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Abstract. Software product configurators are an emerging technology that sup-

ports companies in deploying mass customization strategies. Such strategies need

to cover the management of the whole customizable product cycle. Adding pro-

cess modeling and configuration features to a product configurator may improve

its ability to assist mass customization development. In this paper, we describe a

modeling framework that allows one to model both a product and its production

process. We first introduce our framework focusing on its process modeling ca-

pabilities. Then, we outline a possible implementation based on Constraint Logic

Programming of such product/process configuration system. A comparison with

some of the existing systems for product configuration and process modeling

concludes the paper.

1 Introduction

In the past years many companies started to operate according to mass customization

strategies. Such strategies aim at selling products that satisfy customer’s needs, pre-

serving as much as possible the advantages of mass production in terms of efficiency

and productivity. The products offered by such companies, usually called configurable

products, have a predefined basic structure that can be customized by combining a se-

ries of available components and options (modules, accessories, etc.) or by specifying

suitable parameters (lengths, tensions, etc.). Actually, a configurable product does not

correspond to a specific physical object, but identify sets of (physical) objects that a

company can realize. A configured product is a single variant of a configurable product,

obtained by specifying each of its customizable attributes, which corresponds to a fully-

specified physical object. The configuration process consists of a series of activities and

operations ranging from the acquisition of information about the variant of the product

requested by the customer, to the generation of data for its realization.

The mass customization operating mode involves a series of difficulties that compa-

nies struggle to resolve by using traditional software tools, designed for repetitive pro-

ductions. As more companies started offering configurable products, different systems

designed for supporting them in deploying mass customization strategies appeared.

These systems are called software product configurators and allow one to effectively

and efficiently deal with the configuration process [21]. They offer functionality for the
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representation of configurable products through product models, and for organizing and

managing the acquisition of information about the product variants to be realized.

Mass customization strategies need to cover the management of the whole cus-

tomization product cycle, from customer order to final manufacturing. Current soft-

ware product configurators focus only on the support to product configuration, and do

not cover aspects related to the production process planning. Extending the use of con-

figuration techniques from products to processes, may avoid or reduce planning im-

possibilities due to constraints introduced in the product configuration phase, as well

as configuration impossibilities due to production planning requirements. Existing lan-

guages/tools for process modeling, such as BPMN [28] and YAWL [24], do not offer

suitable features for specifying production processes and process configuration. More-

over, they lack the capability of modeling, in a single uniform setting, product models

and their corresponding process models. The framework we propose, called PROD-

PROC, intends to overcome these limitations and act as a core for a full-fledged config-

uration system, covering the whole customization product cycle.

2 A Framework for Product/Production Modeling

In this section we present the PRODPROC framework by exploiting a working example

that will be used throughout the paper (cf., Sections 2.1 and 2.2). We also provide a

brief description of PRODPROC semantics in term of model instances (Sect. 2.3). See

[6] for a description of PRODPROC graphical modeling language.

A PRODPROC model consists of a description of a product, a description of a pro-

cess, and a set of constraints coupling the two. In order to introduce the PRODPROC

features let us consider a rectangular base prefabricated component multi-story build-

ing, together with its construction process. More specifically, a building is composed

by the followings parts: story, roof, heating service, ventilation service, sanitary ser-

vice, electrical/lighting service, suspended ceiling, floor, partition wall system. For the

purposes of this paper, we consider two types of building:

Warehouse: it is a single story building, it has no mandatory service except for the

electrical/lighting service, it has no partition wall system and no suspended ceiling,

it may have a basement.

Office building: it may have a basement and up to three stories, all services except

ventilation are mandatory, suspended ceiling and floor are mandatory for each story,

each story may have a partition wall system.

The building construction process can be split in four main phases: preparation and de-

velopment of the building site; building shell and building envelope works; building ser-

vices equipment; finishing works. (For a detailed description of such phases see [23].)

2.1 Product Description

A product is modeled as a multi-graph, called product model graph, and a set of con-

straints. The nodes of the graph represent the components of the product. The edges

represent the has-part/is-part-of relations between product components. We require

the presence of a node without entering edges in the product model graph. We call this
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node root node. Such a product description will represent a configurable product whose

configuration can lead to the definition of different (producible) variants that can be

represented as trees. Nodes of these trees correspond to physical components, whose

characteristics are all determined. The tree structure describes how the single compo-

nents taken together define a configured product. Fig. 1 shows the product model graph

for our example. Edges are labeled with names describing the has-part relations and

numbers indicating the admitted values for the cardinalities.

Each node/component of a product model graph is characterized by a name, a set of

variables representing configurable features of the component, and a set of constraints

that may involve variables of the node as well as variables of its ancestors in the graph.

Each variable is endowed with a finite domain (typically, a finite set of integers or

strings), i.e., the set of its possible values. In the description of a configured product,

physical components will be represented as instances of nodes in the product model

graph. An instance of a node NodeName consists of the name NodeName, a unique

id, and a set of variables equals to the one of NodeName. Each variable will have a

value assigned. The instance of the root node will be the root of the configured product

tree. For example, the node Building in Fig. 1, which is the root node of the product

model graph, is defined as the triple 〈Building,VBuilding, CBuilding〉, where the in-

volved variables and the set of constraint are as follows:

VBuilding = {〈BuildingType, {Warehouse,Office building}〉,
〈StoryNum, [1, 3]〉, 〈Width, [7, 90]〉, 〈Length, [7, 90]〉},

CBuilding = {BuildingType = Warehouse ⇒ StoryNum = 1}.

Hence, a building is described by four features/variables, each one with a set of possi-

ble values. Note that the single constraint associated with the node imposes that if the

building is a warehouse, then it must have exactly one story. The node representing a



story of the building is defined as 〈Story,VStory, CStory〉, where:

VStory = {〈FloorNum, [1, 3]〉, 〈Height, [3, 15]〉},

CStory = {FloorNum = 〈FloorNum,Story, [upper story]〉+ 1,
F loorNum ≤ 〈StoryNum,Building, [first story, ⋆]〉,
〈BuildingType,Building, [first story, ⋆]〉 = Office building ⇒

⇒ Height ≥ 4 ∧Height ≤ 5}.

In this case we have two variables associated with the node Story, whose values are

controlled by three constraints. Note that these constraints involve features/variables

associated with ancestors of the node Story. To refer to specific variables in the an-

cestors of a node, we introduce the notion of meta-variable, i.e., a triple of the form

〈V arName,AncestorName,MetaPath〉. This triple denotes a variable V arName

in an ancestor node AncestorName (e.g., BuildingType in the node Building). The

third component of a meta-variable, MetaPath, is a list of edge labels (see below)

and describes a path connecting the two nodes in the graph (wildcards ‘_’ and ‘⋆’ can

be used to represent arbitrary labels and a sequence of arbitrary labels, respectively).

MetaPaths are used to define constraints that will have effect only on particular in-

stances of a node. For example, the first constraint in CStory will have to hold only for

those instances of node Story which are connected to another instance of node Story

through an edge labeled upper story. Intuitively, a node constraint for the node N will

have to hold for each instance of N , such that it has ancestors connected with it through

paths matching with the MetaPaths occurring in the constraint.

An edge is defined by: a name, two node names indicating the parent and the child

nodes in the has-part relation, the cardinality of such relation (expressed as either an

integer number or a variable), and a set of constraints. Such constraints may involve

the cardinality variable (if any) as well as the variables of the parent node and of

any of its ancestors (referred to by using meta-variables). An instance of an edge la-

beled label connecting a node N with a node M , will be an edge labeled label, con-

necting an instance of N and an instance of M . Let us consider the edges first story

and upper story of our sample model. The former is the edge that relates the build-

ing and its first story. It is defined as 〈first story,Building, Story, 1, ∅〉. Note that

the cardinality is imposed to be 1 and there is no constraint. The edge upper story

represents the has-part relation over two adjacent stories of the building. It is de-

fined as 〈upper story, Story, Story, Card, CC〉, where the variable Card is defined

as 〈Card, [0, 1]〉, while the set of constraints is defined as follows:

CC = {FloorNum = 〈StoryNum,Building, [first story, ⋆]〉 ⇒ Card = 0,
F loorNum < 〈StoryNum,Building, [first story, ⋆]〉 ⇒ Card = 1}.

The two constraints in CC control the number of instances of the node Story. An in-

stance of the node Story will have as child another instance of node Story, if and only

if its floor number is not equal to the number of stories of the building. Intuitively, a

cardinality constraint for and edge e will have to hold for each instance of the parent

node P in e, such that P has ancestors connected with it through paths matching with

MetaPaths occurring in the constraint.

As mentioned, a product description consists of a product model together with a

set of global constraints. Such constraints, called model constraints, involve variables



of nodes not necessary related by has-part relations (node model constraints) as well

as cardinalities of different edges exiting from a node (cardinality model constraints).

Also, global constraints like alldifferent [27] and aggregation constraints can be

used to define node model constraints. Intuitively, a node model constraint will have to

hold for all the tuples of node instances reached by paths matching with MetaPaths

occurring in the constraint. The following is an example of cardinality model constraint:

〈upper story, Story, Story, Card〉 6= 〈roof, Story,Roof, Card〉.

This constraint states that, given an instance of the node Story the cardinality of the

edge upper story and roof exiting from it must be different, i.e., an instance of the

node Story can not have both an upper story and a roof.

2.2 Process Description

PRODPROC allows one to model a process in terms of activities and temporal relations

between them. Moreover, PRODPROC makes it possible to model process resource pro-

duction and consumption, and to intermix the product and the process modeling phases.

In general, a process consists of: a set of activities; a set of variables (as before,

endowed with a finite domain of strings or of integers) representing process character-

istics and involved resources; a set of temporal constraints between activities; a set of

resource constraints; a set of constraints on activity durations.

There are three kinds of activity: atomic activities, composite activities, and multiple

instance activities. An atomic activity A is an event that happens in a time interval. It

has associated a name and the following parameters:

• two integer decision variables, tstart and tend, denoting the start time and end time

of the activity. They define the time interval [tstart, tend], subject to the implicit

requirement that tend ≥ tstart ≥ 0.

• a decision variable d = tend − tstart denoting the duration of the activity.

• a flag exec ∈ {0, 1}.

When d = 0 we say that A is an instantaneous activity. If exec = 1 holds, A is

executed, otherwise (namely, if exec = 0) A is not executed. A composite activity

is an event described in terms of a process. Hence, it has associated four variables

analogously to an atomic activity, as explained earlier. Moreover, it is associated with a

model of the process it represents. A multiple instance (atomic or composite) activity is

an event that may occur multiple times. Together with the four variables (and possibly

the sub-process model), a multiple instance activity has associated a decision variables

(named inst) representing the number of times the activity can be executed.

Temporal constraints between activities are inductively defined starting from atomic

temporal constraints. Let A and B be to activities. We consider as atomic temporal

constraints all the thirteen mutually exclusive binary relations which capture all the

possible ways in which two intervals might overlap or not (as introduced by Allen

in [3]), and some further constraints inspired by the constraint templates of the language

ConDec [19]. The following are some examples of atomic temporal constraints (for lack

of space we avoid listing all the possibilities):

1. A before B to express that A is executed before B.



Preparation and 

development of the 

building site

Building shell and 

building envelope 

works

Building services 

equipment
Finishing works

before 

or 

meets

before 

or 

meets

before 

or 

meets

Fig. 2. Temporal constraint network for the building construction process.

2. A meets B to express that the execution of A ends at time point in which the

execution of B starts.

3. A must−be−executed to express that A must be executed.

4. A is−absent to express that A can never be executed.

5. A not−co−existent−with B to express that either A or B can be executed (i.e.,

it is not possible to execute both A and B).

6. A succeeded−by B to express that when A is executed than B has to be executed

after A.

The constraints 1 and 2 are two of the binary relations of [3]. The constraints 3–6 have

been inspired by the templates used in the language ConDec [19]. A temporal constraint

is inductively defined as follows.

• An atomic temporal constraint is a constraint.

• If ϕ and ϑ are temporal constraint then ϕ and ϑ and ϕ or ϑ are temporal constraints.

• If ϕ is a temporal constraint and c is a constraint on process variables, then c → ϕ

is an if-conditional temporal constraint, stating that ϕ has to hold whenever c holds.

Also, c ↔ ϕ is an iff-conditional temporal constraint, stating that ϕ has to hold if

and only if c holds.

Plainly, the truth of the atomic temporal constraints is related with the execution of the

activities they involve. For instance, whenever for two activities A and B it holds that

execA = 1 ∧ execB = 1, then the atomic formulas of the forms 1 and 2 must hold. A

temporal constraint network CN is a pair 〈A, C〉, where A is a set of activities and C
is a set of temporal constraints on activities in A. Fig. 2 shows the temporal constraint

network for the building construction process. Fig. 3 shows the temporal constraint

network for the sub-process represented by the composite activity called “Building ser-

vices equipment”. In the figures, atomic activities are depicted as rectangles, composite

activities as nested rectangles, multiple instance activities as overlapped rectangles. Bi-

nary temporal constraints are represented as edges whose labels describe the temporal

relations. If an activity is involved in a must be executed or in a is absent constraint,

it is depicted as a dashed line rectangle or a dotted line rectangle, respectively. A con-

ditional temporal constraints is depicted together with its activation condition.

PRODPROC allows one to specify constraints on resource amounts [15] and activity

durations. A resource constraint is a quadruple 〈A,R, q, TE〉, where A is an activity;

R is an variable endowed with a finite integer domain; q is an integer or a variable en-

dowed with a finite integer domain, defining the quantity of resource R consumed (if

q < 0) or produced (if q > 0) by executing A; TE is a time extent that defines the

time interval where the availability of resource R is affected by the execution of ac-

tivity A. The possibilities for TE are: FromStartToEnd, AfterStart, AfterEnd,

BeforeStart, BeforeEnd, Always, with the obvious meaning. The following is an
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example of resource constraints for the third phase of the building construction process.

〈Roof insulation, GeneralWorkers, 〈qGW , [−10,−4]〉, F romStartToEnd〉.

This constraint specifies that the number of GeneralWorkers available is reduced of

an amount between 4 and 10 during the execution of the activity Roof insulation. All the

workers will return available as soon as the activity ends. Note that resource constraints

may (implicitly) imply constraints on the number of instances of multiple instance ac-

tivities. Another form of resource constraints establishes initial level constraints, i.e.,

expressions defining the quantity of a resource available at the time origin of a process.

The basic form is initialLevel(R, iv), where R is a resource and iv ∈ N.

An activity duration constraint has the form 〈A,Constraint〉, where A is the name

of an activity, and Constraint may involve the duration of A, process variables, and

quantity variables for resource related to A. This is an example of activity duration con-

straint for the third phase of the building construction process (where BuildingArea

is a process variable, and qT , qC are quantity variables):
〈

Roof insulation, d =
BuildingArea

2 · |qGW |+ 2 · |qT |+ 3 · |qC |

〉

.

PRODPROC also allows one to couple elements for modeling a process and elements

for modeling a product through constraints involving process variables and product

variables. The following are examples in our sample model:

〈Building, sanitary, Card〉 = San ,

〈StoryNum,Building, []〉 = instFinishing works.

For instance, the last one states that the number of stories of a building has to be equal to

the value of instFinishing works (i.e., number of times the event Finishing works is

executed). In general, constraints involving both product and process variables may help

to detect/avoid planning impossibilities due to product configuration, and configuration

impossibilities due to product configuration, during the configuration of a product.



2.3 PRODPROC Instances

A PRODPROC model represents the collection of single (producible) variants of a con-

figurable product and the processes to produce them. A PRODPROC instance represent

one of such variant and its production process. To precisely define this notion we need

to introduce first the notion of candidate instance. A PRODPROC candidate instance

consists of the following components:

• A set N of node instances, i.e., tuples of the form n = 〈N, i,VN 〉 where N is a

node in the product model graph, i ∈ N is an index (different for each instance of a

node), VN is the set of variables of node N .

• a set ANodes of assignments for all the node instance variables, i.e., expressions of

the form V = value where V is a variable of node instance n and value belongs to

the set of values for V .

• A tree, called instance tree, that specifies the pairs of node instances in the relation

has-part. Such a tree is defined as IT = 〈N , E〉, where E is a set of tuples f =
〈label, n,m〉 such that there exists an edge e = 〈label,N,M,Card, CC〉 in the

product model graph, n is an instance of N and m is an instance of M .

• A set ACards of assignments for all the instance cardinality variables, i.e., expres-

sions of the form ICe
n = k where n is an instance of a node N , e is a quin-

tuple 〈label,N,M,Card, CC〉, ICe
n ≡ Card, and k is the number of the edges

〈label, n,m〉, such that m is an instance of M , in the instance tree.

• A set A of activity instances, i.e., pairs a = 〈A, i〉 where A is the name of an activity

such that execA = 1 and i ∈ N is a unique id for instances of A.

• A set E of flags execA, one for each activity A such that execA 6= 1.

• A set AProc of assignments for all model variables and activity parameters (i.e., time

instant variables, duration variables, execution flags, quantity resource variables,

instance number variables), that is, expressions of the form P = value where P is

a model variable or an activity parameter, and value ∈ Z or value belongs to the

set of values for P .

A PRODPROC instance is a candidate instance such that the assignments in ANodes ∪
ACards ∪ AProc satisfy all the constraints in the PRODPROC model (node constraints,

edges constraints, temporal constraints, resource constraints, etc.), appropriately instan-

tiated with variables of node instances and activity instances in the candidate instance.

The (constraint) instantiation mechanism produces a set of constraints on candidate

instance variables from each constraint in the PRODPROC model. A candidate instance

must satisfy all these constraints to qualify as an instance. We give here an intuitive

explanation of how the instantiation mechanism works on different constraint types.

Let us begin with node and cardinality constraints. Let c be a constraint belonging to

the node N , or a constraint for an edge e between nodes N and M . Let us suppose that

N1, . . . , Nk are ancestors of N whose variables are involved in c, and let p1, . . . , pk be

MetaPaths such that, for i = 1, . . . , k, pi is a MetaPath from Ni to N . We define

Lnode as the set of k-tuple of node instances 〈n, n1, . . . , nk〉 where: n is an instance of

N ; for i = 1, . . . , k ni is an instance of Ni, connected with n through a path qi in the

instance tree such that match(qi, pi) = true holds. match is defined as follows.1

1 Given two lists l1 and l2, l1 ◦ l2 denotes their concatenation. We denote with [x|l] the list

obtained by prepending the element x to the list l.



match(q, p) =



















true if q = p
match(ps,mps) if q = [label|ps] ∧ (p = [label|mps] ∨ p = [_|mps])
true if p = [⋆, label|ps]∧

∧ ∃s.(q = s ◦ [label|ps] ∧ match(ps,mps))
false otherwise

For each k-tuple t ∈ Lnode, we obtain a constraint on instance variables appropriately

substituting variables in c with variables of node instances in t. If c is a constraint for e,

given a k-tuple 〈n, n1, . . . , nk〉 on which to instantiate it, the cardinality occurring in it

is substituted with the cardinality variable ICe
n.

Node model constraints are instantiated in a slightly different way. Let c be a node

model constraint. Let us suppose that N1, . . . , Nk are the nodes whose variables are in-

volved in c, let p1, . . . , pk be MetaPaths such that, for i = 1, . . . , k, pi is a MetaPath

that ends in Ni. We define Lnmc as the set of ordered k-tuples of node instances

〈n1, . . . , nk〉, where for i = 1, . . . , k ni is an instance of Ni connected by a path qi
with one of its ancestors in the instance tree, such that match(qi, pi) = true holds.

For each k-tuple t ∈ Lnmc, we obtain a constraint on instance variables appropriately

substituting variables in c with variables of node instances in t. If c is an aggregation

or an alldifferent constraint, then we define an equivalent constraint on the list

consisting of all the node instances of N1, . . . , Nk reached by a path matching with the

corresponding MetaPath.

The instantiation of cardinality model constraint is very simple. Let c be a cardi-

nality model constraint for the cardinalities of the edges with labels e1, . . . , ek exiting

from a node N . Let n1, . . . , nh be instances of N . For all i ∈ {1, . . . , h}, we instantiate

c appropriately substituting the cardinality variables occurring in it, with the instance

cardinality variables ICe1
n1
, . . . , ICek

nk
.

Let us now consider process constraints. Let A be an activity, let a1, . . . , ak be

instances of A. Let r be the resource constraint 〈A,R, q, TE〉, we instantiate it on each

instance of A, i.e., we obtain a constraint 〈ai, R, qi, TE〉 for each i = 1, . . . , k, where

qi = q is a fresh variable. Let c be an activity duration constraint for A, for each

i = 1, . . . , k we obtain a constraint substituting in c dA with dai
, and each quantity

variable q with the corresponding variable qi. Finally, let B an activity, let b1, . . . , bh be

instances of B. If c is a temporal constraint involving A and B, we obtain a constraint on

activity instances for each ordered couple 〈i, j〉, with i ∈ {1, . . . , k}, j ∈ {1, . . . , h},

substituting in c each occurrence of A with ai, and of B with bj . This mechanism can

be easily extended to temporal constraints involving more than two activities.

3 Product and Process Configuration

On top of the framework we described in Sect. 2 it is possible to implement a configu-

ration system based on Constraint Logic Programming (CLP) [13]. In this section, we

first explain how such a system can support a user through the configuration of a prod-

uct and its production process. Then, we show how we can generate a CLP program

from a model and a (partial) candidate instance.
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A possible general structure of a configuration process supported by a CLP-based

system is pictorially described in Fig. 4. First, the user initializes the system (1) se-

lecting the model of the product/process to be configured. After such an initialization

phase the user starts to make her/his choices by using the system interface (2). The in-

terface communicates to the system engine (i.e., the piece of software that maintains a

representation of the product/process under configuration, and checks the validity and

consistency of user’s choices) each data variation specified by the user (3). The system

engine updates the current partial configuration accordingly. Whenever an update of

the partial configuration takes place, the user, through the system interface, can activate

the engine inference process (4). The engine instantiates PRODPROC constraints on

the current (partial) candidate instance, and encodes the product/process configuration

problem in a CLP program (encoding a Constraint Satisfaction Problem, abbreviated

to CSP). Then, it uses a finite domain solver to propagate the logical effects of user’s

choices (5). Once the inference process ends (6), the engine returns to the interface the

results of its computation (7). In its turns, the system interface communicates to the user

the consequences of her/his choices on the (partial) configuration (8).

In the following, we briefly explain how it is possible to obtain a CLP program from

a PRODPROC model and a (partial) candidate instance (a candidate instance is partial

when there are variables with no value assigned to) corresponding to it. We do this

considering only the process side of a model, the operations necessary to obtain CLP

variables and constraints for the product side are similar.

Given a PRODPROC model and a corresponding (partial) candidate instance defined

by a user, we can easily obtain a CSP 〈VAR,DOM, CONST R〉, where VAR is a set

of variables, DOM is a set of finite domain for variables in VAR, and CONST R is a

set of constraints on variables in VAR. VAR will contain a variable for each node in-

stance variable, cardinality variable, activity parameter, process characteristic, resource,

and quantity resource variable. DOM will contain a domain, obtained form the PROD-

PROC model, for each variable in V . CONST R will contain all the constraints that

the (partial) candidate instance should satisfy. As we explained in Sect. 2.3, such con-

straints are determined by an instantiation mechanism. We give here a formalization of

such mechanism for the process side of a model. We define a function µ that, given the

set of activity instances A, the set RDC = R ∪ D ∪ C, where R is the set of resource

constraints, D is the set of activity duration constraints, C is the set of temporal con-

straints, generates a set of constraints instantiated on activity instances. To define µ we

preliminary need to introduce some basic notions. If c is a temporal constraint acts(c)



is the list of activities involved in c. In the following we will denote with a an instance

of an activity, and with pInsts(a) the set of instances of the process associated to a

composite activity instance a. We say that a ↔Act A if and only if a is an instance of

A. The function µ is defined as follows:

µ(A,RCP , I) =
⋃

a∈A
α(a) ∪

⋃

c∈RCP
γ(c,A).

The function α generates the set of default constraints on duration, start time, and fin-

ishing time for an activity instance a:

α(a) =

{

tComp(a) if a is a composite activity instance

t(a) otherwise
,

tComp(a) = {tstarta = minb∈pInsts(a) t
start

b , tend
a = maxb∈pInsts(a) t

end

b ,

tend
a ≥ tstarta , da = tend

a − tstarta , execA = 1},

t(a) = {tstarta ≥ 0, tend
a ≥ tstarta , da = tend

a − tstarta , execA = 1}.

The function γ instantiate a constraint c on activity instances in A.

γ(c,A)=















































{〈a,R, qa, TE〉|a ∈ A∧ if c ∈ R∧
∧ a ↔Act A ∧ qa = qA} ∧ c ≡ 〈A,R, qA, TE〉

c if c ∈ R∧
∧ c ≡ initialLevel(R, iv)

{c[dA/da, qA/qa] | a ∈ A ∧ a ↔Act A} if c ∈ D
{c[A1/a1, . . . , Ak/ak] | if c ∈ C
[A1, . . . , Ak] = acts(c)∧
∧ [a1, . . . , ak] ∈ Lact(c, [A1, . . . , Ak],A)}

The function Lact(c, [A1, . . . , Ak],A) generates all the k-tuple of activity instances that

are instances of activities involved in a constraint c:

Lact(c, [A1, . . . , Ak],A) = {[a1, . . . , ak] |
∧k

j=1(aj ∈ A ∧ aj ↔Act Aj)}

From instantiated resource constraints and CSP variables for resources it is possi-

ble to generate a cumulative constraint [1,4]. To obtain CSP constraints from all other

constraints it is sufficient to substitute the instance variables with the corresponding

CSP variables. Temporal constraints are defined on activities, but it is possible to com-

pile them into propositional formulas on activity durations, starting times, and finishing

times. Table 1 shows the translation for some of the atomic temporal constraints.

Let ϕ and ϑ be temporal constraints, let ϕP and ϑP the corresponding propositional

formulas. Then ϕ and ϑ, ϕ or ϑ, c → ϕ and c ↔ ϕ correspond to ϕP ∧ ϑP , ϕP ∨ ϑP ,

c ⇒ ϕP and c ⇔ ϕP , respectively.

Given the constraint satisfaction problem CSP it is straightforward to obtain a CLP

program encoding it, once a specific CLP system has been chosen, e.g., SICStus Prolog,

SWI Prolog, or ECLiPse.

4 A Comparison with Existing Product/Process Modeling Tools

In this section, we briefly compare the PRODPROC framework with some of the most

important product configuration systems and process modeling tools to put in evidence

its strength and limitations.



Atomic temporal constraint Propositional formula

A before B tstartA < tstartB ∧ tend

A < tstartB

A meets B tstartA < tstartB ∧ tend

A = tstartB

A must−be−executed execA = 1

A is− absent execA = 0

A not−co−existent−with B execA + execB ≤ 1

A succeeded−by B execA = 1 ⇒ execB = 1 ∧ tstartB ≥ tend

A

Table 1. Atomic temporal constraints and corresponding propositional formulas.

Product configuration systems based on Answer Set Programming (ASP) [11], e.g.,

Kumbang Configurator [16], provide a number of features that are specifically tailored

to the modeling of software product families. On the one hand, this makes these systems

appealing for a relevant range of application domains. On the other hand, it results in

a lack of generality, which is probably the major drawback of this class of systems. In

particular, they do not support global constraints, and they encounter some problems in

the management of arithmetic constraints related to the so called grounding stage [16].

Systems based on binary decision diagrams (BDDs) for product configuration, e.g.,

Configit Product Modeler [8], trade the complexity of the construction of the BDD, that

basically provides an encoding of all possible configurations [12], for the simplicity and

efficiency of the configuration process. Despite their various appealing features, BDD-

based systems suffer from some significant limitations. First, even though some work

has been done on the introduction of modules [25,26], they basically support flat models

only. Moreover, they find it difficult to cope with global constraints. Some attempts at

combining BDD with CSP to tackle alldifferent constraints have been recently

done [17]; however, they are confined to the case of flat models. We are not aware of

any BDD system that deals with global constraints in a general and satisfactory way.

Unlike ASP-based and BDD-based product configuration systems, CSP-based sys-

tems allow the user to define non-flat models and to deal with global constraints. Unfor-

tunately, the modeling expressiveness of CSP-based systems has a cost, i.e., backtrack-

free configuration algorithms for CSP-based systems are often inefficient, while non

backtrack-free ones need to explicitly deal with dead ends. Some well-known CSP-

based configuration systems, such as ILOG Configurator [14] and Lava [10], seem to

be no longer supported. A recent CSP-based configuration system is Morphos Config-

uration Engine (MCE) [7]. From the point of view of process modeling, PRODPROC

can be viewed as an extension of the MCE modeling language. In particular, it extends

MCE modeling language with the following features: (1) cardinality variables, i.e.,

has-part/is-part-of relations can have non-fixed cardinalities; (2) product model graph,

i.e., nodes and relations can define a graph, not only a tree; (3) cardinality constraints

and cardinality model constraints, i.e., constraints can involve cardinalities of relations;

(4) MetaPaths, i.e., a mechanism to refer node instance variables in constraints.

In [22] the authors present an ontology representing a synthesis of resource-based,

connection-based, function-based and structure-based product configuration approches.

The PRODPROC framework covers only a subset of these concepts. However, it is not

limited to product modeling and it defines a rich (numeric) constraint language, while



it remains unclear to what extent the language used in [22] supports the formulation of

configuration-domain specific constraints.

PRODPROC can be viewed as the source code representation of a configuration sys-

tem with respect to the MDA abstraction levels presented in [9]. PRODPROC product

modeling elements can be mapped to UML/OCL in order to obtain platform specific

(PSM) and platform independent (PIM) models. The mapping to OCL of MetaPaths

containing ‘⋆’ wildcards and of model constraints requires some attention. For example,

the latter do not have an explicit context as OCL constraint must have.

In the past years, different formalisms have been proposed for process modeling.

Among them we have: the Business Process Modeling Notation (BPMN) [28], Yet

Another Workflow Language (YAWL) [24], DECLARE [19]. Languages like BPMN

and YAWL model a process as a detailed specification of step-by-step procedures that

should be followed during the execution. They adopt an imperative approach in process

modeling, i.e., all possibilities have to be entered into their models by specifying their

control-flows. BPMN has been developed under the coordination of the Object Man-

agement Group. PRODPROC has in common with BPMN the notion of atomic activity,

sub-process, and multiple instance activity. The effect of BPMN joins and splits on the

process flow can be obtained by using temporal constraints. In PRODPROC there are no

notions such as BPMN events, exception flows, and message flows. However, events

can be modeled as instantaneous activities and data flowing between activities can be

modeled with model variables. YAWL is a process modeling language whose intent is

to directly supported all control flow patterns. PRODPROC has in common with YAWL

the notion of task, multiple instance task, and composite task. YAWL join and split

constructs are not present in PRODPROC, but using temporal constraints it is possible

to obtain the same expressivity. As opposed to traditional imperative approaches to pro-

cess modeling, DECLARE uses a constraint-based declarative approach. DECLARE

models rely on constraints to implicitly determine the possible ordering of activities

(any order that does not violate constraints is allowed). With respect to DECLARE,

PRODPROC has in common the notion of activity and the use of temporal constraints

to define the control flow of a process. The set of atomic temporal constraints is not as

big as the set of template constraints available in DECLARE, however it is possible to

easily combine the available ones so as to define all complex constraints of practical in-

terest. Moreover, in PRODPROC it is possible to define multiple instance and composite

activities, features that are not available in DECLARE.

From the point of view of process modeling, PRODPROC combines modeling fea-

tures of languages like BPMN and YAWL, with a declarative approach for control flow

definition. Moreover, it presents features that, to the best of our knowledge, are not

presents in other existing process modeling languages. These are: resource variables

and resource constraints, activity duration constraints, and product related constraints.

Thanks to these features, PRODPROC is suitable for modeling production processes and,

in particular, to model mixed scheduling and planning problems related to production

processes. Furthermore, a PRODPROC model does not only represent a process ready

to be executed as a YAWL (or DECLARE) model does, it also allows one to describe a

configurable process. Existing works on process configuration, e.g., [20], define process

models with variation points, and aim at deriving different process model variants from



a given model. Instead, we are interested in obtaining process instances, i.e., solutions

to the scheduling/planning problem described by a PRODPROC model.

The PRODPROC framework allows one to model products, their production pro-

cesses, and to couple products with processes using constraints. The only works on the

coupling of product and process modeling and configuration we are aware of are the

ones by Aldanondo et al. [2]. They propose to consider simultaneously product config-

uration and process planning problems as two constraint satisfaction problems; in order

to propagate decision consequences between the two problems, they suggest to link the

two constraint based models using coupling constraints. The development of PROD-

PROC has been inspired by the papers of Aldanondo et al., in fact we have separated

models for products and processes and, constraints for coupling them too. However, our

modeling language is far more complex and expressive than the one presented in [2].

5 Conclusions

In this paper we focused on the problem of product and process modeling and con-

figuration. In particular, we pointed out the lack of a tool covering both physical and

production aspects of configurable products. To overcome this absence, we proposed

a framework called PRODPROC, that allows one to model a configurable products and

its production process. Moreover, we showed how it is possible to build a CLP-based

configuration systems on top of this framework, and compared it to existing product

configuration systems and process modeling tools.

We have already implemented a first prototype of a CLP-based configuration system

that uses PRODPROC. It covers only product modeling and configuration, but we are

working to add to it process modeling and configuration capabilities. PROPROC and

SysML [18] have various commonalities in terms of modeling features, despite the fact

that their purposes are different. We plan to further investigate the relations that exists

between the two modeling languages. We also plan to experiment our configuration

system on different real-world application domains, and to compare it with commercial

products, e.g., [5].

References

1. A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex scheduling and

placement problems. Mathematical and Computer Modelling, 17\ (7\ ):57–73, 1993.

2. M. Aldanondo and E. Vareilles. Configuration for mass customization: how to extend product

configuration towards requirements and process configuration. J. of Intelligent Manufactur-

ing, 19\ (5\ ):521–535, 2008.

3. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26:832–843,

1983.

4. N. Beldiceanu and M. Carlsson. A New Multi-resource cumulatives Constraint with Nega-

tive Heights. In P. Van Hentenryck, editor, CP 2002, volume 2470 of LNCS, pages 63–79.

Springer Berlin / Heidelberg, 2006.

5. U. Blumöhr, M. Münch, and M. Ukalovic. Variant Configuration with SAP. SAP Press,

2009.



6. D. Campagna. A Graphical Framework for Supporting Mass Customization. In Proc. of the

IJCAI’11 Workshop on Configuration, pages 1–8, 2011.

7. D. Campagna, C. D. Rosa, A. Dovier, A. Montanari, and C. Piazza. Morphos Configuration

Engine: the Core of a Commercial Configuration System in CLP(FD). Fundam. Inform.,

105\ (1-2\ ):105–133, 2010.

8. Configit A/S. Configit Product Modeler. http://www.configit.com.

9. A. Felfernig. Standardized Configuration Knowledge Representations as Technological

Foundation for Mass Customization. IEEE Trans. on Engineering Management, 54\ (1\ ):41–

56, 2007.

10. G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Config-

uring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems,

13\ (4\ ):59–68, 1998.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

ICLP/SLP, pages 1070–1080, 1988.

12. T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, J. Moller, and H. Hulgaard. Fast

backtrack-free product configuration using a precompiled solution space representation. In

Proc. of the International Conference on Economic, Technical and Organizational Aspects

of Product Configuration Systems, pages 131–138. 2004.

13. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log. Program.,

19/20:503–581, 1994.

14. U. Junker. The Logic of ILOG (J\ )Configurator: Combining Constraint Programming with a

Description Logic. In Proc. of the IJCAI’03 Workshop on Configuration, pages 13–20. 2003.

15. P. Laborie. Algorithms for propagating resource constraints in AI planning and scheduling:

existing approaches and new results. Artif. Intell., 143:151–188, February 2003.

16. V. Myllärniemi, T. Asikainen, T. Männistö, and T. Soininen. Kumbang configurator - a

configurator tool for software product families. In Proc. of the IJCAI’05 Workshop on Con-

figuration, pages 51–56. 2005.

17. A. H. Nørgaard, M. R. Boysen, R. M. Jensen, and P. Tiedemann. Combining Binary De-

cision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product

Configuration. In Proc. of the IJCAI’09 Workshop on Configuration, 2009.

18. OMG. OMG Systems Modeling Language. http://www.omgsysml.org.

19. M. Pesic, H. Schonenberg, and W. van der Aalst. DECLARE: Full support for loosely-

structured processes. In EDOC’07, pages 287–287, 2007.

20. M. L. Rosa. Managing Variability in Process-Aware Information Systems. PhD thesis,

Queensland University of Technology, Brisbane, Australia, 2009.

21. D. Sabin and R. Weigel. Product configuration frameworks-a survey. IEEE Intelligent Sys-

tems, 13:42–49, 1998.

22. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a general ontology of con-

figuration. Artif. Intell. Eng. Des. Anal. Manuf., 12:357–372, September 1998.

23. H. Sommer. Project Management for Building Construction. Springer, 2010.

24. A. H. M. ter Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Business

Process Automation - YAWL and its Support Environment. Springer, 2010.

25. E. R. van der Meer and H. R. Andersen. BDD-based Recursive and Conditional Modular

Interactive Product Configuration. In Proc. of Workshop on CSP Techniques with Immediate

Application (CP’04), pages 112–126, 2004.

26. E. R. van der Meer, A. Wasowski, and H. R. Andersen. Efficient interactive configuration of

unbounded modular systems. In Proc. of the 2006 ACM symposium on Applied computing,

SAC ’06, pages 409–414. ACM, 2006.

27. W. J. van Hoeve. The alldifferent Constraint: A Survey, 2001.

28. S. A. White and D. Miers. BPMN modeling and reference guide: understanding and using

BPMN. Lighthouse Point, 2008.



A Model Instantiation and CSP creation

In this section, exploiting the building model introduced in Sect. 2, we show an ex-

ample of PRODPROC partial candidate instance, and describe the CSP we obtain from

it. The purpose of the example is twofold: first, to show how multiple instances of a

node affect the constraint instantiation and the CSP corresponding to a model instance;

second, to better describe the encoding of the process description into a CSP, in partic-

ular the generation of a cumulative constraint from resources and instantiated resource

constraints.

Fig. 5 shows the instance tree of the partial candidate instance we consider. It con-

sists of one instance of the root node (i.e., the node Building) of the product model

graph depicted in Fig. 1, one instance of the node Electr./Light. service, two instances

of the node Story, and one instance of the node Roof.

Electr./Light. 
service, ID 1

Building, ID 1

Story, ID 2

Roof, ID 1

electr./light. first story

roof

Story, ID 1

upper story

Fig. 5. Instance tree of a building partial candidate instance.

The activity instances and the instantiated temporal constraints of the construction

process for the building instance showed in Fig. 5 are depicted in Fig. 6.

In the following we will denote as 〈V ar,Node-i〉 the variable V ar of the instance

with id i of the node Node. Since we are considering a partial candidate instance, some

of the node instance variables and process variables may have a value assigned to. For

example, we may have 〈StoryNum,Building-1〉 = 2 and San = 0.

As mentioned in Sect. 2.3, a candidate instance is an instance if it satisfies all the

constraints defined in the model, appropriately instantiated on instance variables. The

instantiation of the node constraints for the nodes Building and Story listed in Sect. 2.1

leads to the following constraints on the variables of node instances in Fig.5.



Preparation and 

development of the 

building site, ID = 1

Building shell and 

building envelope 

works, ID = 1

Building services 

equipment, ID = 1

Finishing works,

ID = 1

before 

or 

meets

before 

or 

meets

before 

or 

meets

Finishing works,

ID = 2

before 

or 

meets

Roof insulation,

ID = 1

Fig. 6. Activities and temporal constraints for the building partial candidate instance.

〈BuildingType,Building-1〉 = Warehouse ⇒ 〈StoryNum,Building-1〉 = 1,
〈FloorNum,Story-1〉 ≤ 〈StoryNum,Building-1〉,
〈BuildingType,Building-1〉 = Office building ⇒

⇒ 〈Height, Story-1〉 ≥ 4 ∧ 〈Height, Story-1〉 ≤ 5,
〈FloorNum,Story-2〉 = 〈FloorNum,Story-1〉+ 1,
〈FloorNum,Story-2〉 ≤ 〈StoryNum,Building-1〉,
〈BuildingType,Building-1〉 = Office building ⇒

⇒ 〈Height, Story-2〉 ≥ 4 ∧ 〈Height, Story-2〉 ≤ 5.

Instantiating the cardinality constraints for the edge upper story, introduced in Sect 2.1,

we obtain:

〈FloorNum,Story-1〉 = 〈StoryNum,Building-1〉 ⇒ IC
upper story
Story-1 = 0,

〈FloorNum,Story-1〉 < 〈StoryNum,Building-1〉 ⇒ IC
upper story
Story-1 = 1,

〈FloorNum,Story-2〉 = 〈StoryNum,Building-1〉 ⇒ IC
upper story
Story-2 = 0,

〈FloorNum,Story-2〉 < 〈StoryNum,Building-1〉 ⇒ IC
upper story
Story-2 = 1.

Finally, the instantiation of the cardinality model constraint showed in Sect. 2.1 leads

to the constraint:

IC
upper story
Story-2 6= IC

roof
Story-2.

For each activity instance we have constraints on duration, starting and finishing time.

For example, for the composite activity instance “Finishing works” with id 1 we have:

tstartFinishing works-1 = minb∈pInsts(Finishing works-1) t
start
b ,

tendFinishing works-1 = maxb∈pInsts(Finishing works-1) t
end
b ,

tendFinishing works-1 ≥ tstartFinishing works-1,

dFinishing works-1 = tendFinishing works-1 − tstartFinishing works-1.

While for the activity instance “Roof insulation” with id 1 we have:

tstartRoof insulation-1 ≥ 0, tendRoof insulation-1 ≥ 0,
tendRoof insulation-1 ≥ tstartRoof insulation-1,

dRoof insulation-1 = tendRoof insulation-1 − tstartRoof insulation-1.

Instantiating the resource and duration constraints for the activity Roof insulation intro-

duced in Sect. 2.2 we obtain:



〈Roof insulation-1, GeneralWorkers, 〈qGW , [−10,−4]〉, F romStartToEnd〉,

〈

Roof insulation-1, d =
BuildingArea

2 · |qGW |+ 2 · |qT |+ 3 · |qC |

〉

.

The instantiation of the constraint involving both product and process variables showed

in Sect. 2.2 leads to the following constraints:

IC
sanitary
Building-1 = San ,

〈StoryNum,Building-1〉 = instFinishing works.

From the PRODPROC partial candidate instance we just described and its instanti-

ated constraints, we can construct a CSP with the following characteristics (we use the

SWI-Prolog notation for variables, domains and constraints).

– A finite domain (FD) variable for each node instance variable, e.g., for the variable

〈StoryNum,Building-1〉 the FD variable StoryNum_Building_1;

– A FD variable for each instance cardinality variable, e.g, for IC
roof
Story-2 the FD

variable IC_roof_Story_2;

– FD variables for starting time, ending time, duration of each activity instance,

e.g., T_start_Roof_insulation_1, T_end_Roof_insulation_1, and

D_Roof_insulation_1 for the activity instance “Roof insulation” with id 1;

– FD variables for execution flags of activities with no instance;

– FD variables for process and resource variables, e.g., BuildingArea for the

process variable BuildingArea, GeneralWorkers for the resource variable

GeneralWorkers;

– A domain constraint for each FD variable, e.g., IC_roof_Story_2 in 0..1;

– A constraint on an FD variable for each assignments, obtained by substituting each

instance variable with the corresponding FD variable;

– A constraint on FD variables for each instantiated constraint, obtained by substitut-

ing each instance variable with the corresponding FD variable;

– For each composite activity instance, a minimum and a maximum constraint on

start and end times, e.g., for the instance with id 1 of the activity “Finishing works”

the constraint minimum(T_start_Finishing_works_1,Ts) and the con-

straint maximum(T_end_Finishing_works_1,Te), where Ts, Te are re-

spectively the list of start and end times of the activity in the process related to the

instance with id 1 of “Finishing works”;

– A constraint on FD variables for each instantiated temporal constraint, obtained by

substituting start times, end times, and execution flags with the corresponding FD

variables in the propositional formula equivalent to the temporal constraint;

– A constraint on FD variables for each instantiated duration constraint, obtained by

substituting duration, process and resource variables with the corresponding FD

variables;

– A constraint of the form cumulatives(Tasks,Machines) where Tasks

is a list of task predicates, one for each instantiated resource constraint, and

Machines is a list of machine predicates, one for each resource. For example,

for the resource constraint showed in Sect. 2.2 and the resource GeneralWorkers

we define the predicates



task(T_start_Roof_insulation_1,D_Roof_insulation_1,

T_end_Roof_insulation_1,Q_GW,GeneralWorkers,

FromStartToEnd)

machine(GeneralWorkers,0..10,10)

B CLP-based Configuration System

We are using SWI-Prolog to develop a CLP-based configuration system that exploits

the close relation that exists between configuration problems and CSPs.2 In particular,

we are using the SWI-Prolog pce library to implement the system graphical user in-

terface, and the clpfd library for constraint propagation and labeling purposes. The

current version of the system is limited to product modeling. Fig. 7 shows the graphical

user interface that allows a user to define a product description using PRODPROC. The

interface presents (on the left, from top to bottom) controls for graphical element se-

lection, creation of nodes, creation of edges, and creation of sets of model constraints.

Moreover, there is a menu named “Check” with controls for checking model syntactic

correctness, and for automatically generate product instances to check model validity.

Fig. 7. Graphical user interface for product description creation and checking.

2 We chose CLP instead of Constraint Programming for the advantages the former gives in terms

of rapid software prototyping.


