
Shape is physical 

Luca Gammaitoni 

 
NiPS Laboratory, Dipartimento di Fisica Università di Perugia and INFN Perugia, 

via A. Pascoli, 1 – 06123 Perugia, Italy 
luca.gammaitoni@pg.infn.it 

Abstract. In a simplified vision the universe is made by two main ingredients: 
atoms and bits. Within this paradigm the shape of things is just the content of 
information associated with each thing. In this paper we briefly discuss the role 
of information in defining shapes and specifically address the connection 
between information, entropy and energy, with the aim of showing that 
changing shape of a physical system is necessarily connected with a change in 
entropy and thus involves energy.  
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1   Introduction 

One of the most ambitious tasks of science is the explanation of the entire universe 
using few fundamental concepts. In an extremely simplified vision the universe is 
composed by two main ingredients: atoms and bits. In this perspective the atoms (or 
some more elementary finite set of components1) are similar to LEGO bricks whose 
dispositions are encoded in bits of information. The laws of physics are wise 
algorithms that allow the reduction of the amount of information necessary to 
describe its entire functioning. Within this paradigm the shape of things is just a 
physical representation of the content of information associated with each thing. The 
word “information” itself comes form the Latin “in forma” meaning “in shape” and 
implies that “information” is what you need to know in order to put things into a 
proper shape. In fact, this activity in modern Italian (close relative of ancient Latin) is 
called “formare” equivalent of “forming”, “shaping”. 

In the following we will focus on the role of information in defining shapes and 
specifically address the connection between information, entropy and energy, when 
the shape of a physical object changes. The paper is organized as follows: in the 
second section we introduce the concept of shape. In the third section we discuss the 
dynamical evolution of shapes and show how we can attribute entropy to different 
shapes. In the fourth section we discuss the relation between shapes, entropy and 
information. Finally, in the fifth section we discuss the relation between shape change 
and energy and draw some conclusions in view of the second principle of 
Thermodynamics. 

                                                           
1 Particle Physics has been digging into this problem for the last 50 years at least. 



2   Shapes 

In order to fix our ideas about shapes, we start with discussing a simple example. 
Let’s consider an “object” made by 4 pink2 squares that can be positioned in a 2x2 = 4 
sites flat space box (see Fig. 1, left).  

 

Fig. 1. Left: four squares can occupy up to four spots in a 2x2 box. Right: confining potential 
energy landscape with four minima sites each representing a dynamically stable equilibrium 
point for a material particle.  

This “object” can be thought as a simple schematization of a physical system 
composed by four material particles that can be hosted in a confining potential energy 
landscape with four minima sites each representing a dynamically stable equilibrium 
point for the particle (Fig. 1, right).  

 

Fig. 2. Four squares can occupy up to four spots in a 2x2 box. In the first row from above we 
show the case in which the four squares occupy the same spot. The second row shows the 
possible shapes with the four squares occupying two spots. The third and fourth rows show 
respectively the case with three and four spots occupied. 

Each particle can occupy equally well every potential minimum site and each 
potential minimum site can host up to four particles at once. The occupancy of a 
minimum site is signaled by a pink square on the corresponding 2x2 box (Fig. 1, left).  

                                                           
2 Grey in B/W version of the figure. 



An object like this can show a number of different shapes represented by the 
different dispositions of 4 pink squares. Specifically, in Fig. 2 we display all possible 
shapes of our object starting from the first row with the simplest shape: four squares 
occupy the same spot. The second row presents all the possible shapes where two 
spots are occupied at the same time, while the third and fourth rows present 
respectively the case with three and four spots occupied. As is apparent each row 
comes with a different number of shapes. To summarize our example in Fig. 2: here 
each box presents a different shape. Each shape is realized by a specific disposition of 
the original squares. Clearly if we have four squares and throw all of them at random 
in the box we will end up with one of the 15 different shapes presented in Fig. 2. In 
this sense the 15 shapes cover all the possible shapes that we can realize with the four 
squares according to the given rule: one or more squares can occupy the same site at 
the same time. 

As we have seen each shape is realized by a specific disposition of the four 
squares. It is interesting to count how many different ways we have to realize a given 
shape, simply by changing the disposition of the squares in each site.  

 

Fig. 3. The dispositions of four squares in two sites give place to 14 different configurations. 
All the configurations realize the same shape.  

This problem is easily solved by combinatorial analysis, however for the sake of 
simplicity we present the explicit calculation for the case represented in Fig. 3. Here 
we have one of the 15 shapes and we explicitly show all the possible realization of 
this shape by distributing the four squares (numbered here form 1 to 4). These are 14 
different configurations. It is important to note that, due to the fact that the squares are 
indistinguishable, each configuration realizes the very same shape. In Fig. 2 the shape 
in the first row represents an especially simple case. In this case there is only one 
configuration per shape because there is only one way to assemble the four squares 
into one site. In the table below we list the number of possible configurations 
associated with each shape, computed with the method that we just discussed. 

As is apparent the shapes characterized by the same number of occupied sites have 
the same number of configurations. For sake of simplicity we call these group of 
shapes a “class”. Thus, as an example, the different shapes s2a, s2b, s2c, s2d belong to 
class s2 and all of them have the same number of configurations. Table 1 shows also 
the total number of configurations for each class. From the table is clear that class s3 
has the highest number of configurations. 

 



Table 1.  The table shows the different shapes and for each shape the number of configurations 
and the associated entropy. As is apparent the shapes characterized by the same number of 
occupied sites have the same number of configurations and thus the same entropy. 

Shape number Shape Picture Num  
config. 
Ni 

Num of  
total config. 
for the class 
Ni ni 

Shape Entropy 
log (Ni) 
in bit 

s1a, s1b, s1c, s1d 
 

1 4 log(1) = 0 

s2a, s2b, s2c, s2d, 
s2e, s2f  

14 84 log(14) = 3.81 

s3a, s3b, s3c, s3d 
 

36 144 log(36) = 5.17 

s4a 
 

24 24 log(24) = 4.58 

 

3 Shapes in motion 

In a world where things are made by tiny particles at a certain temperature the 
shape of things changes spontaneously with time according to a diffusion process that 
is a manifestation of the second principle of Thermodynamics. A typical example 
would be the shape of airplane contrails (like the one in Fig. 4). In this case the initial 
positions of the particles of condensed water vapor generated by the exhaust of 
aircraft engines fit in a straight narrow line. As time passes however, the line gets 
smeared and eventually disappears.  

 

Fig. 4. Airplane contrail. Note that the shape of the trail changes from left to right. In fact the 
rightmost part in the picture is older than the leftmost and time has operated in changing the 
shape. 3 

Another example is represented by the change in shape of ink drops in a water 
bowl. The drops initially confined within a small volume tend very soon to change 
shape and form filaments that expand until they fade away. Still another example is 
represented by the dramatic change of shape of buildings made of concrete during an 
earthquake. Initially the building shakes, oscillates and bends. Eventually it may crash 
by dividing into pieces of different sizes, spread in a volume much larger than the 
initial volume occupied by the building. All these cases are examples of physical 
phenomena whose main aspect, the change of shape, can be described by using the 
simple model introduced in Fig. 1. Here the shape change is produced by one or more 

                                                           
3 Picture by Fir0002/Flagstaffotos distributed on Wikimedia Commons via GNU license 

(http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.2). 



material particles that change site by crossing the potential barrier, under the action of 
some external force. 

In order to gain some insight on how the shapes change one into another we can 
study the following problem. Let’s suppose that we apply a random shaking to our 
system of particles. To visualize the phenomenon we can think of marbles in an egg 
carton that sits on a table during an earthquake. We are interested to learn how one 
specific shape changes into another specific shape. In practice, the shaking being 
random, the changes will also show some randomness. A proper treatment of this kind 
of problems requires a stochastic dynamic approach. This can be done following 
Langevin[1] approach, where a proper equation of motion for each marble is written 
and statistically solved in the presence of a stochastic force with known statistical 
properties or, equivalently, with a Fokker-Plank[1] approach where the probability 
density function of the outcomes is directly addressed via one or more partial 
differential equations. However, even without embarking on such a detailed analysis 
we show that some important results can be established by introducing a physical 
quantity called “shape entropy”. In the next section we will show that, based on the 
sole knowledge of this quantity, we can make predictions on the shape change 
attitudes of our system. For the moment let’s do some experiments with our shaking 
system by selecting a specific shape to start with and waiting some defined amount of 
time before checking what has become of it.  

After some experiments we learned the following things: 1) the outcome of the 
experiment shows a random character and we can extract useful knowledge by taking 
average and using statistics. Specifically as outcome of the experiments we computed 
the statistical distribution of different shapes obtained after waiting some time. The 
distribution counts how many times we end up with s1, s2, s3 and s4. 2) No matter what 
is the initial shape that we select, after some time we end up always with the same 
kind of distribution. 3) The time that we need to wait is a function of how strongly we 
shake: the strongest the shorter. However, in the long run we always end up with the 
same distribution.  

In Fig. 5 we plot the result of our “experiment”: the distribution of shapes 
expressed as frequency (number of times that specific shape appears divided by the 
number of attempts) for 1000 attempts. We did our “experiment” by digitally 
simulating the dynamics of the marbles, so technically this is not an experiment with 
real marbles. 

By looking at the frequency distribution we can promptly deduce that if we start 
from s1 very easily we will end up changing our shape class. In fact the probability 
(frequency) that we remain with the same class is below 1.5%, while if we start from 
s3 we have a fairly large probability (approx 56%) of remaining in the same class. If 
we focus our attention on the single shape instead, we could observe that the 
probability of ending up in a shape sij is 

 
Pij = Pi / ni (1) 

 
With i=1…4 being the class index and j=a,b,c,.. being the shape index (as in Table 

1) and where ni is the integer that represent the number of different shapes in that 
class: n1=4, n2=6, n3=4, n4=1. Pi is the probability of ending up in the class i: 

 
Pi = Ni ni / N (2) 

 
 



Where Ni (see Table 1) is the number of different configuration in each shape 
belonging to the class i (all the shapes in a class have the same number of possible 
configurations) and N is the total number of possible configurations: 

 
N = N1 n1 + N2 n2  + N3 n3 + N4 n4 (3) 

 

 

Fig. 5. Frequency of a class (number of times a shape class appeared divided by the number of 
attempts) versus the class number. The back bars represent the result of the digital simulation of 
shape changes (over 1000 attempts) while the grey bars represent the theoretical prediction Pi in 
(2).  

Pi is plotted in Fig. 5 (grey bars) in good agreement with the digital simulations 
(black bars). As anticipated, we are now in position to introduce a quantitative 
measure of the tendency of one shape to change into another. We call “shape 
entropy”4 the quantity 

 
Sij = k log(Ni), (4) 

 
Where the base of the logarithmic function is immaterial being k an arbitrary 

multiplicative constant. By using the shape entropy just introduced we can enunciate 
the following prediction for the shape dynamics: the larger the shape entropy 
variation between the final and the initial shape is, the larger is the probability for the 
change to occur spontaneously. 

 

                                                           
4 This is not the first attempt to use the notion of entropy associated with shapes. In [2] “shape 

entropy” is based on the random variable “curvature” of 2D images and in [3] includes 3D 
meshes. In [4] a kind of entropy is computed using the random features of ellipsoidal grains. 
In [5] a cumulative distribution of a random variable is used to define the information content 
and applied to image alignment and shape classification[6]. The role of thermodynamics 
entropy is stabilizing the shape of Mithocondria is briefly mentioned in [7]. 



4   Shapes, Entropy and Information 

In the previous section we have seen that if we let the shape associated with our 
marbles system evolve under a random force, it will most likely evolve toward certain 
shapes compared to others. This tendency is quantified by the entropy difference.  

If our system can be considered at thermal equilibrium at a certain temperature T5 
then the random shaking will be provided for free by its thermal energy and its 
dynamical evolution will be subjected to the second law of thermodynamics that 
requires that the system evolves toward the maximization of its thermodynamical 
entropy. This last quantity, initially introduced by Clausius, has received a 
microscopic explanation by Boltzmann and Gibbs in terms of the number of 
configurations accessible to a physical state under certain constraints. Specifically in 
the Boltzmann formulation the entropy is expressed by: 

 
SB = kB log(Ω), (5) 

 
Where Ω is the number of the equally probable microstates accessible by an 

isolated system (microcanonical ensamble) corresponding to a macrostate with given 
energy and KB is the Boltzmann constant. As it is apparent, apart from scale factors 
associated with the value of the constant pre-factor, the shape entropy that we have 
introduced in (4) coincides with the Boltzmann entropy provided we interpret the 
number of configurations Ni for a given shape as the number of accessible microstates 
for a given macrostate of the thermodynamical system.  

It is interesting to note that there does exist a close connection with information 
theory and specifically with the quantity of information that we can associate with a 
shape. Let’s consider for a moment the expression for the microscopic entropy of a 
physical system in the form introduced by Gibbs. This form is required when the 
probabilities of occurrence for the microstates are not necessarily the same for each 
microstate: 

 

€ 

SG = −KB pl log(pl )
l
∑  (6) 

 
Where pl is the probability of the microstate of index l and the sum is taken over all 

the microstates. This expression reduces easily to (5) when all the pl are equal. 
Equation (6) is formally equal to the expression introduced in 1948 by Shannon to 
quantify the information content of a given message chosen from a set of all possible 
messages. In this case pl represents the probability of receiving the message with 
index l and KB is a constant that fixes the units.  

Based on this analogy we now compute the quantity of information a la Shannon6 
for the different shapes in our experiment. In order to do that. we associate an 
information content to a shape by introducing a binary representation for each shape. 
By the moment that each shape is characterized by the disposition of four squares 
(marbles) in four sites, it is clear that we need 2 bits per marble according to the 
coding system in Fig. 6. 

                                                           
5 In practice it has to be in thermal contact with a large heat reservoir at temperature T. 
6 Generalizations of the Shannon formulation are represented by the Rényi and Hartley entropy. 



  

Fig. 6. Information coding for shape s3a 

Now, the question we want to answer is the following: how much information is 
contained in a shape represented by a certain sequence of binary digits? The answer is 
promptly obtained by applying (6) in the Shannon interpretation. As we have seen the 
probability of the sequence representing shapes belonging to the same class is the 
same and, specifically is given by pi= 1/Ni, thus the shape information Si is given by: 

 

€ 

Si = −K pi log(pi)
1

Ni

∑ = −K Ni
1
Ni

log 1
Ni

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = K log Ni( )  

(7) 

 
This is the same quantity that we have called shape entropy in (4) and thus we can 

interpret the shape entropy as a measure of the information content of a given shape. 
It is interesting to note that the amount of information differs from class to class. The 
maximum information is embedded into a random shape, meaning with this a shape 
that has the same probability to be realized and whose class is populated by the whole 
configuration space. For this shape the amount of information is: 

 

€ 

Smax = −K 1
256

log 1
256
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1

256

∑ = 8 
(8) 

 
Where we have assumed K=1 and the base 2 for the log function to get the 

information measured in bit units. The shape information in s3 is just ln(36)=5.17 bits; 
the difference being a measure of the redundancy of the coding that we selected for 
the shape representation7.  

5   Shape is physical  

In the second section we have introduced our idea of shape of an object by using 
four-marbles-in-an-egg-carton toy model. In the third section we have discussed the 
shape dynamics under the action of a random force. We have introduced the “shape 
entropy”, i.e. a quantitative measure of the tendency of a shape to change into another 
spontaneously. In the fourth section we have shown that the shape entropy is 

                                                           
7 The redundancy is a measure of the compressibility of the representation. If we want to 

achieve a loss-less compression we can reduce the number of bits used up to 6 bits for s3 
being 6 the lowest integer greater or equal to log(36). 



equivalent to the Boltzmann entropy for a physical system at thermal equilibrium at a 
certain temperature and coincides with the amount of information that we can 
attribute to the shape according to the Shannon definition. We are now in position to 
discuss the energetic implications of the shape change. Specifically we would like to 
announce a special version of the second principle of the thermodynamic in the form: 

No process is possible whose sole result is the change of shape of a physical 
system from a shape of larger shape entropy to a shape of smaller shape entropy. 

The present phrasing of this principle is inspired by the original formulation given 
by Clausius8 in 1865 and the “impossibility” has to be intended here in a probabilistic 
sense. In fact, in a macroscopic physical system the number of configurations is very 
large (of the order of the Avogadro number) and the probabilistic character of the 
second principle is less evident, however in a system with few configurations like the 
case we have treated here (256 possible configurations overall) also shapes with lesser 
probability can be easily observed in a shape change process.  

The gist of this formulation of the second principle is that, much as shown by 
Bennet[10] and Landauer[11] for the information processing in the sixties, also shape 
(being a physical representation of the information embedded into the object) plays a 
physical role. An interesting consequence of that is that the shape change can affect 
the energy budget of the transformation: for an isolated system a shape change that 
implies an increase of shape entropy comes necessarily at expenses of a decrease of 
the free energy available. On the other hand if we want to perform a shape change that 
implies a net shape entropy change of ΔS>0 bits, this requires a minimum of  

 

€ 

Q = KBT ln(2) ΔS  (9) 

 
energy to be dissipated during the transformation[12]. 
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