sustainable and scalable.

The KUPKB was designed to fulfil specific requirements from members of
the KUP community. These requirements include the integration of experimen-
tal datasets with existing biological databases about genes, proteins, miRNAs,
metabolites and diseases. This type of data integration provides a constant chal-
lenge for bioinformaticians. One goal of the KUPKB was to show how many of
these challenges can be overcome when data are aligned to a common represen-
tation and reuse is maximised. To do this we have reused portions of Bio2RDF
and made the KUPO as an application ontology, reusing and extending many
OBO ontologies [6].

The KUPKB utilises the state of the art in semantic web technology wher-
ever possible. At its core is the RDF triple store that stores the data. After an
evaluation we decided to use a Sesame framework [2] backed with a BigOWLIM
storage and inference layer [5]. The iKUP web application is built using the
Google Web Toolkit (GWT). Whilst the primary search on the iKUP website is
powered by SPARQL, we also exploit the ontologies using the Java based OWL

26

III

API to classify results and handle the faceted browsing. We load all the ontolo-
gies into the OWL API and use the OWL-DL reasoner HermiT for classification.
This provides us with the necessary inference to generate the hierarchy and drive
the dynamic filtering of results on the web site. We can develop the whole appli-
cation using a single programming language as Java interfaces are provided for
Sesame, the OWL API and GWT. The importance of having such APIs in place
can not be underestimated. The iKUP browser is a demonstration that semantic
technologies are sufficiently matured so that they can deliver competitive data
integration solutions.

The KUPKB and iKUP show ontologies coming of age by fulfilling some of
their promise. The KUPKB has used ontologies to provide a common semantic
framework for a broad range of previously semantically heterogeneous data. The
use of Semantic Web technologies provides the means to integrate and query
these data. The key to the coming of age is the iKUP user interface; without a
simple means to access these integrated data, our biologist users would not and
could not use the KUPKB; ontologies come of age when they deliver meaningful
use to their intended users. This has now happened with the KUPKB, with
biologists testing hypotheses generated via the iKUP in laboratories. Though
the KUPKB is relatively small, it does what semantic technologies are supposed
to do and show what is possible with biology’s rich resource of data once issues
of heterogeneity are taken away and the means of delivery to its users is taken
into account.

Acknowledgments:This work is funded by the e-LICO project—EU/FP7/ICT-
2007.4.4.

References

1. Franois Belleau, Marc-Alexandre Nolin, Nicole Tourigny, Philippe Rigault, and Jean
Morissette. Bio2rdf: Towards a mashup to build bioinformatics knowledge systems.
Journal of Biomedical Informatics, 41(5):706 – 716, 2008. Semantic Mashup of
Biomedical Data.

2. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Ian Horrocks and James
Hendler, editors, The Semantic Web - ISWC 2002, volume 2342 of Lecture Notes
in Computer Science, pages 54–68. Springer Berlin / Heidelberg, 2002.

3. Simon Jupp, Matthew Horridge, Luigi Iannone, Julie Klein, Stuart Owen, Joost
Schanstra, Robert Stevens, and Katy Wolstencroft. Populous: A tool for populating
ontology templates. CoRR, abs/1012.1745, 2010.

4. Simon Jupp, Julie Klein, Joost Schanstra, and Robert Stevens. Developing a kidney
and urinary pathway knowledge base. Journal of Biomedical Semantics, 2(Suppl
2):S7, 2011.

5. Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. Owlim - a pragmatic
semantic repository for owl. In Mike Dean, Yuanbo Guo, Woochun Jun, Roland
Kaschek, Shonali Krishnaswamy, Zhengxiang Pan, and Quan Z. Sheng, editors,
WISE Workshops, volume 3807 of Lecture Notes in Computer Science, pages 182–
192. Springer, 2005.

27

IV

6. Smith, Barry, Ashburner, Michael, Rosse, Cornelius, Bard, Jonathan, Bug, William,
Ceusters, Werner, Goldberg, Louis J., Eilbeck, Karen, Ireland, Amelia, Mungall,
Christopher J., Leontis, Neocles, Rocca-Serra, Philippe, Ruttenberg, Alan, San-
sone, Susanna-Assunta, Scheuermann, Richard H., Shah, Nigam, Whetzel, Patricia
L., and Lewis, Suzanna. The OBO Foundry: coordinated evolution of ontologies
to support biomedical data integration. Nature Biotechnology, 25(11):1251–1255,
November 2007.

7. Katy Wolstencroft, Stuart Owen, Matthew Horridge, Olga Krebs, Wolfgang Mueller,
Jacky L. Snoep, Franco du Preez, and Carole Goble. Rightfield: embedding ontology
annotation in spreadsheets. Bioinformatics, 27(14):2021–2022, 2011.

28

Dynamic Is-a Hierarchy Generation for User-Centric
Semantic Web

Kouji Kozaki1, Keisuke Hihara1, Riiciro Mizoguchi1

1The Institute of Scientific and Industrial Research, Osaka University

8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan
{kozaki, hihara, miz}@ei.sanken.osaka-u.ac.jp

Abstract. In ontological theories, is-a hierarchy must represent the essential
property of things and hence should be single-inheritance, since the essential
property of things cannot exist in multiple. However, we cannot avoid multi-
perspective issues when we build an ontology because users often want to
understand things from their own viewpoints. Especially, in the Semantic Web,
the variety of user issues in capturing target domains. In order to tackle this
multi-perspective issue, we should adopt an approach of dynamically
generating is-a hierarchies according to the viewpoints of users from an
ontology using single-inheritance. This article discusses a framework for
dynamic is-a hierarchy generation and its implementation as an extended
function of Hozo. Through the function, users can understand an ontology from
their own viewpoints.

Keywords: ontology, is-a hierarchy generation, viewpoint, multi-perspective

1 Introduction

Ontologies are designed to provide systematized knowledge and machine readable
vocabularies of domains for Semantic Web applications. The competences of
semantic technologies strongly depend on the ontology which they use. Ontology is
defined as “An explicit specification of conceptualization” [1], and it clearly
represents how the target world is captured by people and systems.

Semantics of concepts (classes) are defined clearly through the description of their
relationships between other concepts in an ontology. In particular, the most important
relationship is an is-a (sub-class-of) relationship which represents a relation between a
generalized concept and a specialized concept. Class hierarchies according to is-a
relationships are called is-a hierarchies, and they form the foundation of ontologies.
That is, is-a hierarchies in an ontology reflect how the ontology captures the essential
conceptual structure of the target world.

Therefore, in ontological theories, an is-a hierarchy should be single-inheritance
because the essential property of things cannot exist in multiple. Imagine that objects,
processes, attributes, etc. have their own unique and essential properties. The use of
multiple-inheritance for organizing things necessarily blurs what the essential
property of things is. This observation is strongly supported by the fact that both of

29

the well-known upper ontologies, DOLCE and BFO, use single-inheritance
hierarchies.

Nicola Guarino criticizes the careless usage of is-a relationships without enough
ontological consideration as is-a overloading [2] and proposes an ontology
development methodology, called OntoClean, which defines concepts based on meta-
properties such as rigidity and anti-rigidity. DOLCE is developed based on the
OntoClean methodology using single-inheritance is-a hierarchy. BFO is the upper
ontology used by the OBO Foundry1 which aims to create a suite of orthogonal
interoperable reference ontologies in the biomedical domain. BFO also uses single-
inheritance hierarchy, and it is recommended in the guidelines of OBO Foundry to
avoid careless usage of multiple-inheritance.

However, we cannot avoid multi-perspective issues when we build an ontology
across multiple domains. It is because domain experts often want to understand the
target world from their own domain-specific viewpoints. In many cases, their interests
are different even if they are experts in the same domain. In some domains, there are
many ways to categorize the same kinds of concepts, and different taxonomies are
used depending on the purpose and situation.

For example, in the medical domain, a disease is interpreted from various
viewpoints. Consider diabetes as an example. Clinician may pay attention to body
parts with the abnormalities and classify diabetes as an abnormal blood sugar level.
On the other hand, certain specialists may pay attention to the main condition and
may classify diabetes as an abnormality in metabolism, and other specialists may
classify diabetes as a lifestyle disease. Staffs administering medical care implicitly
understand which is-a hierarchy should be used for disease interpretation in
correlation with their respective interpretations. This suggests that one is-a hierarchy
of diseases cannot cope with such a diversity of viewpoints since a single-inheritance
hierarchy necessarily represents one viewpoint.

Many efforts are under taken to solve these multi-perspective issues. The OBO
Foundry proposes a guideline for ontology development stating that we should build
only one ontology in each domain [3]. This is an effort to exclude the multi-
perspective nature of domains from ontologies. Ontology mapping is used as an
approach to acceptance of multiple ontologies based on the different perspectives in a
domain. It aims to make clear the relationships between different ontologies.
Someone may consider that multiple-inheritance is an easy way to solve these multi-
perspective issues. Because multiple-inheritance causes some ontological problems as
mentioned above, our ontology development tool, named Hozo2, allows the user to
use a multiple-inheritance only when he/she represents clearly from which upper-
concepts the essential property is inherited3. However, if we define every possible is-a
hierarchy using multiple-inheritances, they would be very verbose and the user’s
viewpoints would become implicit.

In order to tackle these multi-perspective issues, the authors take a user-centric
approach based on ontological viewpoint management. It dynamically generates is-a
hierarchies according to the viewpoint of users from an ontology using single-

1 http://www.obofoundry.org/
2 http://www.hozo.jp
3 It is represented by two kinds of is-a relationships: (essential) is-a and (non-essential) IS-A.

30

inheritance. The main strategy is composed of: (1) fixing the conceptual structure of
an ontology using single-inheritance based on ontological theories and (2)
reorganizing some conceptual structures from the ontology on the fly as visualizations
to cope with various viewpoints. Based on this strategy, the authors consider a
framework for dynamic is-a hierarchy generation according to the interests of the user
and implement the framework as an extended function of the ontology development
tool Hozo [4]. In this article, we discuss the framework for dynamic is-a hierarchy
generation and its application to a medical ontology. It would solve the conflicting
requirements of multi-perspective and single-inheritance in a good ontology, and it
could contribute to a user-centric Semantic Web.

The rest of this paper is organized as follows: In section 2, we introduce dynamic
is-a hierarchy generation according to viewpoints. In section 3, we discuss
implementation of the framework as an additional function of Hozo. In section 4, we
shows its application to a medical ontology for dynamic is-a hierarchy generation of
disease. In section 5, we discuss related work. Finally, we present concluding remarks
with future work.

2 Dynamic Is-a Hierarchy Generation according to Viewpoints

2.1 Ontology Representation in Hozo

We implement the dynamic is-a hierarchy generation system as an additional function
of Hozo [4]. Fig.1 shows an example of ontology defined using Hozo. Ontologies are
represented by nodes, slots and links. The nodes represent concepts (classes), is-a
links represent is-a (subclass-of) relations, and slots represents part-of (denoted by
“p/o”) or attribute-of (denoted by “a/o”) relations. A slot consists of its kind (“p/o” or
“a/o”), role concept, class restriction, cardinality. Roughly speaking, a slot
corresponds to property in OWL and its role name represent name of property. Its

Fig.1 An example of ontology defined using Hozo.

Node represents a concept
(=rdfs:Class)

p/o slot represents
a part‐of relation
(=rdf:Property)

a/o slot represents an
attribute‐of relation
(=rdf:Property)

cardinality
(=owl:cardinality)

Role concept
(≒property name)

Is‐a link represents
an is‐a relation

(=rdfs:subClassOf)

Class restriction
(=owl:someValuesFrom)

Refer to

Refer to

31

class restriction and cardinality correspond to owl:someValuesFrom and
owl:cardinality respectively. Their restrictions refer to other concepts which are
defined elsewhere. However, semantics of Hozo’s ontology includes some concepts
related to role which are not supported in OWL because it is designed based on an
ontological theory of role [5]. While we have designed three levels of role
representation model in OWL to capture the semantics level-wise [6], we use the
simplest model described above in this paper.

In the target ontologies, concepts (classes) are defined by several slots which
represent properties and restrictions for them. These definitions are inherited from
super-concepts (super-classes) to their sub-concepts (sub-classes) along with is-a
links. Furthermore, in some sub-concepts, some inherited definitions are specialized
according to is-a hierarchies of concepts which are referred by their restrictions. For
example, bicycle in Fig.1 inherits front-wheel from Two-wheeled vehicle and its class-
restriction could be specialized from Wheel to Bicycle-wheel. This research focuses
on these characteristics of is-a hierarchies and considers an approach to reorganize is-
a hierarchies of concepts based on is-a hierarchies of concepts referred to by their
definitions.

2.2 Dynamic Is-a Hierarchy Generation through Transcription of a Hierarchical
Structure

Fig.2 outlines a framework for dynamic is-a generation. It generates is-a hierarchies
by reorganizing the conceptual structures of the target concepts selected by a user
based on the user’s viewpoint. The viewpoint is represented by an aspect and a base
hierarchy. By aspect, we mean something which the user is interested in and selects
from the definition of the target concept to generate an is-a hierarchy. By base
hierarchy, we mean a conceptual structure of concepts which are referred to by the
definition selected as the aspect. Because sub-concepts of the target concept could be
defined by specializing their inherited definitions according to the base hierarchy, we
could reorganize the is-a hierarchy of the target concepts according to the following
steps:

Transcription of a base
hierarchical stricture

Reorganization

Original
is-a hierarchy

X

A

Is-a hierarchy

Aspect

X Target concept

Definition of the
target concept

Base hierarchy

Generated is-a hierarchy

Transcriptional
hierarchy

A

P-is-a hierarchy

A

Generated
is-a hierarchy

refer to

Viewpoint

Fig.2 A framework for dynamic is-a generation.

(1)

(2)

(3)

(4)

32

Step 1: Selection of an aspect
 The user selects something as an aspect from the definition of the target concept for
dynamic is-a hierarchy generation (see. Fig.2(1)). Because any concept is defined in
terms of slots each of which consists of a role-concept, a role-holder [5] and a class-
restriction, he/she can select one of them as an aspect. In this paper, we consider only
a case where the user selects a class restriction as an aspect for simplicity.

Step 2: Selection of a base hierarchy
 The user selects a base hierarchy from hierarchies of concepts which the aspect is
referring to (see. Fig.2(2)). In Hozo, three kinds of conceptual hierarchies could be the
base hierarchy as follows: the is-a hierarchy of concepts referred to by the aspect, the
p-is-a hierarchy generated by the system according to part-whole relationships of the
concepts referred to, and dynamically generated is-a hierarchies using the proposed
method. A p-is-a hierarchy is obtained by abstracting parts from a part-of hierarchy
[7]. The detail of the p-is-a hierarchy is discussed in section 2.3.2.

Step 3: Transcription of a hierarchical structure
 The system defines new sub-concepts of the top concept of target concepts by
specializing the definition of the top concept according to the class restriction
selected as an aspect and base hierarchy (see. Fig.2(3)). Then, their concept names are
automatically determined by the system using a template such as “<the target concept
name> with <the specialized aspect> as <the role name of the aspect>”. As a result,
an is-a hierarchy which has the same conceptual structure with the base hierarchy is
generated. We call the generated hierarchy a transcriptional hierarchy and the
operations to generate it a transcription of a hierarchical structure.

The scope of a transcription of the base hierarchy could be managed by specifying
the number of the target layers rather than to use all concepts of the base hierarchy for
transcription.

Step 4: Reorganization of is-a hierarchy based on a transcriptional hierarchy
 The system reorganizes the is-a hierarchy by comparing the original is-a hierarchy
and the transcriptional hierarchy generated in step 3. The system compares the sub-
concepts of the target concept (we call them existing sub-concepts) with the concepts
on the transcriptional hierarchy (we call them generated sub-concepts) according to
the aspect and the base hierarchy. When an existing sub-concept’s definition specified
by the aspect subsumes the definition of a generated sub-concept, the existing sub-
concept is classified into sub-concepts of the generated sub-concept. If an existing
concept is classified into sub-concepts of multiple generated sub-concepts, the
existing concept is classified into the lowest sub-concepts. As a result, all existing
concepts are classified into sub-concepts of the generated concepts on the
transcriptional hierarchy according to the aspect and the base hierarchy4.
Through the above four steps, the system can dynamically generate is-a hierarchies by
reorganizing existing sub-concepts according to the transcriptional hierarchies of base
hierarchies.

4 The result of reorganization corresponds to the result of classification using DL-reasoner

while it is implemented by procedural ways in Hozo.

33

 Although DL-reasoners can classify classes (concepts) automatically by reasoning,
the result of classification is only an is-a hierarchy which is determined uniquely
according to the definitions of the classes. Therefore, it is different from our dynamic
reorganization according to the users’ viewpoints. DL-reasoners can generate a
different is-a hierarchy only when class definitions in the ontology have changed.

2.3 Examples of Dynamic Is-a Generations

§１ In the Case of that an Is-a Hierarchy is Selected as a Base Hierarchy
As an example, we consider a dynamic is-a generation of diseases which is defined in
terms of several slots such as “main pathological state”, “abnormal object” and so on
(see. Fig.3). Here, we suppose the user selects the class-restriction of “main
pathological state” as an aspect (Fig.3(1)) and the is-a hierarchy of “abnormal state”
as a base hierarchy (Fig.3(2)).

First, sub-concepts of “disease” such as “disease with vessel abnormality as main
pathological state” and “disease with blood abnormality as main pathological state”
are dynamically generated by specializing the definition of “disease” according to the
class restriction selected as the aspect and the base hierarchy. After repetitions of
generations of sub-concepts, the transcriptional hierarchy of “disease” is obtained
(Fig.3(3)). Then, existing sub-concepts of “disease”, such as “myocardial infarction”
and “angina pectoris” are classified into sub-concepts of generated sub-concepts on
the transcriptional hierarchy through comparisons between definitions of them
(Fig.3(4)). When more than one existing sub-concepts are classified into the same
generated sub-concept, they could be organized based on the original is-a

disease

heart diseaseAngina Myocardial
infarction

Stroke diabetes

type2 diabetestype1 diabetes

abnormal state

vessel abnormality blood abnormality

infarctionstenosis hyperglycemia

The base hierarchy
(is-a hierarchy of
“abnormal states”)

The transcriptional
hierarchy

Original is-a hierarchy of “disease”
The aspect

Classification into sub‐concepts
of generated sub‐concepts

Refer to

Is‐a relationships defined in the original ontology

Is‐a relationships generated in the transcription
of the base hierarchy

Is‐a relationships generated in the reorganization
of is‐a hierarchy

The legend

Fig.3 An example of dynamic is-a generation of disease in the case that is-a hierarchy
of abnormal state is selected as the base hierarchy.

(1)

(2)

(3)

(4)

(5)

34

disease

p‐human body

p‐circulatory
system

p‐nervous
system

p‐heartp‐brain p‐blood

heart disease

Angina Myocardial
infarction

diabetes

type2 diabetestype1 diabetes

Stroke

The base hierarchy
（p‐is‐a hierarchy of
“human body”）

The aspect

The transcriptional
hierarchy

Classification into sub‐concepts
of generated sub‐concepts

Original is-a hierarchy of “disease”

Is‐a relationships defined in the
original ontology

Is‐a relationships generated in the
transcription of the base hierarchy

Is‐a relationships generated in the
reorganization of is‐a hierarchy

The legend

Fig.4 An example of dynamic is-a generation of disease in the case that p-is-a
hierarchy of human body is selected as the base hierarchy.

(1)

(2)

(3)

(4)

relationships between them. In the case shown in Fig.3(5), because is-a relationships
between “disease with hyperglycemia as main pathological state” and “type1/type2
diabetes” can be identified by reasoning, “type1/type2 diabetes” are classified into
sub-concepts of diabetes according to the original is-a relationships.

§２ In the Case of that an p-is-a Hierarchy is Selected as a Base Hierarchy

In the next example, we suppose the user selects the class-restriction of “abnormal
object” as the aspect and the p-is-a hierarchy of “human body” as the base hierarchy
for a dynamic is-a generation of disease in the same ontology with the previous
example (Fig.4(1),(2)).

In the property inheritance mechanism of ordinary is-a relationship, when a super-
class and its sub-class have the same slot, the class restriction of the sub-class’s slot
must be a sub-class of the super-class’s one as well. However, in some case, the class
restriction of the sub-class’s slot must be a part of the super-class’s. For example,
when <disease of a pulmonary valve is-a disease of a heart>, both “disease of a
pulmonary valve” and “disease of a heart” have a slot of “site of the disease” and the
class restriction of the former must be a part of the latter, that is <pulmonary valve
part-of heart>.

To cope with such cases, on
the basis of our latest theory of
roles, we introduced “p-” operator
in Hozo which automatically
generates a generic concept
representing all the parts of the
entity to which the operator is
attached. The operator enables
parts to be inherited by ordinary Fig.5 An example of usage of p-operator.

We write “p-heart”
instead of “heart”．

35

property inheritance mechanism. In the case of Fig.5, for example, we write “p-heart”
instead of “heart”, then the slot of its subclass inherits not subclass of “heart” but its
parts. When p-X is used, Hozo automatically generates a generic concept representing
all of the defined parts of X including all parts which have X as their ancestor. This is
valid because each part is a subclass of “X’s parts class” which coincides with p-X.
According to mereology, the theory of parts, p-X includes itself which is not the very
X as an entity but X as its part.

On the basis of this theory, Hozo automatically generates is-a relationships
between p-X such as <p-pulmonary valve is-a p-heart>. As a result, an is-a hierarchy
of p-X is generated according to part-of hierarchy of X. The is-a hierarchy of p-X is
called p-is-a hierarchy5 and could be selected as a base hierarchy for a dynamic is-a
generation.
 In the case of Fig.4, since the class restriction of “abnormal object” is “p-human
body”, we can select it as an aspect and p-is-a hierarchy as a base hierarchy for
dynamic is-a generation. Then, sub-concepts of “disease” such as “disease with p-
nervous system as abnormal object” and “disease with p-circulatory system as
abnormal object” are dynamically generated according to the aspect and the base
hierarchy. As a result, the transcriptional hierarchy of “disease” based on p-is-a
hierarchy of “p-human body” is obtained (Fig.4(3)). The existing sub-concepts of
“disease” are classified into the transcriptional hierarchy like Fig.4(4).

 In addition to these examples, we can select is-a hierarchies which are generated
using the proposed method as a base hierarchy to generate another is-a hierarchies.
That is, our dynamic is-a generation could be executed recursively.
The dynamic is-a generation is applicable to reorganizations of a portion of an is-a
hierarchy of “disease”. For example, we can select a middle-level concept (e.g.
“disease of heart” as the target concept for the dynamic is-a generation.

In these ways, we can dynamically generate is-a hierarchies of diseases according
to the selected aspects and base is-a hierarchies from various viewpoints.

3. Implementation

We implemented a prototype of dynamic is-a hierarchy generation system as an
extended function of Hozo. The system was developed using HozoCore, which is
Java API for ontologies built using Hozo, and Hozo OAT (Ontology Application
Toolkit), which is Java library for GUI of ontology-based applications developed
using HozoCore.

The new function consists of three modules: is-a hierarchy viewer, viewpoint
setting dialog, and dynamic is-a generation module. The is-a hierarchy viewer shows
an is-a hierarchy of an ontology in a tree representation (Fig.6). The user selects a
target concept on the is-a hierarchy for a dynamic is-a generation. The definition of
the selected target concept is shown on the viewpoint setting dialog. In the dialog, the
user selects a viewpoint for the dynamic is-a generation by choosing an aspect, a kind

5 To deal with p-is-a hierarchies in OWL, we can represent them by some design pattern of

ontologies such as SEP triple proposed by Udo Hahn and his group [8].

36

of base hierarchy and the number of target layers of a transcriptional hierarchy
according to his/her interests. The dynamic is-a generation module generates an is-a
hierarchy according to the specified viewpoint. The generated is-a hierarchy is shown
on the is-a hierarchy viewer and could be saved as an ontology file.

While the target of the system is an ontology in Hozo’s format, it also can support
an ontology in OWL because Hozo can import/export OWL ontologies. When the
generated is-a hierarchy is exported in the OWL format, its generated sub-concepts in
the transcriptional hierarchy are represented by owl:equivalentClass which have
restriction on properties selected as the aspect. The user can reorganize the is-a
hierarchy of the exported OWL ontology based on the transcriptional hierarchy by
reasoning using a DL reasoner.

5. Application of Dynamic Is-a Generation to a Medical Ontology

We applied dynamic is-a hierarchy generation system to a medical ontology which
we are developing in a project supported by Japanese government [7, 9]. In our
medical ontology, diseases are defined by specifying typical disorder roles, such as
pathological condition, symptom, played by abnormal state. Fig.7(a) shows the
framework to define diseases. Its disorder roles are represented as slots with class-
restrictions for constraining slot values. These slots are used as aspects for dynamic
generation of is-a hierarchies of diseases.

For example, when we select the pathological condition of disease as an aspect and
the is-a hierarchy of abnormal state as the base hierarchy, the is-a hierarchy of disease
is generated (Fig.7(c)). In the generated is-a hierarchy, concepts which have names
represented by “disease which has X as pathological condition” (e.g. disease which
has abnormality in the structure as pathological condition) are sub-concepts
generated through the dynamic is-a hierarchy generation. Their concept names are
automatically determined by the system using a template. Exiting sub-concepts are
reorganized as sub-concepts of them. For instance, acute cardiac infarction is
classified into a sub-concept of disease which has cardiac infarction as pathological
condition. From the generated is-a hierarchy, we can understand diseases according to
the classification of pathological conditions.

Fig.6 The architecture of the dynamic is-a hierarchy generation system.

Dynamic is‐a hierarchy generation module

Is‐a hierarchy viewer Viewpoint setting dialog

H
o
zo
C
o
re

O
W
L
o
n
to
lo
gy

H
o
zo

o
n
to
lo
gy

H
o
zo
‐o
n
to
lo
gy ed

ito
r

37

The generated is-a hierarchy
The original is-a hierarchy of “disease”

Fig.7 Application of dynamic is-a generation to a medical ontology.

(a) The framework to define diseases. (b) The class-restriction selected as an aspect.

(c) The generated is-a hierarchy.

On the other hand, when we select the object of pathological condition as an aspect
and p-is-a hierarchy of the human body as a base hierarchy, the system generates the
is-a hierarchy of disease which is similar to the part-whole hierarchy of the human
body. For instance, acute cardiac infarction is classified into a sub-concepts of
disease which has a pathological condition in the myocardium.

Moreover, we have developed a medical information system to consider how the
dynamic is-a hierarchy generation function can be used in other systems [10]. It is
used as an index for semantic navigation in the system. We also performed an
informal evaluation of the implemented system in a workshop 6 and received

6 The number of participants was about 25. It includes not only the members of the medical

ontology development but also others who work in the medical domain.

38

favorable comments from medical experts. They especially liked the dynamic is-a
hierarchy reorganization, which is the first solution to the multi-perspective issues of
medical knowledge in the world.

5. Related Work

In order to avoid multiple-inheritance, some researchers took an approach that they
developed ontologies using single-inheritance and reorganized them by reasoning
using a DL-reasoner [11]. It corresponds to reorganization of is-a hierarchy based on
a transcriptional hierarchy in step 4 of the proposed method. However, the approach
needs that the transcriptional hierarchy is developed in advance while it is
dynamically generated by the system in the case of the proposed method.

Faceted Classification is used to represent classifications from multiple-
perspectives. In the Semantic Web, some researchers proposed Faceted Search for
semantic portals [12, 13]. They use Faceted Classification according to the user’s
choose of facets from the definition of ontologies to provide user-centric semantic
search. In order to formalize the Faceted Classification, Bene Rodriguez-Castro
proposed an ontology design pattern to represent Faceted Classification in OWL [14].
Although the proposed method use a similar technique to Faceted Classification for
transcription of a hierarchical structure, it is different from Faceted Classification
since we focus on considerations of ontological meaning of generated is-a hierarchies.
Introduction of a p-is-a hierarchy is one of the results of the ontological investigations.

However, there are some rooms to ontological investigate on a method of dynamic
is-a hierarchy generation. For instance, we need to investigate is-a hierarchies of role-
concepts and role-holders [5] while this paper concentrated on is-a hierarchies of
basic concept (normal type). Dynamic is-a hierarchy generation based on more
complicated viewpoints is also important subject to be considered. For example, we
are considering viewpoints to cope with a new disease model based on an ontological
consideration of causal chains [9]. Because the latest version of our medical ontology
based on the new disease model has more rich definitions than previous one, it would
support more complicated viewpoints for dynamic is-a hierarchy generation based on
causal chains in diseases. We believe these ontological considerations would clarify
the feature of the proposed method.

6. Concluding Remarks

In this paper, we discussed multi-perspective issues of is-a hierarchy construction
in ontologies and proposed a method of dynamic generation of is-a hierarchies. The
main idea is reorganization of is-a hierarchies from the original ontology according to
viewpoints of users. The proposed method was implemented as a new function of
Hozo, and we applied it to our medical ontology for a preliminary evaluation. As a
result, we confirmed that it could generate several kinds of is-a hierarchies from the
medical ontology according to the user’s viewpoints. As of April 12, 2011, 6051
diseases have been defined in the medical ontology by 12 clinicians, and these

39

definitions are currently being refined. The demonstration of the dynamic is-a
hierarchy generation is available at http://www.hozo.jp/demo/. The function is also
supported by the latest version of Hozo.

Currently, we are improving the dynamic is-a hierarchy generation function in
order to support more detailed disease model which we proposed in [9]. We are also
developing a dynamic is-a hierarchy generation system for OWL ontologies using
OWL-API while it is partly available through OWL import/export function of Hozo.
Future work includes ontological investigations of the proposed method and
evaluation of the system through application of several ontologies.

Acknowledgement

A part of this research is supported by the Ministry of Health, Labour and Welfare,
Japan, the Japan Society for the Promotion of Science (JSPS) through its “Funding
Program for World-Leading Innovative R&D on Science and Technology (FIRST
Program)”, and Grant-in-Aid for Young Scientists (A) 20680009.

References

1. Gruber,T.: A translation approach to portable ontology specifications, Proc. of
JKAW'92:89-108 (1992)

2. Guarino, N: Some Ontological Principles for Designing Upper Level Lexical Resources,
Proc. of International Conference on Lexical Resources and Evaluation (1998)

3. Smith, B. et al.:The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration, Nature Biotechnology, 25(11):1251-1255 (2007)

4. Kozaki, K. et al.: Hozo: An Environment for Building/Using Ontologies Based on a
Fundamental Consideration of "Role" and "Relationship", Proc. of EKAW2002,LNCS
2473:213-218 (2002)

5. Mizoguchi, R. et al.: A Model of Roles within an Ontology Development Tool: Hozo, J. of
Applied Ontology, 2(2):159-179 (2007)

6. Kozaki, K., et.al.: Role Representation Model Using OWL and SWRL, In Proc. of 2nd
Workshop on Roles and Relationships in Object Oriented Programming, Multiagent
Systems, and Ontologies, Berlin, July 30-31, (2007)

7. Mizoguchi, R. et al.: An Advanced Clinical Ontology, Proc. of ICBO:119-122 (2009)
8. Hahn U, et al.: Turning Lead into Gold?, Proc. of EKAW2002, LNCS 2473:182-196 (2002)
9. Mizoguchi, R. et al.: River Flow Model of Diseases, Proc. of ICBO2011: 63-70 (2011)
10. Kou, H., Ohta, M. Zhou, J., Kozaki, K., Mizoguchi, R., Imai, T., and Ohe, K.: Development

of Fundamental Technologies for Better Understanding of Clinical Medical Ontologies,
Proc. of KEOD 2010:235-240, Valencia, Spain, October 25-28 (2010)

11. Nico Adams, Edward O. Cannon, Peter Murray-Rust: ChemAxiom -An Ontological
Framework for Chemistry in Science, Proc. of ICBO:15-18 (2009)

12. Osma Suominen, Kim Viljanen, and Eero Hyvönen: User-centric Faceted Search for
Semantic Portals, Proc. of ESWC2007, LNCS 4519 :356-370 (2007)

13. Markus Holi: Crisp, Fuzzy, and Probabilistic Faceted Semantic Search, PhD Thesis, Aalto
University, Finland (2010)

14. Bene Rodriguez-Castro, Hugh Glaser, and Les Carr: How to Reuse a Faceted Classification
and Put it on the Semantic Web, Proc. of ISWC2010, LNCS 6496:663–678 (2010)

40

MUTU: An Analysis Tool for Maintaining a System of
Hierarchically Linked Ontologies

Sini Pessala, Katri Seppälä, Osma Suominen, Matias Frosterus, Jouni Tuominen, and
Eero Hyv̈onen

Semantic Computing Research Group (SeCo)
Aalto University School of Science, Dept. of Media Technology, and

University of Helsinki, Dept. of Computer Science
http://www.seco.tkk.fi/, firstname.lastname@aalto.fi

Abstract. We consider ontology evolution in a system of light-weight Linked
Data ontologies, aligned with each other to form a larger ontology system. When
one ontology changes, the human editor must keep track of the actual changes and
of the modifications needed in the related ontologies in order to keep the system
consistent. This paper presents an analysis tool MUTU, by which such changes
and their potential effects on other ontologies can be found. Such an analysis is
useful for the ontology editors for understanding the differences between ontol-
ogy versions, and for updating linked ontologies when changes occurred in other
components of an ontology system.

1 Facilitating changes across ontologies

1.1 Position statement

Ontologies are often linked into larger ontology systems systems of a general upper
ontology complemented by domain-specific ontologies. Thisenables that the experts of
various domains can create their field-specific ontologies that co-operate with the other
ontologies.

When updating the upper ontology, the changes require modifications in the domain
ontologies. Since the domain ontology developers are not specialized in the upper on-
tology, the changes to it should be conveyed to the domain ontology developers in a
readable form.

1.2 Introduction

Ontologies define concepts and relations between them in a machine-processable form
[5]. The backbone of ontologies is typically based onrdfs:subClass relation, that can
also be used in Linked Data for aligning ontologies hierarchically into larger systems.
In such systems, more domain-specific ontologies extend theconcepts of more general
(upper) ontologies. This idea has been implemented in the Finnish Collaborative Holis-
tic Ontology (KOKO)1. KOKO has the Finnish General Upper Ontology YSO [1] as its

1 http://www.seco.tkk.fi/ontologies/koko/

41

upper ontology, aligned with 15 more specific ontologies in domains such as cultural
heritage, agriculture and forestry, sea faring, photography, and public governance.

Domain ontologies are typically separately developed by different expert groups,
since the process requires field-specific knowledge often found in separate communi-
ties and organizations. In KOKO, all component ontologies are based on existing key-
word thesauri developed by such distributed, independent expert groups. However, the
ontologies have mutual implicit relations with each other via shared concepts and rela-
tions. The added value of KOKO is to explicate such alignmentrelations with the upper
ontology YSO, linking the ontologies into a coherent globalhierarchical system.

This paper concerns the problems of ontology evolution in such a system of Linked
Data ontologies. When an ontology has been edited, possibly by several persons in a
team, the ontology editor needs tools for seeing the actual changes of the ontology with
regard to the earlier versions and examining the possible consequences of the changes
to other ontologies. We built an analysis tool MUTU for the ontology editor to address
such changes. The idea in MUTU is to provide the domain ontology developer with
an analysis of changes with regard to a prior version of her ontology, and support her
in performing the required modifications, when changes haveoccurred in other related
ontologies, in particular the upper ontology gluing the component ontologies together.

2 Tool Description: MUTU

2.1 Adressing the Changes of the Upper Ontology with MUTU

MUTU has been developed as an answer to a real demand in collaboration with ontol-
ogy developers. MUTU lists the changes occurred at the update of the upper ontology as
an HTML file, and marks the modified concepts of the updated upper ontology group-
ing them to different categories, based on the type of change. The groupings help the
domain ontology developer to identify which concepts stillneed to be checked. After
the developer has performed the required modifications to the domain ontology, the
groupings can be removed. MUTU supports lightweight RDFS, SKOS2 and OWL on-
tologies. MUTU is adapted for a new upper and domain ontologypair by creating a
configuration file containing a list of the ontology namespaces and property URIs.

MUTU is based on the assumption that the URI of a concept is thesame across
different ontology versions, thus concepts are identifiable by their URIs. This means
that when a label of the concept changes, no new concept is created.

Interesting Change Categories of the Upper Ontology MUTU divides the changes
in an upper ontology into eight categories, which were determined in collaboration with
ontology developers. A change can be either an addition or a removal of a concept or an
addition, a removal or a replacement of a property value of a concept. It is assumed that
the schema of the ontologies remains unchanged simplifyingthe process compared with
a more general approach as in, e.g., [3]. However, all of the changes are not relevant
to the developer of the domain ontology, since the domain ontology extends only some

2 http://www.w3.org/2004/02/skos/

42

parts of the upper ontology. Thus, we define that a change in the upper ontology is
interesting, if it will most likely cause update proceduresto the domain ontology. This
means that different subgroups of the upper ontology changes are interesting depending
on the domain ontology and the connection between it and the upper ontology.

Generally, the changes nearest to the extended parts are interesting, but the domain
ontology developer needs to examine all of the changes. By dividing the interesting
and rest of the changes into different groups, the domain ontology developer could only
check the interesting changes. The uninteresting changes are also available for acquiring
a broader picture of the changes of the upper ontology.

The domain ontology is connected to the upper ontologies viaRDF triples where
the subject belongs to the upper ontology and the object to the domain ontology or
vice versa. The concepts of the upper ontology participating in the described triples are
called connecting concepts. Respectively, connecting concepts that are connected via
an equivalency property are called equivalent-connectingconcepts. Next, we introduce
the change categories and define the interesting changes in these categories.

1. Added and removed concepts: Added and removed concepts are concepts that
do not exist in both of the upper ontology versions. An added or removed concept
is interesting when it is an ancestor of a connecting concept, since it should be
checked that the reasoning of the hierarchy is valid for the connecting concepts of
the domain ontology. Additionally, some added concepts might already exist in the
domain ontology, so these concept pairs should be marked equal.

2. Hierarchy and partonomy changes: Hierarchy and partonomy changes are in the
values of the hierarchy building properties, e.g.,rdfs:subClassOf or skos:broader.
The changes of this category are interesting if the concept is an ancestor of a con-
necting concept with a continuous chain of that property.

3. Label changes: Label changes are changes in the value of label-related properties,
such asskos:prefLabel or skos:altLabel. The label changes are interesting, if the
preferred label of an equivalent-connecting concept has been replaced, since then
the preferred label of the domain ontology concept might need to be updated.

4. Associativity and equivalency changes: Associativity and equivalency changes
are the changes of the properties that change additional connections between con-
cepts. Examples of these properties areskos:related andskos:exactMatch. These
changes are interesting if they occur in a connecting concept.

5. Other changes: Other changes contain the changes of the properties that were not
mentioned above. They are interesting if they occur in a connecting concept.

Additional features In addition to the change categories listed above, the ontology
developers requested additional features to aid their work. These features were report-
ing on multiple concepts with the same label and blocking of uninteresting changes in
properties and concepts.

The label-matching feature compares all of the labels of theupdated upper ontol-
ogy with the labels of the domain ontology, detecting the unwanted situations of having
the multiple occurrences of the same concept without any relation between them, e.g.,
owl:sameAs. If some labels match and there is no marked equivalency, then the domain

43

ontology developer should see if the concepts should be marked equivalent. Addition-
ally, the labels are lemmatized, since depending on the ontology, some labels might be
in plural and the others in singular.

Blocking an uninteresting property means that the changes of that property are ig-
nored, and blocking an uninteresting concept means that changes to the subconcepts of
the concept are ignored. This prevents flooding the change listing with the modifica-
tions of irrelevant properties, whose change would not cause any need for updating the
domain ontology. As an example, label changes in languages that are not used in the
domain ontology are not relevant.

Fig. 1. Overview of the process of MUTU

MUTU Process The usage of MUTU is shown in Figure 1. The domain ontology de-
veloper inputs the current upper ontology, the old upper ontology, the domain ontology
and a configuration file. MUTU detects the changes between thedifferent versions of
the upper ontology and detects the connecting concepts. Then MUTU separates the
changes to interesting and the rest and prints this list to a report in HTML format. Fi-
nally, MUTU marks the modified concepts and outputs the HTML listing and marked
upper ontology for the domain ontology developer.

The HTML listing contains the changes sorted by different modification types.
By expanding one modification type, one can choose to expand either the interesting
changes or the rest modifications and then see a list of the concepts with these changes
and browse the changed property values. The marked upper ontology can be used in
the ontology editor for keeping on track of which concepts are still unchecked. In the
marked upper ontology, the changed concepts are marked as subclasses for structuring
concepts representing different modification types. The changes are marked in the on-
tology so that the subconcepts of one modification type are the same as in the HTML
listing.

44

2.2 Case Study: YSO and LIITO

Fig. 2. The aFdded, interesting concepts of the HTML change list. The bulletin-listedconcepts
are the nearest connecting concept children of the added concept.

In our case study, we used the Finnish General Upper OntologyYSO [1] as the
upper ontology and the Business Economy Ontology LIITO3 as the domain ontology.
Both ontologies are in active development and there is a new release of YSO quarterly.
LIITO contains almost 3200 concepts, the old version of YSO contains 20700 concepts
and the updated YSO contains 23600 concepts.

We have not yet conducted a formal evaluation of MUTU, but thefirst results of us-
ing MUTU with YSO and LIITO are promising. The outputs, the change list and marked
updated upper ontology, were considered useful among the domain ontology develop-
ers. It was easy for the developers to see what changes had been made. A screenshot of
the interesting added concepts are shown in figure 2.

When examining the change lists, some interesting findings were made: somewhat
over 10% of the hierarchy changes occurred near to the connecting concepts. Most of
these changes were of hierarchically close concepts. Another interesting finding was
that since the upper ontology has not been updated before, over 500 concepts added
to YSO that had labels similar to those in LIITO. This means that over 15% of the
concepts of LIITO exist in the updated upper ontology without any marked connections
to the concepts in the YSO. Nevertheless, this does not mean that all of these concepts

3 http://onki.fi/en/browser/overview/liito

45

are duplicates, since for example “The Museum of Modern Arts” could mean a building
in the upper ontology and an organisation in the domain ontology.

LIITO is developed using the Protéǵe4 ontology editor, and for aiding the develop-
ment process, the source file of LIITO contains a copy of YSO. The YSO copy does
not automatically update when the original YSO updates, thus the old YSO version
is replaced with a copy of the updated YSO version in the post-processing phase of
MUTU.

LIITO and YSO contain labels in Finnish, Swedish, and English, so the label changes
are divided into subgroups according to the languages to ease browsing.

3 Discussion and Related Work

Contributions This paper rises the issue of updating systems of separately-developed
ontologies. To address this, we presented a tool for detecting the changes in an upper
ontology and listing the relevant changes for the developerof the domain ontology.
This supports the developer when reflecting the changes of the upper ontology into the
domain ontology.

Related Work Changes and evolution of a single ontology is a widely researched area,
see for example [4][7]. However, the situation where the changes in the upper ontol-
ogy need to be reflected in the domain ontology has not been researched as extensively.
Maedche & al. [2] discuss the evolution of distributed ontologies depending on other
ontologies. They use change logging and when the domain ontology requests the mod-
ifications of the upper ontology, the changes of the upper ontology are merged to the
change log of the domain ontology. Their main goal was to ensure the consistency of
the ontologies, where as we are concerned of conveying the changes to the domain
ontology developer.

Future work This paper described only the preliminary results of the idea and testing
of MUTU, and its web interface is still under development. Weintend to put the system
to use with the domain ontologies of YSO. The web interface ofthe MUTU will be in-
tegrated into the ONKI ontology service5 [8]. After the integration is complete, we will
evaluate the application in collaboration with the actual domain ontology developers.
The evaluation will be that the domain ontology developers use MUTU in their normal
updating tasks and then analyze their use experiences with MUTU and give proposals
for improvements.

In addition, we will enhance the change categories and interesting changes with the
feedback and group single changes to more human-understandable composite changes
similarly to the work of Stojanovic et al. [6]

4 http://protege.stanford.edu/
5 http://onki.fi/

46

Acknowledgements This work is part of the National Semantic Web Ontology project
in Finland6 FinnONTO (2003–2012), funded currently by the National Technology and
Innovation Agency (Tekes) and a consortium of 35 public organizations and companies.

References

1. E. Hyv̈onen, K. Viljanen, J. Tuominen, and K. Seppälä. Building a national semantic web
ontology and ontology service infrastructure—the FinnONTO approach.In Proceedings of
the European Semantic Web Conference (ESWC 2008), 2008.

2. A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and distributed ontologies on
the Semantic Web.The International Journal on Very Large Data Bases (The VLDB Journal),
12(4):286–302, 2003.

3. A. Maedche, B. Motik, L. Stojanovic, and N. Stojanovic. User-driven Ontology Evolution
Management.Knowledge Engineering and Knowledge Management: Ontologies and the Se-
mantic Web, pages 133–140, 2002.

4. P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change
detection approach.Web Semantics: Science, Services and Agents on the World Wide Web,
5(1):39–49, 2007.

5. Staab S. and Studer R., editors.Handbook on Ontologies (2nd Edition). Springer–Verlag,
2009.

6. L. Stojanovic, N. Stojanovic, and S. Handschuh. Evolution of the metadata in the ontology-
based knowledge management systems. InGerman Workshop on Experience Management,
volume 2002, pages 65–77, 2002.

7. M. Tury and M. Bielikov́a. An approach to detection ontology changes.Workshop proceedings
of the sixth international conference on Web engineering (ICWE 2006), 2006.

8. K. Viljanen, Jouni T., and E. Hyv̈onen. Ontology Libraries for Production Use : The Finnish
Ontology Library Service ONKI. InProceedings of the 6th European Semantic Web Confer-
ence (ESWC 2009), 2009.

6 http://www.seco.tkk.fi/projects/finnonto/

47

An Ontology-Based Feature Recognition and Design
Rule Checker for Engineering

Luis Enrique Ramos García1 , Alexander Garcia2 ,John Bateman1
1 University of Bremen, FB 10

Cartesium, Enrique-Schmidt-Strasse. Bremen, Germany
bateman@uni-bremen.de, s_7dns7r@uni-bremen.de

2 University of Arkansas for Medical Sciences
Little Rock, Arkansas, USA

alexgarciac@gmail.com

Abstract. This paper describes the design and implementation of an Ontology-
Based System for Features Recognition and Design Rules Checking in the
domain of sheet-metal engineering using Semantic Web technologies. The
system was implemented by means of the Protégé Application Programming
Interface (API), a rule engine and a reasoner. Using ontology in the core of the
system enabled the representation of manufacturing rules and Automatic
Features recognition. Rules and Queries were not hard coded in the program,
giving the system a high level of maintainability and reusability. Features were
classified as general and specific, easing the work of classifying newer features
as they appear given their previous classification. Most common sheet metal
features referred to in the literature were recognized by the system.

Keywords: Semantic Web, OWL, SWRL, SQWRL, CAD, CAM, CAPP

1 Introduction

Sheet metal parts are elements commonly used in several products manufactured in
modern industry; aerospace, automotive, appliances, machine tools, etc. are only
some of these. Although various software tools are available for making digital
designs for such metal parts, trying to use those designs as input for process planning
and manufacturing is not straightforward. The majority of standards for Computer
Aided Design (CAD) do not represent certain features that are needed when
manufacturing. For instance, declaring when a circle corresponds to an inner edge or
an outer edge has significant consequences during manufacturing although not
necessary when displaying designs. Facilitating the interoperability across the CAD-
CAM (Computer Aided Manufacturing) process should make it possible for designers
to select optimal manufacturing conditions. For instance, to choose a sheet thickness
that would prevent crashes when punching holes.

In order to achieve such interoperability, manufacturing features must be extracted
from CAD files. Extracting these features entails identifying certain patterns from the
CAD files that are to receive additional manufacturing-relevant enrichment. This
information about features is used a posteriori to determine the machining tools and

48

manufacturing processes required to manufacture a given design [1]. Feature
information can also then be used to pre-check designs in order to detect production
rules violations. If these violations are not detected in the early stage of design, the
life cycle of its development increases; raising both production costs and time to
market [2]. Manual recognition of the targeted features is not a viable alternative;
Automated Features Recognition (AFR) is thus required. However, even nowadays
AFR is not fully integrated with CAD software tools. It is applicable only to parts
with relatively simple geometry and still requires human intervention to obtain the
features identified. Moreover, such techniques are generally supported only on
expensive CAD software tools that are beyond the reach of small-scale industry [3].

To address these shortcomings of AFR from sheet metal designs and design
checking, in this paper we propose an ontology-based framework that facilitates
interoperability across the entire CAD-CAM process. Our system integrates both a
CAD and a feature ontology; these ontologies were written in OWL (Web Ontology
Language) and represent 2D primitives as lines, arcs and circles in the CAD ontology
and as edges, slots, tab and holes in the features ontology. In order to provide rules
and query support, OWL was complemented with SWRL [4] and SQWRL [5]. The
result is an ontology-based system that allows us to automatically extract the most
common manufacturing features referred to in the literature.

The paper is organized as follows. We begin with related work in Section 2.
Section 3 then describes the components in the architecture of the implemented
system. Section 4 shows the implementations and some results of the evaluation on a
sample design and Section 5 concludes with an outlook for future work.

2 Related work

2.1 AFR & Design Advisory Systems

Henderson & Anderson [6] reported on early experiences with the use of production
rules that were not hard-coded into the system using Prolog, while Meeran & Pratt [7]
proposed to extract features from 2D drawings to generate process planning and
machining instructions from CAD. The latter approach was also based on logic
programming, adopting Prolog as the implementation language. These authors
mentioned that Prolog presented certain limitations when dealing with trigonometric
functions.

Other authors, such as Vasilakis [8] and Krima et al [9], did not use logic
programming. Rules were represented instead as a set of nested IF <list of
conditions> THEN <hypothesis><list of actions>. In the case of Vasilakis [8], when
a design rule was violated the system showed the rule violated but did not suggest any
corrective action. Radhakrishnan [2] integrated a rule checker within a design
adviser; this approach identifies distance violations amongst features. The general
tendency in these contributions was the development of feature recognition and
design advisory systems with hard-coded rules.

49

 In summary, two main classes of approach can be identified from the literature.
On the one hand there are approaches based on logic programming. Here, rules are
separated from code, facilitating interoperability, shareability and maintainability;
these approaches have generally used Prolog as implementation language. On the
other hand, there are also approaches relying on procedural programming, commonly
using C and C++ as implementation languages. As these are not rule-based,
maintainability and share-ability are limited. Babic et al [10] consider that emerging
approaches should be hybrids.

2.2 Ontology for CAD

The limitations of CAD software tools have motivated researchers to develop
frameworks that overcome those limitations and some of these have already adopted
ontological approaches. Vasilakis & Andersen [11] and Krima et al [12], for example,
developed ontologies for the Standard for the Exchange of Product model data
(STEP). Here, Krima et al [12] acknowledged the limitation of STEP and accordingly
developed OntoSTEP. OntoSTEP is based on OWL precisely because of its support
of logic reasoning and inference mechanisms.

Approaches addressing the problem of interoperability across CAD standards
have been explored by Ghafour et al [13], Sun & Ding [14] and Ramos [15]. Ghafour
et al. proposed a common Design Features Ontology written in OWL and one domain
ontology from each specific standard, an approach similar to that of Sun & Ding.
Ramos focused on an ontology for CAD primitives populating a CAD ontology. In
addition, Grüninger & Delaval [16] developed an ontology for the cutting process of
sheet metal parts; this approach was proposed as a theoretical step from which the
planning process could be supported. Franke et al [17] developed an ontology-based
tool for quality control in CAD design. They aimed to verify cases in which
overlapping occurred in order to determine if this constituted a design mistake. Their
architecture included their own software tool (OntoDMU) and the system HETS [18].

2.3 Sheet Metal Features and Rules for Manufacturing

Defining features in the manufacturing domain is not straightforward [1]; a feature is
understood here as a part of a mechanical design that has a specific functionality and
that is semantically significant within the manufacturing process. Farsi & Arezoo [19]
classified sheet metal features according to whether those features were internal or
external; internal features are holes and external features are different types of
notches. Radhakrishnan et al [2] classified rules into two types: intrafeature rules and
interfeature rules. Interfeature rules are related only to the feature itself and its
constraints, indicating minimum values of its dimensional parameters. Interfeature
rules describe restrictions across features and contours. In Fig. 1 some of the most
common features and rules found in the literature are described. The figure includes
features names and some of their most important parameters. The indicated rules are
related directly with the production process. It is necessary to take such rules into
account in order to provide the necessary structural strength to the design´s features.
Improperly formed features will contribute to waste of material in the finished
products due to buckle, cracks or breaks.

50

Circular Hole

WdHd  &

mmdTd 5.2& 

T= Thickness
d = diameter
H = High
W = Wide

Protrusion or Tab

mWTW 5.0&5.1 

5
W

H

Notch or slot

mmWTW 5.0&5.1 

5
W

H

Oblong holes

WdHd  &

mmdTd 5.2& 

Distance to holes

Tdbh 

mmdbh 5.1

Tdhb 

Tdhb 2

mmdhb 8.0

dbh: distance between holes
dhb: distance hole border

Corner

Tr 7.0

Fig. 1. Manufacturing features with their constraints

3 An Ontology-Based AFR and Design Checker system

The approach developed here builds on the state of the art we have seen and takes this
further, relying on a modular architecture that makes use of the Protégé API. In the
following subsection we describe the approach’s components and the way in which
they interact with each other. Although the organization and classes of the two
ontologies are often comparable, it is important to see that they reflect fundamentally
different kinds of ontological information. To the extent that similarities are found,
then this renders the subsequent mapping process more straightforward, but there is

51

no requirement that the ontologies correspond precisely. Since the identification
criteria for the CAD and the features ontologies are quite distinct—the former relating
to descriptions of design, the latter to manufacturability —it is both theoretically and
architecturally cleaner to maintain them separately. We return to this important
consideration and the issues of perspectives below.

3.1 A CAD Ontology

The first component to be discussed is the CAD ontology. During the development of
this ontology several CAD formats, such as DXF [20] and IGES [21], were
considered. The resulting CAD ontology is under continued revision and update. Fig.
2 illustrates the current state of the CAD Ontology: http://bit.ly/q8baMm.

Fig. 2. CAD Ontology, http://bit.ly/q8baMm

As is illustrated in the figure, we divided CAD_Features into the two subclasses:

Qualitative_Features and Quantitative_Features. Among the former, Primitives can
be either Open or Closed. Under these classes, Line, Arc, Circle and Ellipse are
understood as Primitive elements that are present in any CAD standard that provides
at least a 2D representation. Derived elements are then Qualitative Features that may
vary and are standard dependent; they appear as a combination of certain primitive
elements. For example, a Vertex appears when two primitive lines are connected at
one end. Definition of concepts, such as Vertex, is dimensional-space dependent.

3.2 Ontology of Features

For the development of the ontology of features, available at http://bit.ly/pyQGEE,
we considered information such as that shown in Fig. 1. An extract of the resulting
ontology is presented in Fig 3. There are two main concepts: these are
Shape_Features and NonGeometry. Shape_Features was divided further into
Qualitative_Features and Quantitative_Features, analogously to the top-level
distinction in the CAD ontology. Named_Feature involves features found in the
literature that can be precisely defined and identified using their properties or
attributes. Atomic_Feature is then a Named_Feature consisting of exactly one

52

identifiable element which has meaning in a manufacturing domain. These elements
can have Open or Closed edges.

Composed_Features include features that appear as a combination of
Atomic_Features. Partial_Composed includes identifiable features that need to be
part of a whole to be consistent. Total_Composed covers a feature that exists as a
whole. Partial_Composed features have to be part of a Total_Composed feature.
hasPart and isPartof were included following a standard mereological [22] point of
view and its terminologies and definitions. Properties such as properWidth,
properHeight, properCircularHole were included as part of SWRL rules. When these
rules are evaluated, results are bound to true or false. If results are all true, the design
passes its evaluation; otherwise the design is flagged as needing to be checked.

Fig. 3. Sheet features Ontology, http://bit.ly/pyQGEE

3.3 Mapping two domains of interpretation

One of the main issues of AFR is the level of abstraction involved in the
manufacturing domain [23]. On the one hand, designers make designs from the
functionality and usability point of view, with its own constraints and rules. On the
other hand, manufacturing engineers evaluate a design from the manufacturing point
of view, considering factory constraints. It is for this reason that, in general, quite
distinct standards, formats and tools have been developed. In the two domains, two
different interpretations of the requirements take place for the same object, so an
interoperability channel between them is needed. This channel should facilitate the
interchange of information about products as well as the evaluation of designing and
manufacturing constraints.

In Fig. 4, we introduce the framework implemented for dealing with this
situation. Knowledge transfer between domain ontologies has been facilitated by
means of a third, mapping ontology, which keeps track of the related concepts of both
domains. This mapping ontology was developed using the Prompt plug-in [24]. Given
that in many cases the difference between the domains can be reduced to

53

Fig. 4 System Architecture

terminological issues (factoring out often implicit identity criteria), we first made an
internal comparison [25]. This consisted of comparing concepts based on attributes
and properties. The ontology of CAD and the ontology of features were used as inputs
and a mapping ontology was the output. Mapping was semi-automatic because the
algorithm did not detect all relationships; human intervention was needed to complete
the process. This preliminary mapping already gave us the necessary information to
generate individuals of the features ontology and then to transfer the knowledge about
individuals and their properties from the ontology of CAD to the ontology of features
in a workable fashion.

3.4 Feature Patterns as Queries

Features were recognized by querying the features ontology with SQWRL. These
queries were performed at two levels of abstraction. A first set of queries was
implemented to facilitate a general classification of features and a second set was
executed to facilitate specialized classification. These two sets of queries reduced the
impact of not extracted or unidentified features referred to in the literature [26].
Within the first set of queries, all given atomic features were classified as is part of, a
general pattern. Subsequently, having assigned all atomic features to some general
pattern, we proceeded to identify specific patterns. If some atomic feature was not
classified as is part of some specific pattern, then a new specific pattern had to be
added.

For example, a protrusion pattern is formed by three connected edges having a
specific slope. The query for extracting this pattern was expressed as follows:

Open_Primitive(?l1) ∧ Slope(?l1, "-0.0") ∧
Open_Primitive(?l2) ∧ Slope(?l2, "Infinity") ∧
Open_Primitive(?l3) ∧ Slope(?l3, "+0.0") ∧
hasendpoint(?l1, ?p1) ∧ hasstartpoint(?l2, ?p1) ∧
hasendpoint(?l2, ?p2) ∧ hasstartpoint(?l3, ?p2) ˚

54

sqwrl:makeSet(?s, ?l3)
→ sqwrl:select(?s, ?l1, ?l2, ?l3)

The number of sets obtained and their composition allows the generation of composed
features. Once the query has been executed, composed features are related to atomic
features by means of the has-part property.

3.5 Design and Manufacturing Rules Checking

Although AFR research is receiving considerable attention, a recognized feature still
does not indicate anything about its quality. This aspect is fundamental in order to
reduce the cost of manufacturing a given design [27]. To this end, two sets of SWRL
were implemented to check manufacturing rules. The first set allowed us to enrich
the features ontology with the necessary engineering information about features. For
instance, the width of a Partial Composed feature was calculated with the following
rule:

PartialComposed(?pc) ∧ hasEdge(?pc, ?e) ∧ slope(?e,
"0.0") ∧ hasEndPoint(?e, ?p2) ∧ hasYcoordinate(?p2,
?y2) ∧ hasStartPoint(?e, ?p1) ∧ hasYcoordinate(?p1,
?y1) ∧ swrlb:subtract(?v1, ?y2, ?y1) ∧ swrlb:abs(?v1) →
width(?pc, ?v1)

 The second set of rules was implemented for checking the design. For instance,
given the thickness of a given material, a minimum width is mandatory to make its
manufacturability feasible. For some materials the width must be 1.5 times greater
than the given thickness. This rule was expressed in SWRL as follows:

PartialComposed(?pc) ∧ width(?pc, ?w) ∧ heigh(?pc, ?h)
∧ thickness(?pc, ?t) ∧ swrlb:multiply(?v1, ?t, 1.5) ∧
swrlb:greaterThan(?w, ?t) → proper_width(?pc, true)

3.6 Reasoning framework

The reasoning capabilities of the Semantic Web framework gives us the possibility of
classifying instances of classes against the ontologies of our application. Our
reasoning was done in two steps. Firstly, using SWRLTab [28], rules and queries
were edited, implemented and debugged. JESS [29], a rule engine for JAVA
platforms, has been included in Protégé for enabling this tab. Each OWL Model and
its corresponding SWRL rules were loaded into the JESS engine. The JESS engine
was then run and the resulting inferences were uploaded into the OWL model. Thus,
the amount of knowledge encoded in the OWL model was augmented. Results of
querying the models were also considered for creating new individuals. This result
was finally compared with the design in order to determine if the result was consistent
with it. Here we used Pellet [30] for the automatic verification of the consistency of
the OWL model and for classifying the instantiated features.

55

Fig. 5. Sample shape

Secondly, using the SWRL API [31], the OWL Reasoning API [32] and the

Protégé API, a prototype was developed. SWRLJessBridge, SWRLQueryAPI and
ProtegePelletJenareasoner were also used in this implementation; the overall
architecture is presented in Fig 4. Rules and the results of running the rules were
loaded into models at run time. Queries were made to the OWL models, and the
results were again imported so as to add new knowledge into the OWL models.
Finally, the reasoner verified the consistency of these ontologies and classified
instanced features. Resulting from this process we obtained an OWL model of
features containing all the necessary information pertaining to recognized features
with their quality; our model also includes non-identified features.

4 Implementation and Results

The implementation was tested with several designs of shapes. In Fig. 5 one of these
is displayed by means of a CADViewer plug-in for Protégé [15]. Our first evaluation
of the design consisted of diagnosing the topological correctness of the model and
verifying the connectivity of edges and vertex [33]. For this verification, we defined
Isolated_Point as a subclass of Point. After populating the CAD ontology, the
reasoner was invoked. If instances of Isolated_Point are found then the design is

56

considered as inconsistent; such a case is illustrated in Fig. 6. As soon as the problem
was corrected, the system continued with the extraction of features and their
validation.

The features described in Fig. 1 were recognized and extracted into the features
ontology. Manufacturing rules were run on the OWL model adding newer knowledge.
This new knowledge was then used by the reasoner to classify features into sets of
proper and improper features.

5 Conclusions and future work

AFR is a research and application area devoted to bridging the gap between design
and manufacturing. Most of the approaches used in AFR are divided into procedural
and declarative approaches. We have developed an Ontology-Based AFR and Design
Rules Checker System that combines the advantages of both approaches. An ontology
of CAD and an ontology of features are the fundamental components of our system.
The necessary interoperation between both ontologies was achieved by means of a
mapping ontology generated in a semi-automatic manner using the Prompt Protégé
plug-in.

SWRL was used to perform engineering calculations in order to add appropriate
semantics to the features ontology. SQWRL was used for modeling feature patterns
commonly referred to in the literature. Sheet metal features were extracted as the
result of queries applied to the features ontology. SQWRL queries and SWRL rules
were written at several levels of abstraction in order to make a progressive
identification of features possible. By using such combination, SQWRL and SWRL,
we have identified a significant number of features.

In this paper we have demonstrated that complex rule of mechanical and
manufacturing engineering processes can be expressed using OWL and SWRL.
Similarly, we have demonstrated that complex engineering information can be
retrieved from the ontology using the SQWRL language. These rules and queries
were also used for inferring knowledge and driving appropriate decision-making
information. New features, rules and patterns can be integrated into our system by
means of standard ontology editors. In the near future, we plan to integrate a
recommendation ontology. Thus, as soon as a design violation is found, a
recommendation will be presented to the user. We will also investigate how to deal
with intersecting mechanical features.

The resulting set of recognized features could be used as an input in Computer
Aided Process Planning (CAPP) systems, from which process planning will be
obtained. We will continue this line of development as a Semantic Web CAPP
system, focusing on the accuracy of the kind of planning generated with the Semantic
Web Technologies taking into consideration other aspects of the engineering
environment and investigating scalability.

57

References

1. Cayiroglu, I.: A new method for machining feature extracting of objects using 2D
technical drawings. Comput. Aided Des. 41, 1008-1019 (2009).

2. Radhakrishnan, R., Amsalu, A., Kamran, M., Nnaji, B.O.: Design rule checker for sheet
metal components using medial axis transformation and geometric reasoning. Journal of
Manufacturing Systems. 15, 179-189 (1996).

3. Kumar, S., Singh, R.: Trends and Developments in Intelligent Computer Aided Design of
Progressive Dies. AMR. 6-8, 241-248 (2005).

4. Horrocks, I., Patel, P.F.-S., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule LanguageCombining OWL and RuleML,
http://www.w3.org/Submission/SWRL/#7.1, (2004).

5. Amar Das, M.O.: SQWRL: a Query Language for OWL. 6th International Workshop on
OWL: Experiences and Directions (OWLED 2009). Vrije Universiteit Amsterdam,
Chantilly, VA, United States (2009).

6. Henderson, M.R., Anderson, D.C.: Computer recognition and extraction of form features:
A CAD/CAM link. Computers in Industry. 5, 329-339 (1984).

7. Meeran, S., Pratt, M.J.: Automated feature recognition from 2D drawings. Computer-
Aided Design. 25, 7-17 (1993).

8. de Sam Lazaro, A., Engquist, D.T., Edwards, D.B.: An Intelligent Design for
Manufacturability System for Sheet-metal Parts. Concurrent Engineering. 1, 117 -123
(1993).

9. Soman, A., Padhye, S., Campbell, M.I.: Toward an Automated Approach to the Design of
Sheet Metal Components. AI. 17, 187-204 (2003).

10. Babic, B., Nesic, N., Miljkovic, Z.: A review of automated feature recognition with rule-
based pattern recognition. Computers in Industry. 59, 321-337 (2008).

11. Andersen, O., Vasilakis, G.: Building an Ontology of CAD Model Information. Springer
Berlin Heidelberg (2007).

12. Krima, S., Barbau, B., Fiorentini, X., Sudarsan, R., Sriram, R.: OntoSTEP: OWL-DL
Ontology for STEP, http://www.nist.gov/customcf/get_pdf.cfm?pub_id=901544.

13. Ghafour, Abdul, S., Ghodous, P., Shariat, B., Perna, E.: An Ontology-based Approach for
“Procedural CAD Models” Data Exchange. Proceeding of the 2006
conference on Leading the Web in Concurrent Engineering: Next Generation Concurrent
Engineering. pags. 251–259. IOS Press, Amsterdam, The Netherlands, The Netherlands
(2006).

14. Sun, L.-juan, Ding, B.: Ontology-based Semantic Interoperability among Heterogeneous
CAD Systems. Information Technology Journal. 9, pp. 1635 - 1640 (2010).

15. Ramos, L.: Ontological CAD Data Interoperability Framework. Presented at the
SEMAPRO 2010 , Florence, Italy Octubre (2010).

16. Grüninger, M., Delaval, A.: A First-Order Cutting Process Ontology for Sheet Metal
Parts. Proceeding of the 2009 conference on Formal Ontologies Meet Industry. pp. 22-33.
IOS Press (2009).

17. Franke, M., Klein, P., Schröder, L.: Ontological Semantics of Standards and PLM
Repositories in the Product Development Phase. Proc. 20th CIRP Design Conference
2010. Alain Bernard.

18. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets, (2007). In
TACAS 2007 (2007), O. Grumberg and M. Huth, Eds., vol 4424 of LNSC, Springer, pp.
519 - 522.

19. Farsi, M., Arezoo, B.: Feature Recognition and AND Design Advisory Systemfor Sheet
Metal Components. Presented at the International Advanced Technologies Symposium ,
Turkey Mayo 13 (2009).

20. Autodesk: DXF Reference, http://images.autodesk.com/adsk/files/acad_dxf1.pdf, (2009).

58

21. U.S. Product Data Association, U.S.P.D.A.: Initial Graphics Exchange Specification 5.3,
http://www.uspro.org/documents/IGES5-3_forDownload.pdf, (1997).

22. Varzi, A.: Mereology, http://plato.stanford.edu/entries/mereology/.
23. Shah, J.J., Rogers, M.T.: Functional requirements and conceptual design of the feature-

based modelling system. Computer-Aided Engineering Journal. 5, 9-15 (1988).
24. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and

mapping. International Journal of Human-Computer Studies. 59, 983-1024 (2003).
25. Euzenat, J.: State of the art on ontology alignment,

http://www.starlab.vub.ac.be/research/projects/knowledgeweb/kweb-223.pdf, (2004).
26. Marchetta, M.G., Forradellas, R.Q.: An artificial intelligence planning approach to

manufacturing feature recognition. Computer-Aided Design. 42, 248-256 (2010).
27. Li, X., Yoo, S.B.: Integrity validation in semantic engineering design environment.

Computers in Industry. 62, 281-291 (2011).
28. Martin, O.: SWRLTab, http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab, (2011).
29. Friedman-Hill, E.: the Rule Engine for the JavaTM Platform. Sandia National

Laboratories (2008).
30. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. Web Semant. 5, 51–53 (2007).
31. O’Connor, M., Nyulas, C., Shankar, R., Das, A., Musen, M.: The SWRLAPI: A

Development Environment for Working with SWRL Rules. Proceedings of the
International Workshop on OWL: Experiences and Directions (OWLED 2008) (2008).

32. Protege-OWL Reasoning API, http://protegewiki.stanford.edu/wiki/ProtegeReasonerAPI,
(2009).

33. Tanaka, F., Kishinami, T.: STEP-based quality diagnosis of shape data of product models
for collaborative e-engineering. Computers in Industry. 57, 245-260 (2006).

59

Socio-technical Ontology Development for Modelling

Sensemaking in Heterogeneous Domains

Dhavalkumar Thakker, Fan Yang-Turner, Lydia Lau, Vania Dimitrova

School of Computing, University of Leeds

Leeds LS2 9JT, United Kingdom

{D.Thakker, F.Yang-Turner, L.M.S.Lau, V.G.Dimitrova}@ leeds.ac.uk

Abstract. Sensemaking is often associated with processing large or complex

amount of data obtained from diverse and distributed sources. With information

explosion from the web, sensemaking is becoming ubiquitous and ever more

challenging. Semantic technologies have potential to support understanding of

sensemaking process with the benefits they bring (e.g. reasoning, aggregation,

automation). Conceptual models of sensemaking have been developed to

understand its complex processes by social and information scientist. However,

these frameworks are not applicable directly to system design. This paper

describes a socio-technical approach for modelling sensemaking process in

order to inform the development of intelligent services to aid sensemakers. We

apply an a priori ontology modularisation methodology for handling

complexity of heterogeneous domains and utilise well-known sensemaking

theoretical framework to guide ontology development. This approach is applied

in an EU project - Dicode, for the development of its sensemaking ontology.

Keywords: Ontology, Sensemaking, Modularisation, Semantic Annotation

1 Introduction

Semantic technologies, underpinned by ontologies, have been seen as one of the

promising platforms for developing knowledge management systems [1, 2]. Examples

of successful ontology developments can be found in a diverse range of domains such

as multimedia [3] and life sciences [4, 5]. In these relatively well-defined and well-

researched domains, ontological representations enhance the machine’s reasoning

capability on those knowledge bases.

With the recent proven successes of semantic web and ontologies, the field is ready

to take on challenges offered by complex social-oriented domains which are less well-

defined or scoped. Sensemaking is such a domain that involves cognitively-complex

processes carried out by human and often requires injection of tacit knowledge.

Moreover, sensemaking encompasses a range of behaviour surrounding the collection

and organisation of information, may be across domains, for better understanding of a

situation. Therefore, it is very challenging to derive a systematic and thorough

understanding of the sensemaking processes from domain experts using traditional

knowledge elicitation techniques.

60

Conceptual models of sensemaking have been developed to understand its complex

processes by social and information scientists [6, 7, 8]. However, the problem of

understanding and supporting sensemaking via technology remains challenging [9].

Initial work has already started in utilising semantic technologies for aiding

sensemaking process in the domains of linked data [10], visualisation [11] and e-

health [12]; which focus on applications that serve sensemaking rather than modelling

sensemaking as a generic process.

This paper proposes a socio-technical approach for the development of an ontology

which models sensemaking process in order to inform the design of intelligent aids to

sensemakers. This is motivated by the vision of an EU project - Dicode1, which aims

to provide synergy between human and machine intelligence in collaboration and

decision making within data-intensive environments. Theoretical frameworks on

sensemaking, combined with an a priori ontology modularisation methodology, are

used to guide the ontology development for sensemaking in heterogonous domains.

The paper is organised as follows. Section 2 explores the domain of sensemaking

and the issues to be considered in developing a sensemaking ontology. Our socio-

technical approach is proposed in section 3. Section 4 illustrates the application of the

socio-technical approach in Dicode for the development of a multi-layered Dicode

ONtology (referred as DON afterwards) for sensemaking. To better understand the

potential benefits of semantics (e.g. using the ontology for reasoning, aggregation,

automation) for applications in sensemaking domains, a proof-of-concept prototype

“Augmentor” has been developed and discussed in Section 5. The concluding section

summarises our contribution and future work.

2 Sensemaking: A Case Study

Sensemaking, as in “to make sense”, is a process of transforming information into a

knowledge product [8]. Sensemaking process involves interplay between foraging for

information and abstracting the information into a representation called a schema that

will facilitate a decision or solution [6]. It is often associated with processing large or

complex amount of data obtained from diverse and distributed sources. There has

been a recent increase of interest in sensemaking driven by the information explosion

from the web that has rapidly changed our ability to assess large amounts of

information [20].

Dicode project is aimed at supporting sensemaking and decision making in data-

intensive and cognitively-complex settings. The solution foreseen in the Dicode

project will bring together the reasoning capabilities of both the machine and the

human. There are three use case partners involved to validate the transferability of

Dicode solutions. They are from three different domains: (1) Clinico-Genomic (CG)

research where clinical research professionals collaborate to explore scientific

findings related to breast cancer using very large datasets; (2) Rheumatoid Arthritis

(RA) clinical trial where medical personnel involved in the clinical trials collaborate

and exchange their professional judgment within complex clinical decision making

1 http://www.dicode-project.eu/

61

processes; and (3) Public Opinion (PO) monitoring where analysts watch social

media to monitor public perceptions of their clients’ branding, products or services.

These three use case partners were selected to address common challenges in

sensemaking and decision making. All use cases experience the problem of

information overload; all require sensemaking towards decision making based on

cognitively intensive analysis and interpretation of data; all need to discuss and share

interpretation and decision making rationale between specialists. They cover the full

range of features and functionalities to be addressed by the project, from various

sectors and domains and draw relevant information from large scale and real time data

residing in heterogeneous sources. However, beyond these high level similarities,

each use case comes from different domains (e.g. biomedical, medical, or public

relations), deals with different type of data (e.g. structured database tables, semi-

structured log data, unstructured blogs, forum discussions or tweets) from different

data sources (e.g. biomedical analysis tools, image analysis software or social media

monitoring tools) and with different work practices (e.g. organisational practices of

research teams or market research teams for public opinion monitoring).
Both the similarities and the differences among the use cases bring forth several

research challenges in terms of ontology development: (1) Domain complexity:

Understanding sensemaking in these domains is difficult as it involves heterogeneous

sources of knowledge, i.e. expertise from multiple disciplines. (2) Knowledge scope

expansion: The conceptualisation process is generally dynamic and evolves with the

increasing amount of tacit knowledge being made explicit. This means that certain

concepts and relationships are unidentified in the beginning. Hence, it is not always

possible to build an all-encompassing ontology in the very first instance. (3)

Systematic development: Traditional knowledge elicitation techniques for

conceptualisation that rely on domain experts are not sufficient as conceptualisation

might result in ad-hoc modelling. To address these challenges in Dicode and for the

development of DON, we apply a novel socio-technical sensemaking modelling

approach presented in the next section.

3 The Proposed Socio-technical Approach

Socio-technical principles started in the age of shop floor automation [13]. They have

since been applied to the design and implementation of computer-based systems and

information technology [14, 15]. Underpinning our proposed socio-technical

approach for modelling ontology for sensemaking is the concept of a priori

modularisation. We have developed a priori modularisation methodology [16] that

enables dividing the domain ontology into several modules from the outset in order to

handle the complexity and dynamicity of ontology modelling in ill-defined domains.

This modularisation methodology is devised for a class of problems that involve

cognitively-complex processes carried out by humans and require tacit knowledge

(e.g. decision making, sensemaking). The understanding of such domains involves

inter-disciplinary domain experts who often utilise a theoretical framework to guide

the articulation of their understanding. According to this methodology, ontology

development begins with some theoretical framework and arrives to case specific

62

domain ontologies. We follow the three-layered development of domain ontologies

which consist of an upper abstract layer, a middle reusable layers, and a lower case

specific layer. Each layer may consist of one or more ontology modules (see Fig. 1).

Fig. 1. A Multi-layered Ontology Development with a Priori Modularisation

Upper abstract layer: The chosen socio-driven theoretical framework(s) will have

the most influence on this layer when the base concepts for the domain are defined

following the theoretical framework. Conceptualisation at this level is conceived and

developed independently from its usage context and avoids defining any concepts that

are tied to a particular use case. The sensemaking theoretical frameworks selected for

this approach are discussed in section 4.

Middle reusable layers: Middle layers, which evolve organically through use, are

used to make the connection between the upper ontology layer and the case specific

ontology layer. The concepts captured in this layer are likely to be expanded as more

tacit knowledge used for interpreting the base concepts is being captured. This layer

provides a context-rich bridge between the upper level concepts and the multiple case

specific domain ontologies. The middle layers can expand into a number of sub-layers

depending on the commonalities among specific cases. The concepts defined in the

sub-level should be reusable and remain high level. Only thinking in terms of

reusability [17] will keep this layer generic for any sensemaking domain.

Case specific layer: This layer defines the concepts that are specific to each use

case (i.e. closer to the content and usage). During this stage, when commonalities in

the use cases are discovered, those ontological statements will be moved to the middle

layers. This may lead to the expansion of a module or even start a completely new

module in the middle layers.

63

4. Dicode ONtology (DON) for Sensemaking

The following subsections present the main features of the three-layer Dicode

ONtology (DON) developed for sensemaking.

4.1 Upper Abstract Layer

This upper abstract layer ontology covers base concepts that describe sensemaking

process for Dicode. We here explain our choice of upper abstract layer sensemaking

frameworks.

In Dicode, each use case involves group of professionals collaborating to address

complex problems by combining experience and expertise towards a shared

understanding. Hence, collaborative sensemaking is the ultimate target for our work.

We are inspired by the work of Paul and Reddy [18] on collaborative sensemaking.

Their framework shows collaborative sensemaking activities are often initially split

into tasks/sub-tasks and sub-tasks are performed by different group members

(possibly by performing individual sensemaking), depending on their roles and

expertise. Roles can be organizational or might be assigned informally. It also defines

the collaboration triggers (e.g. ambiguity of information, role-based distribution of

information, and lack of expertise) and characteristics of collaborative sensemaking

(e.g. prioritizing relevant information, sensemaking trajectories, and activity

awareness). The framework also highlights the need to bring together individual

sensemaking activities prior to supporting the collaborative sensemaking activities.

To address individual sensemaking, we adopted a notional model developed by

Pirolli and Card [8], in which sensemaking process is defined as two interconnected

loops: foraging loop and sensemaking loop. The foraging loop involves sensemaking

operations such as searching and filtering information, gradually leading to the

identification and organization of relevant knowledge. The sensemaking loop is an

iterative development of a mental model from the schema/representation that best fits

the evidence, which involves searching for support (e.g. using support systems) and

using that schema to complete a final task.

Fig. 2. Abstract Sensemaking Model

64

Fig. 2 and Table 1 outline the resulting high level base concepts drawn from these

two frameworks. The upper abstract layer caters for the main elements of the

individual sensemaking such as: actors (e.g. SENSEMAKERS), outcomes (WORK

PRODUCT such as documents, diagrams), support services (SUPPORT SYSTEMS, such

as data mining, semantic search), and sensemaking operations performed as part of

TASKS by human or by machines and main axioms linking them.

Table 1. Abstract Sensemaking Model

Description Logic (DL) syntax

CollaborativeSensemaking ⊑ Sensemaking
IndividualSensemaking ⊑ Sensemaking

Sensemaking ⊑ ∃ consistOf.SensemakingOperation
 SensemakingOperation ⊑ ∃ using. InformationSource

SensemakingOperation ⊑ ∃ on. Data
WorkProduct ⊑ ∃ communicate. Sensemaking
Representation ⊑ WorkProduct
Representation ⊑ ∃ represent. Data
Sensemaker ⊑ ∃ perform. Sensemaking
Sensemaker ⊑ ∃ carry out. SensemakingOperation
Sensemaker ⊑ ∃ have. Expertise
Sensemaker ⊑ ∃ create. WorkProduct
Sensemaker ⊑ ∃ utilise. InformationSource
SupportSystem ⊑ ∃ support. Sensemaking

 SupportSystem ⊑ ∃ facilitate. SensemakingOperation
CollaborationTrigger ⊑ ∃ trigger. Collaborativ Sensemaking
Sensemaker ⊑ ∃ interactsWith. Sensemaker

The upper abstract layer also contains conceptualisation of collaborative

sensemaking process: TRIGGERS triggering COLLABORATIVE SENSEMAKING,

SENSEMAKERS interacting with other SENSEMAKERS and playing a ROLE and

offering EXPERTISE, division of tasks into SHARED TASK and outcomes (SHARED

UNDERSTANDING, SHARED REPRESENTATION).

This upper abstract layer is a starting point for extending into more specific

ontologies.

4.2 Middle Reusable Layers

In the middle reusable layers, we defined concepts and respective modules that are

used across three use cases. The middle layers in the sensemaking ontology include

common concepts that expand the base concepts from the upper layer. The common

concepts within all use cases are related to DATA, SENSEMAKING OPERATION,

SENSEMAKER and REPRESENTATATION (see Table 2). For example,

SENSEMAKING OPERATIONS were expanded with operations relevant to the Dicode

use cases (e.g. ABSTRACTING, CLASSIFYING, COMPARING, FILTERING,

65

SEARCHING, VISUALISING); and DATA were specified (e.g. STRUCTURED DATA,

UNSTRUCTURED DATA, QUALITATIVE DATA, QUANTITATIVE DATA).

Table 2. Conceptualising Representation of Middle Reusable Layers

Description Logic (DL) syntax

Representation ⊑ ∃ typeOfRepresentation. RepresentationType

Representation ⊑ ∃ communicate. SharedUnderstanding

SpatialRepresentation : RepresentationType

FacetedRepresentation : RepresentationType

ArgumentationalRepresentation : RepresentationType

4.3 Lower Case Specific Layer

Three case specific ontologies were derived to capture the specificity of sensemaking

activities for each Dicode use case. For example, the sensemakers in each user case

are represented such as: RADIOLOGIST, RADIOGRAPHER, and CLINICAN in the RA

clinical trial use case; CLINICAL RESEARCHER in the CG research use case; and

MARKETING RESEARCHER in the PO use case.

Fig. 3. Sensemaking Operations for Clinico-Genomic (CG) Use Case

Fig. 3 represents the case specific sensemaking operations related to the CG

research use case (e.g. COMPARING PLAFTORM, COMPARING GENES, ANALYSE

DATASET, BIOLOGICAL EXPLANATION, IDENTIFY DATASET, SEARCH DATASET)

including the data such operations are performed on (e.g. GED - Gene Expression

Data, GEP – Gene Expression Profile in the case of operation COMPARING

PLATFORM) and support systems for such operations (e.g. R, DAVID TOOL and

BIOCONDUCTOR for ANALYSING DATASET).

Concepts in the case specific layer were derived from several knowledge sources:

interviews with stakeholders in each use case, relevant documentation, and user

stories. The knowledge sources were analysed by a representative of domain experts

following the guidance from the upper abstract layer and a knowledge glossary was

built. The concepts from the glossary were then encoded in an ontology using an

66

intuitive ontology authoring tool ROO [19] which enables active involvement of

domain experts.

Our modelling approach also allowed us to utilise relevant ontologies and datasets

from Linked Data Cloud (such as DBpedia2) and public ontologies (such as RadLex3,

MeSH4) to enhance the coverage of the concepts in DON use case modules. For

example, to improve the coverage of the BODY PART concept (from the RA clinical

trial use case) we utilised RadLex and MeSH ontologies (see Fig. 4).

Fig. 4. Utilising external ontologies to specialise Body Part concepts in the RA clinical

trial use case (left-top: Original, left-bottom: MeSH ontology, right: RadLex ontology)

5. Utilisation of DON: Augmentor Semantic Services in Dicode &

Beyond

DON ontology is being used for semantic augmentation of medical diagnosis

reports and user contributions to argumentative interactions. For semantic

augmentation we have developed generic services: a) Semantic Annotation service –

to tag content semantically, i.e. linking content to named entities and b) Semantic

Query service – to search (and to facilitate browsing of) semantically tagged content.

A web based tool Augmentor is developed to illustrate the utilisation of these

semantic services and to understand benefits ontologies can bring. In this section, we

outline the implementation details for Augmentor.

2 http://dbpedia.org/About
3 http://www.rsna.org/radlex/
4 http://www.nlm.nih.gov/mesh/

67

5.1. Architecture and Implementation

Fig. 5 shows the main architectural elements of the currently implemented Augmentor

services and their interactions.

Fig. 5. UML Component Diagram for Augmentor Services

In addition to its front-end user interface, Augmentor consists of semantic

annotation and semantic query services – both components are utilising DON

ontologies. The interface also consumes an internal report API. The semantic

reasoning and storage layer is part of the both services and works as an interface

between the underlying semantic processing technologies (ontological knowledge

bases, application logic, and text mining systems) and the services.

 Through a URL, Augmentor retrieves metadata and selects textual content of the

medical diagnosis reports kept in a web server. Semantic annotation service

automatically tags content with DON concepts using text mining techniques based on

GATE5. This service also augments the tags with the concepts from external

ontologies. The content is tagged on the fly and stored in a semantic knowledge base

driven by high performance OWLIM6 semantic repository. Browsing and retrieval of

heterogeneous content (comments, metadata, and knowledge base) in semantic query

service is implemented using two sets of technologies: schema level reasoner API

Jena7 to browse the ontologies and content retrieval service based on OWLIM. The

REST based implementation of these components allows utilising these services

outside Augmentor user interface (see Fig. 6) by Dicode use case partners or other

services in Dicode.

5 http://gate.ac.uk/
6 http://www.ontotext.com/owlim
7 http://jena.sourceforge.net/

68

In Fig. 6, four parts are being highlighted (A to D) to show the result of semantic

augmentation on a medical report. A) Comments - the medical report contains self-

reflection note/comments from a sensemaker (radiographer). These notes can be used

by other sensemakers to study this sensemaker’s sensemaking process while

conducting clinical study. B) Concepts - the important concepts that describe the

comments are semantically tagged and linked to the knowledge base. Clicking on the

hyperlinked concepts takes the sensemakers to other related reports. C) Sensemaking

Operations - Augmentor gives indication of the sensemaking operations carried out

by this sensemaker, which can be referenced by other sensemakers. D) Resources –

Augmentor interface shows the connections of the report to relevant linked datasets.

Fig. 6. Interface for Augmentor Services: a result of semantic Augmentation

5.2. Benefits of Modularisation in DON

While utilising DON in Augmentor services for semantic augmentation of content,

the modularisation approach allows utilizing only relevant modules from the DON

and corresponding knowledge base. It helps to constraint the annotation space for the

semantic annotation service to be limited to the specific use case.

We also utilise DON in Augmentor services by providing a structure for browsing

content related to sensemaking activities and knowledge bases, which can facilitate

sensemakers in Dicode to take informed decisions. The browsing service requires

storage and reasoning layer to support required reasoning and search functionalities.

We utilise semantic technologies (e.g. semantic repositories, SPARQL8) to provide

the storage and reasoning for developing such applications. We exploit the

modularisation in DON ontologies by loading relevant ontologies and datasets to each

8 http://www.w3.org/TR/rdf-sparql-query/

69

use cases into separate SPARQL named graphs on semantic repositories. This allows

us querying and reasoning against a subset of ontology and knowledge bases instead

of the whole. Hence, we benefit from the scalability offered by the modular design.

Beyond Dicode, with reusability-driven strategy in the modularisation, we have

created a set of ontologies that can be utilised and extended seamlessly in other

projects and applications that focus on sensemaking activities. DON is distributed as

open source9.

6. Conclusions & Future Work

In this paper, we have described a socio-technical approach for modelling

sensemaking which is an example of cognitively complex domains. Underpinning our

approach is an a priori modularisation methodology that enables the division of

domain ontology into several modules from the outset in order to (i) systematically

handle the complexity and dynamicity of ontology modelling in such domains; (ii)

iteratively incorporate contributions from the social sciences into the ontology.

This approach can be followed for addressing key challenges of ontology

engineering in cognitively-complex or ill-defined domains (which are becoming

ubiquitous with the information explosion on the Web). In particular, utilising

theoretical frameworks can be beneficial for the domain experts to guide the

articulation of their understanding. We have demonstrated the application of the

socio-technical approach in the context of the Dicode project where a multi-layered

ontology (DON) is designed to address requirements from multiple use cases that

involve sensemaking. The paper has also illustrated the use of DON in Augmentor to

semantically augment and link medical diagnosis reports to assist sensemakers.

The next phase of this work includes: a) Further experimentations with DON in

web service annotations and discovery. DON could be used as a common vocabulary

between services and service developers and for enhancing the functionality of

specific Dicode services such as social media mining or community mining. b) A user

trial of DON and Augmentor. In particular, we are interested in the impact that the

semantic-driven sensemaking services have in aiding sensemakers. c) Improvement

to the functionalities of DON and Augmentor services. Augmentor will be further

developed to cover remaining use cases from the Dicode to support clinical research

professionals to make sense of scientific findings in the breast cancer domain and

support market research analysts to make sense of the brand’s public perceptions on

social media.

Acknowledgements

The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement no ICT

257184 (DICODE project). Thanks go to Ronald Denaux for his reviews of the paper

and useful suggestions for improving the paper.

9 https://sites.google.com/site/ontomatic/don

70

References

1. Warren, P.: Knowledge Management and the Semantic Web: From Scenario to Technology.

IEEE Intelligent Systems, IEEE Intelligent Systems, 21, pp. 53-59 (2006)

2. Stojanovic, N. and Handschuhs, S.: A Framework for Knowledge Management on the

Semantic web, In: 11th International World Wide Web Conference, Honolulu, Hawaii, USA

(2002)

3. Watanabe, K.: Introduction of Dublin Core metadata. Journal of Information Processing and

Management, 43 (2001)

4. Harris, M.A., Clark, J.I., Ireland, A Lomax, J. and Ashburner, J.: The Gene Ontology (GO)

project in 2006. Nucleic Acids Research, 34, pp. 322-326 (2006)

5. Rector, A. and Rogers, J.: Ontological Issues in using a Description Logic to Represent

Medical Concepts: Experience from GALEN. IMIA WG6 Workshop: Terminology and

Natural Language in Medicine. Phoenix Arixona (1999)

6. Russell, D. M., Stefik, M. J., Pirolli, P. and Card, S. K.: The cost structure of sensemaking.

In INTERCHI '93 Conference on Human Factors in Computing Systems, Amsterdam (1993)

7. Dervin, B.: Sense-Making Theory and Practice: An overview of user interests in Knowledge

seeking and use. Journal of Knowledge Management, 2(2), pp. 36-46 (1998)

8. Pirolli, P. and Card, S.: The sensemaking process and leverage points for analyst technology

as identified through cognitive task analysis. Proceedings of International Conference on

Intelligence Analysis (2005)

9. Whittaker, S.: Making sense of sensemaking. In T. Erickson and D.W. McDonald (Eds.):

HCI remixed: Reflections on works that have influenced the HCI community, pp. 173–178

(2008)

10. Omitola, T., Millard, I., Glaser, H., Gibbins, N. and Shadbolt, N: From Information to

Sense-Making: Fetching and Querying Semantic Repositories. In: KES 2010, Part IV,

Lecture Notes in Artificial Intelligence, 6279, Springer (2010)

11. Dadzie A-S, Iria, J., Petrelli, D. and Xia L: The xmediabox: Sensemaking through the use of

knowledge lenses. In Extended Semantic Web Conference, pp. 811-815 (2009)

12. Ure, J., Proctor, R. Data Integration in eHealth: A Domain/Disease Specific Roadmap,

Studies Health Technolgy Information, pp. 144-53 (2007)

13. Trist, E and Bamforth, K.: Some social and psychological consequences of the longwall

method of coal getting, in: Human Relations, 4 (1), pp. 3-38 (1951)

14. Clegg, C.W.: Sociotechnical Principles for Systems Design, Applied Ergonomics, 31, pp.

463-477, (2000)

15. Scacchi, W.: Socio-technical design, In: Bainbrigde, W.S. (Ed.), The Encyclopaedia of

Human-Computer Interaction, Berkshire Publishing Group (2004)

16. Thakker, D., Dimitrova, V., Lau, L., Denaux, R., Karanasios, S. and Yang-Turner, F: A

Priori Ontology Modularisation in Ill-defined Domains. Accepted for the I-Semantics 2011:

7th International Conference on Semantic Systems. Graz, Austria (2011)

17. Simperl, E.: Reusing ontologies on the Semantic Web: A feasibility study. Data Knowledge

Engineering. 68(10), pp. 905-925 (2009)

18. Paul, S.A. and Reddy, M.: A Framework for Sensemaking in Collaborative Information

Seeking. Proceedings of 2nd International Workshop on Collaborative Information Seeking

at CSCW 2010, Savannah, GA (2010)

19. Denaux, R., Dolbear, C. Hart, G., Dimitrova, V. and Cohn, A.G.: Supporting Domain

Experts to Construct Conceptual Ontologies: A Holistic Approach. Web Semantics Science

Services and Agents on the World Wide Web, 9(2), pp. 113-127 (2011)

20. Pirolli, P. and Russell, D. M.: Introduction to this special issue on sensemaking, Human-

Computer Interaction Journal, 26(1-2), pp. 1-8 (2011)

71

iCAT: A Collaborative Authoring Tool for ICD-11

Tania Tudorache, Csongor Nyulas, Natalya F. Noy,
Timothy Redmond, Mark A. Musen

Stanford Center for Biomedical Informatics Research, Stanford University, US
{tudorache, nyulas, noy, tredmond, musen}@stanford.edu

Abstract. We present iCAT—the Collaborative Authoring Tool for the 11th re-
vision of the International Classification of Diseases (ICD-11). ICD is a funda-
mental health-care resource developed by the World Health Organization (WHO)
and applied in all United Nations countries for a variety of uses. A landmark
change in this ICD-11 revision compared to previous ones is the use of OWL as
a representation language and of Semantic Web technologies for the collabora-
tive authoring of the ICD content. A community of international medical experts
develops ICD-11 in a collaborative setting using the Web-based iCAT platform.
Besides its extensive collaboration support, iCAT also fosters the interconnected-
ness of ICD-11 with other biomedical ontologies and terminologies by providing
interlinking and reusing capabilities as a fundamental feature of the tool, while
also storing the provenance metadata. The generic and extensible infrastructure
as well as its declarative user interface allowed us to easily deploy iCAT in a
production setting for the development of ICD-11 and two other WHO classifica-
tions. The declarative user interface allowed us to custom tailor the platform for
domain experts use. iCAT is in production use since October 2009; it was used to
author over 105,000 changes in the ICD-11 ontology, to create more than 40,000
cross-links to other biomedical ontologies, and to produce over 19,000 notes and
discussions. The software is open source and a demo version of the platform is
available at http://icatdemo.stanford.edu.1

1 ICD-11 – Using Semantic Web Technologies
The International Classification of Diseases (ICD) is the standard diagnostic classifica-
tion developed by the World Health Organization (WHO) to encode information rele-
vant for epidemiology, health management, and clinical use. Over the years, ICD has
become an essential resource in all United Nations countries, who are applying ICD
for a variety of uses, ranging from compiling basic health statistics, to billing, and to
informing policy making.

To keep up to date with the scientific progress, WHO publishes new revisions of ICD
every decade. ICD-10 is the latest revision that is currently in use. Our group has been
collaborating with WHO since 2007 to support the development of ICD-11.2 A large
community of medical experts around the world are involved in the authoring of ICD-
11 in a collaborative Web-based platform, called iCAT [2]. The most important change

1 For the OCAS challenge we created a user account: ocas and password: ocas.
2 http://www.who.int/classifications/icd/revision/en/index.html

72

in ICD-11 compared to previous revisions is the decision of WHO to adopt a solid
formalization of ICD-11 and to use Semantic Web technologies for its development.
As a result, the underlying formalization of ICD-11 is OWL, and the platform used for
the collaborative authoring of ICD-11, iCAT, a customization of a generic Web-based
ontology editor, WebProtégé.3

2 The ICD-11 Semantic Web Platform—iCAT
With the radical change in the ICD-11 revision with respect to the underlying repre-
sentation, we needed to develop tools and methods that, on the one hand, are suited for
domain experts and on the other hand support the much richer Semantic Web content of
ICD-11. Some of the main requirements for the platform are: a) support the Web-based
collaboration of experts all around the world, b) provide features to inter-connect and
inter-link ICD-11 with other biomedical ontologies and terminologies, and c) provide
a user interface tailored to the needs of the domain experts that would hide or sugar-
coat complex OWL formalization details.

As an overall strategy, we decided to implement generic features that can be used
for the development of other Semantic Web applications in the more generic WebProtégé
platform, and have only a very small number of plugins that are specific for ICD in iCAT
(which is a customization of WebProtégé).

The development of the ICD-11 core ontology and of the Web platform took place
in parallel, with the former informing the latter. A WHO assigned committee of ontol-
ogy experts developed the core ontology in OWL. We defined forms and templates
based on this core ontology that domain experts use to enter the actual ICD-11 con-
tent in iCAT. During the last 4 years, the core ontology has evolved significantly, and
we had to make sure that our tools were adaptable enough to support seamlessly such
frequent changes. Our solution was to implement a declarative user interface4 as a
generic feature in WebProtégé, and iCAT became mainly a specific UI configuration
of WebProtégé. This feature allowed us to re-configure iCAT on-the-fly while the Web
application is running, and also to define user-specific views of the ICD ontology.

Collaboration support: One of the main features of iCAT is its extensive sup-
port for collaboration in the development of Semantic Web content, including change
tracking, contextualized threaded discussions, watches and notifications, an extensible
access policy mechanism, and generation of statistics of the ontology-development pro-
cess5 [2]. We reused the functionalities of Collaborative Protégé [3], which are them-
selves implemented using Semantic Web technologies.

Ontology interconnectedness and reuse support: ICD-11, as many other on-
tologies, reuses terms from external ontologies and terminologies. We implemented
a generic plugin for WebProtégé that enables simple import of terms from external on-
tologies stored in the BioPortal6 ontology repository [1]. This plugin allows users to
search for terms in BioPortal ontologies, to browse their details, and then to import
them into the ontology with a single click. All these operations are supported through

3 http://protegewiki.stanford.edu/wiki/WebProtege
4 http://protegewiki.stanford.edu/wiki/WebProtegeLayoutConfig
5 http://protegewiki.stanford.edu/wiki/ChangeAnalysisTab
6 http://bioportal.bioontology.org

73

REST calls to BioPortal. Several properties in ICD-11 have values coming from ex-
ternal ontologies, such as body part, morphology, or genomic linkages. Based on the
property range definitions in the ICD ontology, we configured the fields in the UI for
these properties to search specific ontologies, or their subsets, in BioPortal. Some of the
external ontologies and terminologies we have linked to ICD-11 include SNOMED-CT,
The Gene Ontology (GO), the Online Mendelian Inheritance in Men (OMIM), the Inter-
national Classification of Functioning, Disability and Health (ICF) and the International
Classification of External Causes of Injuries (ICECI). During the last year, users have
created more than 40,000 links between ICD-11 and terms from external biomedical
ontologies. More than 14,000 of these links are for body part associated to a disease
and take values from the SNOMED CT Anatomy branch. Another use case for inter-
linking ICD-11 with its previous revision, ICD-10 (also stored in BioPortal) is to keep
track of the ICD-10 to ICD-11 mappings that are essential for transitioning existing
medical software to the new ICD-11 coding system.

Infrastructure reuse: We implemented WebProtégé as a pluggable and extensible
architecture that can be customized to the needs of a particular project. As a proof, iCAT
is one particular customization of WebProtégé. We reused this generic infrastructure to
deploy similar platforms to support the production development of two other WHO
classifications: the International Classification of Traditional Medicine (ICTM) 7 and
the International Classification of Patient Safety (ICPS). 8 These two platforms required
only a new user interface configuration file and no code changes. Other customizations
of WebProtégé are available on the WebProtégé demo server.9

3 Conclusions
We presented iCAT, a customization of the WebProtégé platform for the development
of ICD-11. We discussed the advantages of using Semantic Web technologies for ICD-
11 elsewhere [2]. iCAT has been in production use since 2009 and other customization
of WebProtégé for real-world Semantic Web applications are available. All software is
open source, pluggable, reusable and under active development.

Acknowledgments
We thank our WHO collaborators for developing the project requirements and for the fruitful col-
laboration. The work presented in this paper is supported by the NIGMS Grant 1R01GM086587.

References
1. N. Noy, T. Tudorache, C. Nyulas, and M. Musen. The Ontology Life Cycle: Integrated Tools

for Editing, Publishing, Peer review, and Evolution of ontologies. In AMIA Annual Symposium
Proceedings, volume 2010, page 552. American Medical Informatics Association, 2010.

2. T. Tudorache, S. Falconer, C. Nyulas, N. Noy, and M. Musen. Will Semantic Web Technolo-
gies Work for the Development of ICD-11? In The 9th Intl. Semantic Web Conference (ISWC
2010), pages 257–272. Springer, 2010.

3. T. Tudorache, N. F. Noy, and M. A. Musen. Supporting Collaborative Ontology Develop-
ment in Protege. In Seventh International Semantic Web Conference, ISWC 2008, Karlsruhe,
Germany, 2008.

7 http://icatdemo.stanford.edu/ictm/
8 http://icat-ps.stanford.edu
9 http://webprotege.stanford.edu

74

	Preface
	Generic Multilevel Approach Designing Domain Ontologies based on XML Schemas Thomas Bosch, Brigitte Mathiak
	Extending Ontologies with Free Keywords in a Collaborative Annotation Environment Matias Frosterus, Eero Hyvönen, and Mika Wahlroos
	Folksonomies behind the scenes Leyla Jael García Castro and Alexander Garcia
	Ontologies Come of Age with the iKUP Browser Simon Jupp, Julie Klein, Panagiotis Moulos, Joost Schanstra, and Robert Stevens
	Dynamic is-a Hierarchy Generation for User Centric Semantic Web Kouji Kozaki, Keisuke Hihara, and Riichiro Mizoguchi
	MUTU: An Analysis Tool for Maintaining a System of Hierarchically Linked Ontologies Sini Pessala, Katri Seppälä, Osma Suominen, Matias Frosterus, Jouni Tuominen, and Eero Hyvönen
	Ontology-Based Features Recognition and Design Rules Checker System Luis Ramos, Alexander García, and John Bateman
	Socio-technical Ontology Development for Modelling Sensemaking in Heterogeneous Domains Dhavalkumar Thakker, Fan Yang-Turner, Lydia Lau, and Vania Dimitrova
	iCAT: A Collaborative Authoring Tool for ICD-11 Tania Tudorache, Csongor I Nyulas, Natasha F. Noy, Timothy Redmond, and Mark Musen

