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1 Introduction

Suppose you want to use description logics (DLs) to develop an ontology of description
logics. Such an ontology should contain information about standard DLs such as
FL0, ALC, and ALCQO, description logics extended with temporal, epistemic, and
dynamic operators, the computational complexity of DLs, known decision procedures,
applications, publications, relevant workshops and conferences, and so on.

A considerable part of such an ontology can straightforwardly be formulated in a
sufficiently expressive description logic, say ALCQO [1]. However, there also exist a
number of important concepts that are rather vague and cannot be precisely defined
in terms of simpler concepts. Examples of such concepts are ‘DL,’ ‘tableau-algorithm,’
‘practical decision procedure,’ ‘extended description logic,’ and others. The vagueness
of these concepts is witnessed by the fact that there is often no satisfactory ‘yes/no’
answer to the question whether a certain formalism is a description logic, whether
a certain decision procedure is a tableau algorithm, and so forth. We argue that it
is more adequate and informative to define such vague concepts by referring to their
prototypical instances. For example, we could define tableau algorithms as algorithms
being ‘very similar to the standard tableau-algorithm for ALC-concepts relative to gen-
eral TBoxes, and not similar to structural subsumption algorithms.’ Such an approach
to defining vague concepts looks much more promising than squeezing them into crisp,
classical DL-style definitions.

This observation suggests that it can be useful to integrate into standard de-
scription logics some means for representing and reasoning about similarities between
objects. Interpretations I of such an extended description logic should be equipped
with similarity measures δ1, . . . , δn saying that, according to δj , objects x, y ∈ ∆I

are similar to degree δj(x, y) ∈ Q+. For example, δ1 could measure the similarity
between decision procedures for DLs with respect to certain structural features. Ac-
cording to δ1, resolution-based algorithms would not be very similar to tableau-based
algorithms, while the standard tableau-algorithm for ALC-concepts relative to general
TBoxes would be rather similar to the tableau-algorithm for ALC-concepts with the
universal modality. Another similarity measure δ2 on the set of implemented decision
procedures could compare their performance on certain benchmarks.



As a first step towards a language for representing knowledge using similarity
measures we should therefore allow expressions of the form

δi(k, `) < a, δi(k, `) ≤ a, δi(k, `) > a, δi(k, `) ≥ a,

where k, ` are object names (representing, say, description logics or decision proce-
dures) and a ∈ Q+. For example, the expression δi(k, `) < a means that, according
to δi, the ‘distance’ between object k and object ` is < a, with smaller distances
representing a higher degree of similarity.

When designing the DL ontology mentioned above, we obviously cannot assume
that the set of all possible decision procedures is known to us, and that we know
how similar any two of them are. Thus, ontologies using similarities will neither
fix domains nor contain complete information about all objects—a property that is
shared by ontologies formulated in standard DLs. To deal with this incompleteness, it
is desirable to have at our disposal not only the above similarity expressions operating
on named objects, but also concept constructors that allow concept defininitions based
on similarity measures.

A first idea is to define, for each δi and each q ∈ Q+, a role name similar
≤q
i which

is interpreted as follows:

(x, y) ∈ similar
≤q
i iff δi(x, y) ≤ q.

Then the ALCQO-definition

tableau algorithm = algorithm u ∃similar≤0.5
1 .(ta1 t · · · t ta7), (1)

says that tableau algorithms are algorithms which are similar to degree ≤ 0.5 to at
least one of the prototypical tableau algorithms ta1, . . . , ta7 (here the tai are nominals).
Given a new procedure ta, we can integrate it into the knowledge base by using
assertions like

δi(ta, ta1) < 0.5

or ta v tableau algorithm

or ta v ¬∃similar≤5
1 .tableau algorithm.

The last assertion says that the distance from ta to the ‘closest’ tableau algorithm is
more than 5.

It should be clear that the roles similar
≤q
i cannot be interpreted by arbitrary rela-

tions: in order to describe natural similarity measures, some special properties have
to be taken into account. We stipulate that similarity measures δi should satisfy the
standard axioms of metric spaces, that is

δi(x, x) = 0,

δi(x, y) = δi(y, x),

δi(x, z) ≤ δi(x, y) + δi(y, z).

Actually, these metric axioms are a standard choice for dealing with similarity mea-
sures [3, 5], and we believe that it is adequate for similarity-based description logics
as well. Moreover, even if we do not assume all axioms of metric spaces, the ‘positive’



results presented in this paper still hold true. This applies, for example, to the sim-
ilarity measures considered in [15, 9, 4] which satisfy the first two axioms of metric
spaces only.

Returning back to our initial idea of representing similarity measures in terms of
roles, we now face the problem that the axioms of metric spaces, in particular the
triangle inequality, cannot be expressed in standard DLs. Indeed, it will turn out that
it is a good idea to keep roles talking about similarity measures strictly separated
from standard roles: as shown in Section 4, there may be strong interactions between
standard DL constructors (e.g., qualified number restrictions) and the properties of
similarity measures that can lead to undecidability. For this reason, we treat sep-
arately the constructors speaking about similarity measures and those required to
model conceptual knowledge. In other words, we propose to form the fusion [10, 6, 2]
of standard DLs with a suitable formalism for reasoning about similarity measures.

The main message of this paper is that such a combined expressive description logic
can indeed be devised and, moreover, supported by a tableau-based decision algorithm
that is rather similar to tableau algorithms for standard DLs. More precisely, we merge
the expressive power of

• the standard description logic ALCQO—i.e., the basic DL ALC extended with
qualified number restrictions, nominals, and general TBoxes [1]—

with

• the logic MS devised in [17] for reasoning about metric spaces.

Definition (1) can serve as an example of a typical TBox assertion of the resulting
‘hybrid’ logic that we call sim-ALCQO. As another example, consider the following
sim-ALCQO ABox assertion, where ha denotes a certain Hilbert-style algorithm:

ha : Algorithm u ¬∃feature.Termination u ∀similar≤0.5.(∃comprises.Modus ponens).

It says that ha does not necessarily terminate and that all ≤ 0.5 similar algorithms
use a kind of modus ponens as one of their inference rules.

It may seem more natural to specify similarity in terms of a finite set of symbolic
similarity measures such as ‘close’ or ‘far’ rather than in terms of rational numbers as
above. In our approach, however, the user is free to choose either option: one may fix
a rational number for each symbolic similarity measure, say, 1 for ‘close’ and 10 for
‘far,’ and then work with the symbolic names.

In our opinion, sim-ALCQO provides just the right compromise between expressive
power and computational cost:

(1) In sim-ALCQO, we can mix constructors of ALCQO and MS in order to
define concepts based on similarity measures as illustrated above. Moreover, our
tableau algorithm shows that reasoning in sim-ALCQO is still decidable. It is of
interest to contrast this with the fact that a tighter coupling of ALCQO and MS
leads to undecidability: as we also show, the extension of MS with qualified number
restrictions such as ‘there exists at most 1 point x with property P within distance
≤ 1’ results in an undecidable logic. Therefore, the fusion of the two formalisms
seems to be a good starting point for investigating the interaction between concepts
and similarity measures.



(2) Although there exists a number of general results regarding the transfer of
decidability from the components of a fusion to the fusion itself [10, 6, 16, 2, 14], these
results do not apply to logics with nominals such as ALCQO. In fact, no transfer
result is available from which we could derive the decidability of sim-ALCQO using
the decidability of both ALCQO and MS. Despite the fact that general transfer
results are not applicable, our algorithm has an important advantage over algorithms
obtained from general transfer theorems: structurally, it is very similar to the tableau
algorithms for SHIQ and SHOQ proposed in [7, 8]. Since these algorithms have
turned out to be implementable in efficient reasoning systems, we hope that our algo-
rithm also has this attractive property.

The reader can find a tableau-based system for sim-ALCQO in [12]. The full
version of this paper is available at http://www.csc.liv.ac.uk/∼frank/.

2 The logic sim-ALCQO

In this section, we introduce the combined logic sim-ALCQO. To simplify notation,
we confine ourselves to the language with a single similarity measure. The reader
should not have big problems in extending the language and the decision procedure
to cope with a finite set of such measures. The alphabet of sim-ALCQO consists of
the following elements:

• a countably infinite list of concept names A1, A2, . . . ;

• a countably infinite list of object names `1, `2, . . . ;

• binary distance (δ), equality (
.
=) and membership (:) predicates;

• the Boolean operators u, t, ¬;

• two distance quantifiers E<a, E≤a and their duals A<a, A≤a, for every positive
rational number a (i.e., a ∈ Q+);

• role names R1, R2, . . . ;

• qualified number restrictions (≤ nR.C) and (≥ nR.C), for every natural n, every
role name R, and every concept C.

Using this alphabet, sim-ALCQO-concepts are defined by the formation rule:

C ::= Ai | `i | ¬C | C1 u C2 | C1 t C2 | E
<aC | E≤aC | A<aC

| A≤aC | (≤ nRi.C) | (≥ nRi.C).

As usual, we write ∃R.C for (≥ 1R.C) and ∀R.C for (≤ 0R.¬C). Object names
occurring in concepts are known as nominals. We define sim-ALCQO-assertions as
expressions of the following forms:

• ` : C, where ` is an object name and C a concept;

• C1
.
= C2, where C1 and C2 are concepts;



• δ(k, `) < a, δ(k, `) ≤ a, δ(k, `) > a, δ(k, `) ≥ a, where k, ` are object names
and a ∈ Q+.

A sim-ALCQO knowledge base is a finite set of sim-ALCQO-assertions.

The semantics of sim-ALCQO-concepts is a blend of the semantics for the logic
of metric spaces [17] and the usual set-theoretic semantics of description logics. A
concept-distance model (a CD-model, for short) is a structure of the form

B =
〈

W,d,AB
1 , A

B
2 , . . . , R

B
1 , R

B
2 , . . . , `

B
1 , `

B
2 . . .

〉

,

where 〈W,d〉 is a metric space with a distance function d satisfying, for all x, y, z ∈W ,
the axioms

d(x, y) = 0 iff x = y, (2)

d(x, z) ≤ d(x, y) + d(y, z), (3)

d(x, y) = d(y, x), (4)

the AB
i are subsets of W , the RB

i are binary relations on W , and the `Bi are singleton
subsets of W such that i 6= j implies `Bi 6= `Bj (unique name assumption). The

extension CB of a sim-ALCQO-concept C is computed inductively:

(¬C)B =W − CB,

(C1 u C2)
B = CB

1 ∩ C
B
2 ,

(C1 t C2)
B = CB

1 ∪ C
B
2 ,

(E≤aC)B = {x ∈W | ∃y ∈W
(

d(x, y) ≤ a ∧ y ∈ CB
)

},

(E<aC)B = {x ∈W | ∃y ∈W
(

d(x, y) < a ∧ y ∈ CB
)

},

(A≤aC)B = {x ∈W | ∀y ∈W
(

d(x, y) ≤ a → y ∈ CB
)

},

(A<aC)B = {x ∈W | ∀y ∈W
(

d(x, y) < a → y ∈ CB
)

},

(≤ nR.C)B = {x ∈W |
∣

∣{y ∈W | (x, y) ∈ RB ∧ y ∈ CB}
∣

∣ ≤ n},

(≥ nR.C)B = {x ∈W |
∣

∣{y ∈W | (x, y) ∈ RB ∧ y ∈ CB}
∣

∣ ≥ n}.

The truth-relation |= between CD-models B and sim-ALCQO-assertions ϕ is defined
in the natural way by taking:

B |= ` : C iff `B ⊆ CB,

B |= C1
.
= C2 iff CB

1 = CB
2 ,

B |= δ(k, `) ≤ a iff d(kB, `B) ≤ a,

B |= δ(k, `) < a iff d(kB, `B) < a, and similar for ≥ and >.

Finally, a sim-ALCQO knowledge base Σ is called satisfiable if there exists a CD-
model B such that B |= ϕ for all ϕ ∈ Σ. In this case we write B |= Σ.

Let us make some notes on several syntactic and semantic particularities of our
logic:



(1) In contrast to the initial idea from Section 1, we do not explicitly introduce
a role for the similarity measure—in fact this approach was only taken for didactic
purposes in the introduction. Instead, the concept constructors E≤a, E<a, A≤a, and
A<a refer directly to distances.

(2) At first sight, it may seem strange to have both strict and non-strict versions
of the E and A constructors available. However, this allows us to define the concept
E≤aC u ¬E<aC which states that the most similar object from C is located precisely
at distance a.

(3) Observe that sim-ALCQO knowledge bases subsume both general TBoxes and
ABoxes. In particular, the usual ABox assertions of the form (`1, `2) : R, where `1 and
`2 are object names and R a role name, can be viewed as abbreviations for `1 : ∃R.`2.

(4) In the semantics, we make the unique name assumption (UNA), i.e., different
object names denote distinct domain elements. The sole purpose of this assumption is
to comply with the definition of sim-ALCQO given in [12], where a tableau algorithm
is devised and the UNA allows a clearer presentation of this algorithm. It is, how-
ever, easily seen that the UNA has no influence on decidability, and that the tableau
algorithm in [12] can be extended to deal with sim-ALCQO without UNA.

(5) Quite often, similarity measures are required to take values from the interval
[0, 1], with 0 denoting the lowest degree of similarity and 1 denoting the highest one.
There are two main differences to the similarity measures used in sim-ALCQO: first,
in our approach small distance denotes high degree of similarity while large distance
denotes low degree of similarity. Second, in our logic there is no absolute, lowest
degree of similarity. Thus, objects may be ‘arbitrarily non-similar.’

(6) We use rational numbers as distances in our language only for simplicity. One
could take instead any countable subset of the real numbers on which arithmetical
operations can be performed effectively.

3 Tableau algorithm

In [12], we present a tableau algorithm for deciding satisfiability of sim-ALCQO knowl-
edge bases. Essentially, this algorithm is a combination of the tableau algorithm for
the DL SHOQ (of which ALCQO is a fragment) presented in [8], and the tableau
algorithm for the logicMS of metric spaces presented in [17]. Since space limitations
make a detailed presentation of the algorithm impossible in this paper, we will only
highlight (on a rather abstract level) some of its prominent features.

The tableau algorithm for sim-ALCQO attempts to construct a Kripke model
for the given input knowledge base. To do this, the algorithm starts with an initial
‘completion forest’ (having one root for each nominal occurring in the input knowledge
base), and then exhaustively applies completion rules which are essentially the ones
known from the SHOQ andMS algorithms. Let us comment on theMS part of the
algorithm. Apart from the distances that occur explicitly in the input knowledge base
Σ, the tableau algorithm may generate new distances during its run. All generated
distances are from the closure M [Σ], which is the smallest set satisfying the following
conditions:

• if E≤a, E<a, A≤a, or A<a occurs in Σ, then a ∈M [Σ];



• if a, b ∈M [Σ] and a+ b is strictly smaller than the largest distance occurring in
Σ, then a+ b ∈M [Σ];

• if a, b ∈M [Σ] and a− b > 0, then a− b ∈M [Σ].

Each distance a from M [Σ] may also occur in the form a− (e.g., 3.5 becomes 3.5−)
which denotes the distance that is smaller than a by some infinitesimal constant ε. A
typical tableau rule for dealing with the similarity constructors looks as follows:

RA< If A<aC ∈ S(x) and d is the similarity between x and y, then:
if d = a−, then set S(y) := {C} ∪ S(y);
if d = b < a, then set S(y) := {A<a−bC} ∪ S(y);
if d = b− with b < a, then set S(y) := {A≤a−bC} ∪ S(y).

Observe that this rule may introduce ‘new’ distances through subtraction. All these
distances are from the closure M [Σ].

Since the algorithm does not terminate ‘naturally,’ we need to use a blocking mech-
anism. More precisely, we use standard equality blocking with one notable exception:
due to the introduction of the additional distances fromM [Σ], the number of different
concepts that may appear in a run of the tableau algorithm is exponential in the size
of the input knowledge base. This implies that, with a näıve use of equality block-
ing, the algorithm would generate paths of double exponential length before blocking
occurs (as opposed to the exponential length in standard tableau algorithms such as
the one for SHOQ). The key observation for curing this defect is that many of the
concepts appearing in runs of the tableau algorithm are not independent from one
another: ‘most’ concepts are of the form A≤aD and A<aD, and, e.g., A≤aD implies
A≤bD if b ≤ a. By taking into account such interactions, one can manage to devise a
blocking mechanism that guarantees blocking on every path of exponential length.

The soundness proof of the tableau algorithm makes use of an alternative, re-
lational semantics for sim-ALCQO. This semantics comprises, for each a ∈ Q+,
additional binary relations Ra and Sa such that, intuitively, we have uRav if the dis-
tance between u and v is at most a, and uSav if the distance between u and v is less
than a. Formally, a Kripke model for Σ is a structure of the form

M =
〈

W,AM
1 , . . . , R

M
1 , . . . , (Ra)a∈Q+ , (Sa)a∈Q+ , `M1 , . . .

〉

satisfying, for all u, v, w ∈W and all a, b ∈ Q+, the following conditions:

(S1R) if uRav and a ≤ b, then uRbv,
(S2R) uRav iff vRau,
(S3R) uRau,
(S4R) if uRav, vRbw, then uRa+bw,
(S1S) if uSav and a ≤ b, then uSbv,
(S2S) uSav iff vSau,
(S3S) uSau,
(S4S) if uSav, vSbw, then uSa+bw,
(C1) if uSav then uRav,
(C2) if uRav and a < b, then uSbv,
(C3) if uRav, vSbw, then uSa+bw,



(C4) if uSav, vRbw, then uSa+bw.

The value CM of a concept C in M and the truth-relation M |= C1
.
= C2 are defined

in almost the same way as for CD-models: we only replace B with M and define the
clauses for the distance quantifiers as follows:

(E≤aC)M = {x ∈W | ∃y ∈W
(

xRay ∧ y ∈ C
M

)

},

(E<aC)M = {x ∈W | ∃y ∈W
(

xSay ∧ y ∈ C
M

)

},

(A≤aC)M = {x ∈W | ∀y ∈W
(

xRay → y ∈ CM
)

},

(A<aC)M = {x ∈W | ∀y ∈W
(

xSay → y ∈ CM
)

}.

It can be proved that the alternative Kripke semantics is ‘equivalent’ to the original
one:

Theorem 1 The knowledge base Σ is satisfiable in a CD-model iff it is satisfiable in
a Kripke model for Σ.

This finishes our discussion of the tableau algorithm. We obtain the following main
result:

Theorem 2 The satisfiability problem for sim-ALCQO knowledge bases is decidable.

As for the complexity of reasoning, we cannot (yet) provide tight bounds. The compo-
nent logicMS is ExpTime-complete, even if the distances are encoded in binary [17].
The complexity of the component logic ALCQO has, to the best of our knowledge,
never been formally investigated. There are, however, good reasons to conjecture that
it is also ExpTime-complete (in the presence of general TBoxes), even if numbers in-
side number restrictions are coded in binary. For the combined logic sim-ALCQO, we
thus clearly inherit ExpTime-hardness from the component logics. The upper bound
obtained from our tableau algorithm is a 2-NExpTime one. We conjecture that this
upper bound can be improved. We also should like to note that the complexity of the
standard tableau algorithms for MS and SHOQ is also 2-NExpTime. Surprisingly,
despite this high complexity such algorithms can be well-suited for implementation as
witnessed by the FaCT and RACER systems.

4 Undecidability

It is natural idea to try a closer integration of the constructors ofMS and SHOQ by
providing concept constructors that resemble qualified number restrictions, but talk
about similarity measures. Unfortunately, even very simple variants of this logic are
undecidable: denote by simf the language with the following concept formation rule:

C ::= Ai | `i | ¬C | C1 u C2 | E
≤aC | (≤1

a .C),

where (≤1
a .C) is interpreted in concept-distance models B as follows

(≤1
a .C)B = {x ∈W |

∣

∣{y | d(x, y) ≤ a, y ∈ CB}
∣

∣ ≤ 1}.

Even this simple form of number restriction on similarity measures suffices to make
reasoning undecidable.



Theorem 3 The satisfiability problem for simf knowledge bases in concept-distance
models is undecidable.

Proof (sketch): We can simulate the undecidable N × N-tiling problem in almost
the same way as in the undecidability proof of [11] for the language MS1 with the
operators A≤a, A>0

≤a and their duals: just replace everywhere in the proof of Theorem

3.1 the concept A>0
≤80¬χi,j with the concept (≤1

80 .χi,j). 2

5 Conclusion

We regard sim-ALCQO only as a first step towards DLs that allow definitions of
concepts based on similarity measures. Although we believe that the expressive power
provided by sim-ALCQO is quite natural and useful, an in-depth investigation of
the expressive means that are relevant for defining vague concepts still has to be
performed. Some possible extensions of sim-ALCQO are the following:

(1) New constructors E<aR.C and A<aR.C, where the former expresses that there
exists an R-successor satisfying C at distance smaller than a, and the latter is its
dual. Such constructors would, e.g., allow us to say that a person is very similar to
his father: E<0.5parent.Male. The tableau algorithm in [12] should be extendable to
this case without any problems.

(2) New constructors E>aC and E≥aC (and their duals) with the obvious semantics.
Although these constructors do not seem to be as natural as the variants based on <
and ≤, they could, e.g., be used to express that a prototypical tableau algorithm pta

is very close to all other tableau algorithms: pta : A>0.5¬Tableau algorithm. While
[11] proves the decidability of the metric logic with the operators E≤aC and E>aC
(and their duals), nothing is currently known about the extension ofMS with all four
possible constructors.

We should add that sim-ALCQO is not the first logic concerned with similarity
measures. For example, modal logics for reasoning about similarity have been pro-
posed in [15, 9, 4]. However, there are three main differences to our proposal: first,
in the existing approaches similarity measures are usually only required to be reflex-
ive and symmetric; the full set of metric axioms is not treated. Second, the existing
approaches do not allow references to concrete distances—one can only say that two
objects are similar or not similar. Third, to the best of our knowledge our approach is
the first one that uses an integration with description logics by admitting ‘free’ roles
that are not regarded as similarity measures, and by taking into account DL-style
constructors such as qualified number restrictions.
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