Verifying Compliance of Business Processes with
Temporal Answer Sets

Davide D’Aprile!, Laura Giordano', Valentina Gliozzi?, Alberto Martelli2,
Gian Luca Pozzato?, and Daniele Theseider Dupré!

! Dipartimento di Informatica, Universita del Piemonte Orientale
{davide.daprile,laura.giordano,dtd}@mfn.unipmn.it
2 Dipartimento di Informatica, Universita di Torino
{gliozzi,mrt,pozzato}@di.unito.it

Abstract. In this paper we provide a framework for the specification
and the verification of business processes, which is based on a temporal
extension of answer set programming (ASP) and we address the problem
of verifying the compliance of business processes to norms. The logical
formalism we use, is a combination of Answer Set Programming and Dy-
namic Linear Time Temporal Logic (DLTL), and allows for a declarative
specification of a business process, as well as the specification of norms,
by means of a set of temporal rules and a set of temporal constraints.
A notion of commitment, borrowed from the social approach to agent
communication, is used to capture obligations within norms. Besides al-
lowing for a declarative specification of business processes, the proposed
framework can be used for encoding business processes specified in con-
ventional workflow languages. The verification of temporal properties of
a business process, expressed by temporal formulas, can be done by en-
coding bounded model checking techniques in ASP. Verifying compliance
of a business process to norms consists, in particular, in verifying that
there are no executions of the business process which leave commitments
unfulfilled.

1 Introduction

The problem of verifying the compliance of business processes has attracted
a lot of interest in recent years. Many organizations (banks, hospitals, public
administrations, etc.), whose activities are subject to regulations, are required to
justify their behaviors with respect to the norms and to show that the business
procedures they adopt conform to such norms. For instance, in the financial
domain, the Sarbanes-Oxley Act (commonly named SOX), enacted in 2002 in
the USA, describes mandates and requirements for financial reporting, and was
proposed in order to restore investors’ confidence in capital markets after major
accounting scandals. MiFID (Markets in Financial Instruments Directive) is a
EU law, effective from 2007, with similar goals, including transparency.

In this paper, we address the problem of automatic verification of business
process compliance and, to this purpose, we propose a framework for the speci-
fication and the verification of business processes, which is based on a temporal

extension of answer set programming (ASP [12]). The choice of a logical for-
malism for the specification of business processes has the advantage of allowing
a declarative specification of business processes and web services, which has
been advocated in recent literature [29,27,24], as opposed to the more rigid
transition based approach. A declarative specification of a process is, generally,
more concise than transition based specification as it abstracts away form rigid
control-flow details and does not require the order among the actions in the pro-
cess to be rigidly defined. A further advantage of logical formalisms is that the
computational mechanisms of the underlying logic can then be exploited in the
verification of business process properties.

The framework for the specification and the verification of business processes
proposed in this paper, is based on a temporal extension of Answer Set Program-
ming (ASP [12]) defined in [17], which combines Answer Set Programming with
a temporal logic, namely Dynamic Linear Time Temporal Logic (DLTL) [22].
DLTL extends propositional temporal logic of linear time (LTL) with regular
programs of propositional dynamic logic, that are used for indexing temporal
modalities. The language in [17] is a temporal action language, which allows for
the specification of atomic actions by means of their effects and preconditions, as
well as for the specification of complex actions and general temporal constraints
to specify the wanted interactions among the tasks (and, under this respect, our
approach to business process specification has similarities with that of DecSer-
Flow [29]). Besides allowing for a declarative specification of business processes,
this language is well suited for encoding processes specified workflow languages.

As concerns compliance verification, to represent the obligations which can
be enforced by the application of norms, we make use of the notion of commit-
ment, which is borrowed from the area of multi-agent communication [27,11,
20, 16, 5]. We show that the temporal language is well suited to model norms as
directional rules which generate commitments, and that defeasible negation of
ASP can be exploited to capture exceptions to the norms, by allowing norms
to be defeasible. Given the specification of a business process in temporal ASP
and the specification of norms as a set of (defeasible) causal laws generating
obligations (commitments), the problem of compliance verification can be given
a logical characterization. It consists in verifying that there are no executions of
the business process which leave some commitment unfulfilled.

For the verification of the business process properties and, in particular, for
compliance verification, we exploit Bounded Model Checking [6]. In particular,
we exploit an approach developed in [17] for DLTL bounded model checking in
ASP, which extends the approach for Bounded LTL Model Checking with Stable
Models that has been developed in [21].

2 A temporal extension of ASP

We shortly recall the temporal action language introduced in [17], which is based
on a temporal extension of Answer Set Programming (ASP).

2.1 Temporal action language

The action language is based on the Dynamic Linear Time Temporal Logic
(DLTL) [22]. DLTL extends LTL by allowing the until operator U™ to be indexed
by a program 7, an expression of Propositional Dynamic Logic: 7 can be any
regular expression built from atomic actions using sequence (;), non-deterministic
choice (+) and finite iteration (x). The usual LTL modalities O (always), <
(eventually), O (next), and U (until) can be defined from U™ as well as the new
temporal modalities [7] and ().

Informally, a formula [r]a is true in a world w of a linear temporal model
if o holds in all the worlds of the model which are reachable from w through
any execution of the program 7. A formula (7)c« is true in a world w of a linear
temporal model if there exists a world of the model reachable from w through
an execution of the program m, in which « holds. A formula o U™ is true at a
world w if “a until 5”7 is true at w on a finite stretch of behavior which is in the
linear time behavior of the program 7.

A domain description is defined as a set of laws describing the effects of ac-
tions as well as their executability preconditions. Atomic propositions describing
the state of the domain are called fluents. Actions may have direct effects, that
are described by action laws, and indirect effects, that capture the causal de-
pendencies among fluents and are described by causal laws. The execution of an
action a in a state s leads to a new state s’ in which the effect of the action
holds. The fluents which hold in s and are not affected by the action a, still hold
in s,

Let P be a set of atomic propositions, the fluents, including the inconsistency,
L. A simple fluent literal | is a fluent name f or its negation —f. We will denote
by Litg the set of all simple fluent literals. In the language, we also make use of
temporal literals, that is, literals that are prefixed by the temporal modalities [a],
with a € X, and 0. Their intended meaning is: [a]l holds in a state s if I holds in
the state obtained after the execution of action a in s; ()l holds in a state s if [
holds in the state next to s. Litr is the set of temporal fluent literals: if | € Litg,
then [a)l, Ol € Lity, where a is an action name (an atomic proposition, possibly
containing variables), and [a] and) are the temporal operators introduced in
the previous section. Let Lit = Litg U Lity U{L}. Given a (simple or temporal)
fluent literal I, not | represents the default negation of I. A (simple or temporal)
fluent literal possibly preceded by a default negation, will be called an extended
fluent literal.

The laws are formulated as rules of a temporally extended logic programming
language. Rules have the form

O(tg or...or ty «t1,... , tm,not tyi1,...,not ty,) (1)

or the form
ty or...or th, < t1,... tym,not tyi1,...,not t, (2)

where the t.’s and the t;’s are either simple fluent literals or temporal fluent
literals. While laws of the form (1) can be applied in all states, laws of the form

(2) can only be applied in the initial state. Action laws, causal laws, precondition
laws, persistency laws, initial state laws, etc., which are normally used in action
theories, can all be defined as instances of (1) and (2).

A domain description D is defined as a tuple (I1,C), where IT is a set of laws
of the form 1 and 2 and C is a set of temporal constraints, i.e. general DLTL
formulas.

2.2 Temporal Answer Sets

To define the the semantics of a domain description, we extend the notion of
answer set [12] to capture the linear structure of temporal models. In the fol-
lowing, we consider the ground instantiation of the domain description 17, and
we denote by X' the set of all the ground instances of the action names in I1.

We define a (partial) temporal interpretation as a pair (o,S), where o €
X% is a sequence of actions and S is a consistent set of literals of the form
[a1;...;ax)l, where a; ...a is a prefix of o, meaning that [holds in the state
obtained by executing a; ...ag. S is consistent iff it is not the case that both
[a1;...;ax)l € S and [ay;...;ax]-l € S, for some [, or [a;...;ax]L € S. A
temporal interpretation (o, S) is said to be total if either [a1;...;ax]p € S or
[a1;...;ax]—p € S, for each ay ...ay prefix of o and for each fluent name p.

We define the satisfiability of a simple, temporal or extended literal t in a
partial temporal interpretation (o, S) in the state aj . .. ay, (written S,a; ... a; E
t) as follows:

(0,9),a1...ar =T, (0,59),a1...a5 = L

(6,9),a1...ar =1 iff [a1;...;5ax)l € S, for a literal I

(0,59),a1...ax = [a]ll iff [a1;...;a5;0]l € S or

ai ...a,a is not a prefix of o

(0,59),a1...ar = Ol iff [a1;...;a5;b]l €S,

where a; ...arb is a prefix of o

(0,9),a1...ar E=notl iff (0,9),a1...a5 1

Observe that [a]l is true in any state of a linear model in which a is not the
next action to be executed. The satisfiability of rule bodies and rule heads in a
temporal interpretation are defined as usual. A rule O(H < Body) is satisfied
in a temporal interpretation (o, S) if, for all action sequences a; ... ay (including
the empty one), (0,5), a1 ...a, = Body implies (0, 5),a1...ax = H.

A rule H « Body is satisfied in a partial temporal interpretation (o, S) if,
(0,5),e = Body implies (0,S),e = H, where ¢ is the empty action sequence.

To define the answer sets of II, we introduce the notion of reduct of II,
containing rules of the form: [ay;...;ap](H < Body). Such rules are evaluated
in the state aj...ay.

Let IT be a set of rules over an action alphabet X, not containing default
negation, and let o € X“.

Definition 1. A temporal interpretation (o,S) is a temporal answer set of IT
if S is minimal (in the sense of set inclusion) among the S’ such that (o,S’) is
a partial interpretation satisfying the rules in II.

To define answer sets of a program II containing negation, given a temporal
interpretation (o,5) over o € X¥ we define the reduct, 115 | of IT relative
to (0, S) extending Gelfond and Lifschitz’ transform [13] to compute a different
reduct of IT for each prefix ay,...,ap of 0.

Definition 2. The reduct, Héfj_s_zah, of IT relative to (0, S) and to the prefix
ai,...,ap of o, is the set of all the rules

[a1;.. 5ap](H «— 1y, ... 0m)

such that H < Iy, ... Iy, not lypy1,...,not b, isinIT and (0,5),a1,...,an &1,
foralli=m+1,...,n.

The reduct IT(05) of IT relative to (0,8) is the union of all reducts Héfjfg,?,ah
for all prefizes ay,...,ap of 0.

Definition 3. A temporal interpretation (o, S) is an answer set of II if (o, 5)
is an answer set of the reduct IT(%%) .

Although the answer sets of a domain description IT are partial interpreta-
tions, in some cases, e.g., when the initial state is complete and all fluents are
inertial, it is possible to guarantee that the temporal answer sets of IT are total.

In case the initial state is not complete,we consider all the possible ways
to complete the initial state by introducing in II, for each fluent name f, the
rules: f «— not =f and —f < not f. The case of total temporal answer sets is of
special interest as a total temporal answer set (o,.S) can be regarded as temporal
model (o,V), where, for each finite prefix a;...ay of o, V(ay,...,ar) = {p
[a1;...;ak]p € S}. In the following, we restrict our consideration to domain
descriptions II, such that all the answer sets of IT are total.

The notion of extension of a domain description D = (II,C) over X' is defined
in two steps: first, the answer sets of II are computed; second, all the answer sets
which do not satisfy the temporal constraints in C are filtered out. For the second
step, we need to define when a temporal formula « is satisfied in a total temporal
interpretation S. Observe that a total answer set .S over ¢ can be regarded as a
linear temporal (DLTL) model [22]. Given a total answer set S over o we define
the corresponding temporal model as Mg = (o, Vg), where p € Vs(aq, ..., ap) if
and only if [a1;...;ax]p € S, for all atomic propositions p. We say that a total
answer set S over o satisfies a DLTL formula « if Mg, ¢ = a.

Definition 4. An extension of a domain description D = (II,C) over X, is any
(total) answer set S of Il satisfying the constraints in C.

3 Specifying the business process and the norms

Let us consider a business process of an investment firm, where the firm offers

financial instruments to an investor. The description of the business processes

given in Figure 1 in the language YAWL (Yet AnotherWorkflow Language) [28].
Also, let us consider a regulation containing the following norms:

Investor Investor Inform Financial Proposal
identification profiling investor instruments evaluation

selection
Send
Sign Order contract
verification .
er Withdrawal

Fig. 1. Example business process in YAWL

(1) the firm shall provide to the investor adequate information on its services
and policies before any contract is signed;

(2) if the investor signs an order, the firm is obliged to provide him a copy of
the contract.

The execution of each task in the process has some preconditions and effects.
Due to the presence of norms, the execution of a task in the process above should
generate obligations to be fulfilled. For instance, according to the second norm,
signing an order generates for the firm the obligation to provide a copy of the
contract to the investor. Verifying the compliance of a business process to a
regulation requires to check that, in all the executions of the business process,
the obligations triggered by the norms are fulfilled.

In the following, we provide the specification of the business process and of
the related norms in an action theory. The problem of verifying compliance of
the business process to the norms is then defined as a reasoning problem in the
action theory. Concerning the specification of a business process, we distinguish
two parts in this specification: the specification of the workflow itself, for which
we will exploit the capability of the action language to represent complex ac-
tions, and the specification of the atomic tasks occurring in it. The description
of the atomic actions occurring in the business process provides the background
knowledge, which is common both to the business process and to the norms. The
effects and, possibly, the preconditions of the atomic tasks are defined by intro-
ducing propositions representing the properties of the world that are affected by
the execution of the tasks and that are subject to the norms. They are the prop-
erties whose value is to be checked, for verifying the compliance of the process to
the norms themselves. Such properties are sometimes used in the literature [14,
19, 30] as annotations that decorate the business process. Here, we exploit the ac-
tion language to provide a more expressive formalism for formulating properties
annotations. In the next subsections, we address the problems of specifying the
atomic tasks, specifying the business process control and specifying the norms.

3.1 Semantic annotations: the specification of atomic tasks

The atomic tasks occurring in the business process are those represented by
boxes in the YAWL specification. In the action theory, they are modeled as
atomic actions with the same name as the atomic tasks.

To introduce the propositions needed to describe the effects and, possibly,
the preconditions of atomic tasks, we introduce the following fluent names in P:

investor(C): C has been identified as a client (an investor);

investor_classified(C): the investor C' has been classified;

risk_averse(C), risk_seeking(C') represent the profile of the client;

informed(C): the client has been informed about the bank services and
policies;

selected(T, C'): client C has selected financial instrument T';

accepted(T, C): client C has accepted financial instrument T

order_signed(T,C): client C has signed the order of financial instrument T';

order_confirmed(T, C): the order has been confirmed by the bank;

sent_contract(T,C): the contract of the order has been sent to the client;

order _deleted(T, C): the order has been canceled.

In the following, profiling stands for investor profiling, inform stands for inform
investor, fi_selection stands for financial instrument selection, p_eval stands for
proposal evaluation and, finally, order_verif stands for order verification.

The following action and causal laws describe the effect of the actions in the
business process. Although the action language is propositional, in the following,
we use variables in fluent names and in atomic action, so that each action/causal
law stands for a finite number of ground action/causal laws:

O([investor_identi fication(C))investor_identi fied(C)) « client(C))
O([profiling(C)]investor_classi fied(C) « client(C))
O([profiling(C)|risk_averse(C) or [profiling(C)|risk_seeking(C)
— client(C))
O([inform(C)]informed(C) « client(C))
O([fi_selection(C)]selected(ty, C) or .. .or |fi_selection(C)]selected(t,, C)
— financialZinstr(t)A. . .Afinancial Zinstr(t,) Arisk_averse(C))
O([p-eval(T, C)]accepted(T, C) or [p-eval(T, C)]-accepted(T, C'))
O([sign-order(T, C)|order_signed(T, C) « order(T), client(C))

O([order_verif (T, C)]con firmed(T, C) or [order_verif (T, C)]-confirmed(T,C')

— order(T), client(C))
O([send_contract(T, C)]sent_contract(T, C) « order(T), client(C))
O([withdraw(T, C))order_deleted(T, C)) « order(T), client(C))
O(—con firmed(T,C) «— order_deleted(T, C))

O([end_procedure]end)
Laws defining executability conditions for atomic tasks can also be given. For
instance,

O([send_contract(T, C)]L « not confirmed(T,C))

states that it is possible to send a contract to the investor only if the contract
has been confirmed. Such temporal formulae can be seen as “good properties”,
that the modeler would like to verify on the business process and they can be
verified to hold in all possible executions of the business process with the same
technique that will be introduced for verifying norm compliance. Indeed, some
of the norms will be formalized as precondition laws.

3.2 The specification of the business process workflow

When we are faced with the problem of specifying a business process, even in a
given language as the one introduced in section 2.2, many options are available.

In [9], we have shown that the control flow of a business process can be mod-
eled in a rigid way by means of a program expression 7, i.e. by defining a complex
action using composition operators like sequence, non deterministic choice and
finite iteration, as well as test actions p? which can be suitably introduced in
the language. Then, a temporal constraint (7)T is introduced in the set of con-
straints C to select those extensions of the domain description, corresponding to
the possible executions of the program 7.

Although this is a very simple solution, in the general case, the workflow
of a business process may be non-structured or, even, we may want to provide
a declarative specification of the business process, as done, for instance, in the
declarative flow language ConDec [25]. It must be observed that the logical
nature of our action language makes it well suited for a declarative specification.
Indeed, the presence of general DLTL constraints in action domains allows for a
simple way to constrain activities in a business process. As DLTL is an extension
of LTL, it is possible to provide an encoding of ConDec constraints our action
language.

Besides allowing for a declarative specification of business processes, the
language introduced in Section 2 is well suited for encoding processes spec-
ified in conventional workflow languages, through the specification of action
effects, preconditions and constraints. Consider, for instance, the atomic task
Investor profiling. We can model the fact that this task can be executed only
if the atomic task Investor identification has been executed, by introducing the
precondition law: O([profiling(C)]L < not investor_identi fied(C')). Moreover,
the fact that Investor profiling has to be executed after Investor identification
is executed can be modeled by the temporal constraint:

Ofinvestor_identi fication(C)]|<O(profiling(C)) T

Consider, in addition, the atomic task Order verification. After its execution
Send contract is to be executed if the order has been confirmed, otherwise, the
task Modify order has to be executed. This can be modeled introducing the
precondition laws

O([send_contract(T, C)]L « —con firmed(T,C))
O([modi fy-order(T,C)|L «— confirmed(T,C))

and temporal constraints

Oforder_verif(C)](confirmed(T, C) — & (send_contract(T,C))T)
Oforder_verif(C)]|(—con firmed(T,C) — &{modify-order(T,C))T)

This approach can be generalized for translating YAWL processes into a
domain description by action effects and preconditions as well as constraints.
The translation, in general, would require to introduce new fluent names as, for
instance, for each atomic task a, a fluent executable(a), which is made true when
the execution of task a is enabled. Some technicalities (that we do not address
here) are needed to model AND/OR splits and AND/OR joins.

The approach we adopt in this paper for reasoning about actions is well
suited for reasoning about systems with infinite computations (see [17]). To deal
with finite computations we introduce a dummy action, which can be repeated
infinitely many times after the termination of the process (thus giving rise to
an infinite computation). In practice, however, as an optimization of the ASP
translation, we can avoid looking for arbitrary models with loops during model
checking and restrict to ad hoc computations corresponding to finite traces.

3.3 Normative specification

According to the normative specification, the execution of each task in the busi-
ness process can trigger some normative positions (obligations, permissions, pro-
hibitions). For instance, the identification task in the business process above,
which introduces a new investor C, also generates the obligation to inform the
investor. This obligation must be fulfilled during the course of execution of the
business process, if the process is compliant with the norm stating that the firm
has the obligation to inform customers.

In the following we make use of causal laws to represent norms in the ac-

tion theory, and we introduce a notion of commitment to model obligations.
The use of commitments has long been recognized as a “key notion” to allow
coordination and communication in multi-agent systems [27, 20, 11]. A notion of
commitment for reasoning about agent protocols in a temporal action logic has
been adopted in [16]. Following [16], we introduce two kinds of commitments
(which are regarded as special fluent propositions): base-level commitments hav-
ing the form C(i,j, A) and meaning that agent ¢ is committed to agent j to
bring about A (where A is an arbitrary propositional formula not containing
commitment fluents); conditional commitments having the form CC(i,j, B, A)
and meaning that agent i is committed to agent j to bring about A, if condition
B is brought about.
A base level commitment C(i, j, A) can be naturally regarded as an obligation
(namely, OA, “A is obligatory”), in which the debtor and the creditor are made
explicit. The two kinds of base-level and conditional commitments we use here
are essentially those introduced in [31]. Our present choice is different from the
one in [20], where agents are committed to execute an action rather than to
achieve a condition.

The idea is that commitments (or obligations) are created as effects of the
execution of some basic tasks in the business process and they are “discharged”
when they have been fulfilled. A commitment C(¢, j, A), created at a given state
of a run of the process, is regarded to be fulfilled in the run if there is a later
state of the run in which A holds. As soon as a commitment is fulfilled in a run,
it is considered to be satisfied and no longer active: it can be discharged.

Given the notion of commitment introduced above, the norms which gener-
ate obligations to be fulfilled can be modeled as causal laws which trigger new
commitments/obligations. Other norms which define preconditions on the exe-
cutability of some actions or, in general, ordering constraints on the executions
of atomic tasks can be encoded by general temporal formulas. For instance, we
can encode the norms (1) and (2) above by the following precondition and causal
laws:

O([sign-order(T, C)]L « not informed(C))
O(C(firm, C, sent_contract(T, C)) « order_signed(T, C))

The first one is a precondition for sign_order(T,C), stating that, if the client
has not been informed, he cannot sign an order. The second one, a causal law,
states that when an order is signed by C, the firm is committed to C' to send
her the information required.

Causal laws are needed for modeling the interplay of commitments and fluent
changes. In particular, for each commitment C(i, j, &), we introduce the following
dynamic causal laws in the domain description:

(i) B(O~C(i,j, @) « C(i, j,a), Oar)
(i) B(OC(, j,) — CC(4, 4, 8, a), OB)
(111) D(QﬁCC(Z’,L B, a) — CC(Z>.77 g, a)> Oﬂ)

A commitment to bring about « is considered fulfilled and is discharged as soon
as « holds (i). A conditional commitment CC(i, j, 5, «) becomes a base-level
commitment C(i, j, «) when (3 has been brought about (ii) and, in that case, the
conditional commitment is discharged (iii).

One of the central issues in the representation of norms comes from the
defeasible nature of norms. Norms may have exceptions: recent norms may cancel
older ones; more specific norms override more general norms and, in other cases,
explicit priority information (not necessarily related to recency or specificity) is
needed for eliminating conflicts. Consider the following example from [19]:

ri: C(S, M, O, discount) «— sells(S, M, O), premium_customer(M)
ro: =C(S, M, O, discount) «— sells(S, M, O), special _order(S, M, O)

Rule r; states that a seller has the obligation to apply a discount to premium cus-
tomers. Rule ry states that customers are not entitled for a discount in case the
order (O) is a special order. Observe that, if two rules are regarded as being strict,
a state in which the fluents premium_customer (M), special _order(S, M, O) and
sells(S, M, O) hold results to be inconsistent.

To avoid conflicting situations as the one above, priorities among rules can
be incorporated. Suppose the two rules above are regarded as defeasible and
assume that rule ro has preference over rule r; (we write ro > r1). The priority
between the conflicting norms r; and r9, with ro > r1, can be modeled using
default negation. For instance, we can transform the rules r; and 7o as follows:

O(C(S, M, O, discount) « sells(S, M, O), premium(M), not bl(r1(S, M, 0)))
O(—-C(S, M, O, discount) « sells(S, M, O), special _order(C), not bl(ra(S, M, 0)))
O(bl(r1 (S, M, O)) « sells(S, M, O)Aspecial _order(C), not bl(ra(S, M, O)))

where bl(r;(S, M, O)) means that rule r; is blocked. In this way, rule ry, when
applicable, blocks the application of r1, but not vice-versa.

This treatment of priorities among conflicting rules, in essence, relies on the
idea of using abnormality predicates for capturing exceptions. It is not intended
to provide a general solution to the problem of modeling priorities among rules,
as, in the general case, priorities may be also allowed between non conflicting
rules. The problem of dealing with prioritized programs under the answer set
semantics has been addressed, for instance, in [7] and in [10] in a more general
setting. We believe that the approach proposed in [10] can be exploited in this
setting to model defeasible norms as prioritized defeasible causal laws.

A further issue to be addressed when modeling norms is that of formalizing
violations and reparation obligations, and we refer to [9] for a possible encoding
of reparation chains in our language.

4 Compliance verification by model checking

In this section we provide a characterization of the problem of compliance, as a
problem of reasoning about action in the action theory defined above. In Section
3.3, we have devised two different typologies of norms which we may want to
verify compliance with: norms which can be encoded as a temporal formula (in
the example, a precondition formula) and norms whose application generates
obligations to be fulfilled, which can be modeled as causal laws generating com-
mitments. Concerning the first kind of norms, the temporal formula encoding the
norm has to be verified to be true in all the extensions of the domain description.
Concerning the second kind of norms, verifying the compliance of the business
process with such norms amounts to check that, in all the possible extensions
of the domain description D, all the commitments generated will be eventually
fulfilled, unless they have been cancelled: O(C(i,j,) — <oV =C(4, 4, o))).
Action withdraw, for instance, might have the indirect effect of canceling the
commitment to send the contract, if it has not yet been sent. Observe that can-
celing a commitment would not be possible if the commitment were encoded by
the temporal formula ¢a.

Let D = (II,Cp) be a domain description defined as the specification of a
given business process B, including the specification of the atomic tasks involved
in the process (semantic annotations). Let N be a set of norms, which have been
encoded by a set of causal laws Il and a set of temporal formulas Py. The

domain description resulting from the encoding of the business process and the
norms can then be defined as D = (IIg U Ily,Cp). We can define the problem
of verifying the compliance of a business process to a set of norms as follows:

Definition 5. The business process B is compliant with the set of norms N =
(IIn, Py) if, for each extension (c,S) of the domain description D = (IIg U
IIy,Cpg), the following conditions hold:

— for each temporal formula o in Py, (0,S) satisfies o;
— for each commitment C(i, j, &) occurring in Iy, (0,S) satisfies the formula
D(C(, j,) = Oa VvV =C(i, j, @)

Dually, the problem of identifying a wiolation to the norms can be regarded
as a satisfiability problem: the problem of finding an execution of the business
process which violates some of the norms, that is, the problem of finding an
extension (o, S) of D such that either (o,.5) contains unfulfilled commitments,
i.e., it satisfies O(C(4, j, @) A=C(aV =C(i, 4, «))), or it falsifies a formula in ITy.

Consider the domain description D, including the specification Dp of the
business problem example and the causal law O(C(firm, C, sent_contract(T, C))
— order_signed(T,C)). Each extension S of the domain description satisfies the
temporal formulas

O(C(firm, C, sent_contract(T, C)) — Osent_contract(T, C))
O([sign-order(T,C)]L «— informed(C))

Hence, the business process is compliant with the norms. In fact, in all the execu-
tion of the business process, the commitment to send the contract is eventually
fulfilled by the execution of the action send_contract, which has to be eventually
executed in the business process; and, for the second formula, the execution of
sign_order is always after in form which makes the client informed.

In [17] we exploit bounded model checking (BMC) techniques [6] for com-
puting the extensions of a temporal domain description and for verifying its
temporal properties. More precisely, we describe a translation of a temporal do-
main description into standard ASP, so that the temporal answer sets of the
domain description can then be computed as the standard answer sets of its
translation. Extensions of the domain description satisfying the temporal con-
straints or given temporal properties are computed by bounded model checking,
following the approach proposed in [17] for the verfication of DLTL formulas,
which extends the one developed in [21] for bounded LTL model checking with
Stable Models.

As an alternative to encoding the business process control flow in the logical
formalisms (as done in section 3.2), a direct encoding of the workflow compu-
tations in the ASP program is also feasible, and makes the verification more
efficient. In this case, the action language is used only for the specification of
the semantic annotations and of the norms. Based on these ideas, we have used
bounded model checking in ASP verify business process compliance. The imple-
mentation we have developed is based on the DLV system [23].

5 Conclusions and related work

The paper presents an approach to the verification of the compliance of business
processes with norms. The approach is based on a temporal extension of ASP.
Both the business process, their semantic annotation and the norms are encoded
using temporal ASP rules as well as temporal constraints. In particular, defea-
sible causal laws are used for modeling norms and commitments are introduced
for representing obligations. The verification of compliance can be performed
by using BMC techniques. In particular, we exploit an approach developed in
[17] for DLTL bounded model checking in ASP, which extends the approach for
bounded LTL model checking with Stable Models in [21]. We are currently test-
ing our implementation on several workflow examples to verify the scalability of
the approach, and to compare with other approaches to compliance verification,
including the traditional Petri net approach.

Several proposals in the literature introduce annotations on business pro-
cesses for dealing with compliance verification [14,19,30]. In particular, [19]
proposes a logical approach to the problem of business process compliance based
on the idea of annotating the business process. Process annotations and norma-
tive specifications are provided in the same logical language, namely, the Formal
Contract Language (FCL), which combines defeasible logic [3] and deontic logic
of violations [18]. Compliance is verified by traversing the graph describing the
process and identifying the effects of tasks and the obligations triggered by task
execution. Ad hoc algorithms for propagating obligations through the process
graph are defined.

In [30] a formal execution semantics for annotated business processes is intro-
duced. The proposed semantics combines a Petri-net like (token passing) seman-
tics for BPMN process execution, coming from the workflow community, with
a declarative specification of actions preconditions and effects in clausal form,
coming from the AT literature of actions and state changes. Several verification
tasks are defined to check whether the business process control flow interacts
correctly with the behaviour of the individual activities. However, [30] does not
address the problem of verifying compliance of the business process with norms.

An approach to compliance based on a commitment semantics in the con-
text of multi-agent systems is proposed in [8]. The authors formalize notions of
conformance, coverage, and interoperability, proving that they are orthogonal
to each other. Another approach to the verification of agents compliance with
protocols, based on a temporal action theory, has been proposed in [16]. These
papers do not address the problem of compliance with normes.

[4] presents an approach to compliance checking for BPMN process models
using BPMN-Q), a visual language based on BPMN. Compliance rules are given
a declarative representation as BPMN-Q queries. Then, BPMN-Q queries are
translated into temporal formulas for verification.

In [24] the Abductive Logic Programming framework SHIFF [2] is exploited
in the declarative specification of business processes as well as in the (static and
runtime) verification of their properties. In particular, in [1] expectations are

used for modelling obligations and prohibitions and norms are formalized by
abductive integrity constraints.

In [26] Concurrent Transaction Logic (CTR) is used to model and reason
about general service choreographies. Service choreographies and contract re-
quirements are represented in CTR. The paper addresses the problem of decid-
ing if there is an execution of the service choreography that complies both with
the service policies and the client contract requirements.

Temporal rule patterns for regulatory policies are introduced in [15], where
regulatory requirements are formalized as sets of compliance rules in a real-time
temporal object logic. The approach is used essentially for event monitoring.

Acknowledgments

We want to thank the anonymous referees for their helpful comments. This
work has been partially supported by Regione Piemonte, Project “ICT4LAW:
ICT Converging on Law: Next Generation Services for Citizens, Enterprises,
Public Administration and Policymakers”

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor. Mapping
of Deontic Operators to Abductive Expectations. NORMAS, pages 126—-136, 2005.

2. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. Verifiable agent interaction in abductive logic programming;:
The sciff framework. ACM Trans. Comput. Log., 9(4), 2008.

3. G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation
results for defeasible logic. ACM Trans. on Computational Logic, 2:255—-287, 2001.

4. Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking
using bpmn-q and temporal logic, Incs 5240. In BPM, pages 326-341. Springer,
2008.

5. Matteo Baldoni, Cristina Baroglio, and Elisa Marengo. Behavior-oriented
commitment-based protocols. In Proceedings ECAI 2010, pages 137-142, 2010.

6. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118-149, 2003.

7. Gerhard Brewka and Thomas Fiter. Preferred answer sets for extended logic pro-
grams. Artificial Intelligence, 109(1-2):297-356, 1999.

8. A.K. Chopra and M.P. Sing. Producing compliant interactions: Conformance,
coverage and interoperability. DALT IV, LNCS(LNAI) 4327, pages 1-15, 2006.

9. D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L. Pozzato, and D. Theseider
Dupré. Verifying business process compliance by reasoning about actions. In
CLIMA XI, pages 99-116, 2010.

10. James P. Delgrande, Torsten Schaub, and Hans Tompits. A framework for com-
piling preferences in logic programs. Theory and Practice of Logic Programming,
3(2):129-187, 2003.

11. N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. AAMAS03, pages 520-527.

12. M. Gelfond. Answer Sets. Handbook of Knowledge Representation, chapter 7,
Elsevier, 2007.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Logic Programming, Proc. of the 5th Int. Conf. and Symposium, pages 1070-1080,
1988.

A. Ghose and G. Koliadis. Auditing business process compliance. ICSOC, LNCS
4749, pages 169-180, 2007.

C. Giblin, S. Miiller, and B. Pfitzmann. From Regulatory Policies to Event Mon-
itoring Rules: Towards Model-Driven Compliance Automation. IBM Reasearch
Report, 2007.

L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification), 5:214-234, 2007.

L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about Actions with
Temporal Answer Sets. Proc. CILC 2010, 25th Italian Conference on Computa-
tional Logic, 2010.

G. Governatori and A. Rotolo. Logic of Violations: A Gentzen System for Reason-
ing with Contrary-To-Duty Obligations. Australasian Journal of Logic, 4:193-215,
2006.

G. Governatori and S. Sadiq. The journey to business process compliance. Hand-
book of Research on BPM, IGI Global, pages 426—454, 2009.

F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in
Multiagent Systems, Springer LNAT 2650, 2003.

K. Heljanko and I. Niemeld. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4-5):519-550, 2003.

J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic.
Annals of Pure and Applied logic, 96(1-3):187-207, 1999.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3):499-562, 2006.

Marco Montali, Paolo Torroni, Federico Chesani, Paola Mello, Marco Alberti,
and Evelina Lamma. Abductive logic programming as an effective technology for
the static verification of declarative business processes. Fundam. Inform., 102(3-
4):325-361, 2010.

Maja Pesic and Wil M. P. van der Aalst. A declarative approach for flexible
business processes management. In Business Process Management Workshops,
LNCS 4108, pages 169-180. Springer, 2006.

Dumitru Roman and Michael Kifer. Semantic web service choreography: Contract-
ing and enactment. In International Semantic Web Conference, LNCS 5318, pages
550-566, 2008.

M. P. Singh. A social semantics for Agent Communication Languages. Issues in
Agent Communication, LNCS(LNAI) 1916, pages 31-45, 2000.

W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245-275, 2005.

Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly declara-
tive service flow language. In The Role of Business Processes in Service Oriented
Architectures, volume 06291 of Dagstuhl Seminar Proceedings, 2006.

Ingo Weber, Jorg Hoffmann, and Jan Mendling. Beyond soundness: On the ver-
ification of semantic business process models. Distributed and Parallel Databases
(DAPD), 2010.

P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. AAMAS’02, pages 527-534, 2002.

