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Abstract. With a growing number of ontologies and datasets using those on-
tologies, ontology mappings become an essential building block of the Semantic
Web. In the last years, a larger number of sophisticated ontology matching tools
for generating such mappings has been developed. The quality of the mappings
provided by those tools typically depends on the settings of the tools’ param-
eters. As this is a non-trivial task for an end user, we propose the ECOMatch
approach, which asks the user to provide example mappings instead of parame-
ter settings, and automatically determines a suitable parameter setting based on
those examples. We show how the preliminary result quality of ontology map-
pings can be improved by applying automatic, example-based configuration of
ontology matching tools.

1 Introduction

Ontologies formally describe the concepts used in a domain. While in an ideal scenario,
there is one ontology which is shared throughout a whole domain, reality often faces
the parallel use of different ontologies, which have been developed independently from
each other. Ontology matching [8] is used for creating mappings between ontologies.

During the past years, a lot of research has been devoted to developing highly so-
phisticated tools for performing ontology matching automatically [6, 7]. Those tools are
able to produce high-quality mappings between ontologies, given that their parameters
(such as weights and thresholds used to compute the mappings) are tuned well. Such a
tuning, however, is often complicated, since it involves the setting of many parameters
and requires a lot of detail knowledge about the underlying algorithms and implemen-
tations. For example, the state of the art matching tool Falcon-AO [12] has 33 different
parameters that can be manipulated, which makes it hard to guess an optimal parame-
ter set without a planned approach. Furthermore, there are often no universally optimal
settings: a configuration that performs well on one pair of ontologies may produce bad
results on another one. Therefore, an automatic configuration of matching tools has
been named as one of the top ten challenges for ontology matching [22].

In this paper, we introduce the ECOMatch3 approach for automatic configuration of
ontology matching tools. Instead of letting the user directly manipulate the parameters
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(which he often does not understand), we ask her to provide a set of example mappings
(a task which can be done by a domain expert in a reasonable amount of time). We use
those example mappings to test a number of different configurations and determine a
good or even optimal parameter setting. That setting is then used to match the input
ontologies and provides the final mapping.

The rest of this paper is structured as follows. In Sect. 2, we lay out the theoretical
considerations for our work, and in Sect. 3, we discuss the implementation of ECO-
Match. This implementation is the basis of various experimental evaluations, which are
discussed in Sect. 4. We conclude with a summary and an outlook on future work.

2 Approach

A mapping between two ontologies which has been created by a domain expert user
is called a reference alignment4. The goal of ontology matching tools is to produce a
mapping which gets as close to a reference alignment as possible, i.e., which is as good
as if a human expert would have created the mapping manually to achieve semantic
interoperability.

For automatic tuning of ontology matching tools, we assume that the user is able
to provide a set of example mappings. We call that set of examples a partial reference
alignment between the target ontologies. We use this partial reference alignment to
evaluate several configurations of the target matching tool. The configuration which
has been evaluated best based on the partial reference alignment is then used to produce
the final mapping.

To determine which of the tested configurations is the best one, we use the output
produced by the matching tool when applying the respective configuration, and compute
the result quality on the partial reference alignment, i.e., how well the partial reference
alignment is reproduced by the matcher. Our assumption is that a configuration which
reproduces the partial reference alignment well will also produce a high-quality overall
ontology mapping.

For computing the result quality, we introduce the following measures for com-
puting recall, precision, and f-measure on a partial mapping. Following Euzenat and
Shvaiko [8], a mapping between two ontologies O1 and O2 can be defined as a set of
5-tuples of the form 〈id, e1, e2, r, n〉, where e1 ∈ O1 and e2 ∈ O2, and where r defines
a type of relation (such as equality, subclass, etc.), and n depicts a confidence level pro-
vided by a matching tool. Therefore, given a reference alignment R, a partial reference
alignment R′ ⊆ R, and an alignment A computed by a matching tool, we define the
partial alignment A′ ⊆ A as the subset of A which contains all elements in A which
share at least one entity with an element in R′:

Definition 1 (Partial Alignment).

A′ := {〈id, e1, e2, r, n〉 ∈ A|∃id′, e′1, n′ : 〈id′, e′1, e2, r, n′〉 ∈ R′}
∪ {〈id, e1, e2, r, n〉 ∈ A|∃id′, e′2, n′ : 〈id′, e1, e′2, r, n′〉 ∈ R′}

4 The terms mapping and alignment are often used synonymously.
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Fig. 1. Correlation between f-measure values of partial reference alignments with the f-measure
value of the full reference alignment

5 10 15 20 25 50 75
Falcon-AO 0.006 0.031 0.024 0.012 0.007 0.003 0.003

Lily 0.060 0.094 0.042 0.019 0.028 0.000 0.000
Table 1. T-test on correlations between f-measure values of partial and full reference alignments

Based on that definition, we can define a set of quality measures for an alignment
A produced by a matching tool, which can be evaluated using a partial reference align-
ment:

Definition 2 (Precision on Partial Reference Alignment).

P ′(A,R′) := P (A′, R′) = |R′∩A′|
|A′| ∈ [0, 1]

Definition 3 (Recall on Partial Reference Alignment).

R′(A,R′) := R(A′, R′) = |R′∩A′|
|R′| ∈ [0, 1]

Definition 4 (F-measure on Partial Reference Alignment).

F ′(A,R′) := M0.5(A
′, R′) = 2∗P ′(A,R′)∗R′(A,R′)

P ′(A,R′)+R′(A,R′) ∈ [0, 1]

It is particularly noteworthy that P ′, R′, and F ′ can be computed only from the
output of a matching tool and the partial reference alignment, without the need to know
the complete reference alignment. To show that those measures are valid for assessing
the result quality of a matching tool, we have analyzed the correlation of F and F ′,
i.e., the f-measure computed on the full and on the partial reference alignment. This
correlation is an indicator for the precision of the prediction of F by the means of F ′.

To that end, we have used the two matching tools that we also used later on in our
prototype (see Sect. 3), Falcon-AO and Lily, and 21 pairs of ontologies with reference
alignments. We have run each tool with 100 random configurations and determined the
f-measures F and F ′ for different sizes of partial reference alignments. The results are
shown in Fig. 1. The key observation is that the results do not differ much between
the individual matchers, and that there is a positive correlation, which becomes con-
siderably high for partial reference alignments covering 10% or more of the reference



alignment. Table 1 shows the confidence levels of the correlation, using a two-sample
paired t-test. It reveals that for Falcon-AO, all the results are statistically significant,
while for Lily, the correlation is only significant for partial reference alignment sizes of
at least 15%.

These figures show that using partial reference alignments to score the configura-
tions is reasonable: since a matcher configuration achieves a high f-measure value on
a partial reference alignment it will most likely achieve a high f-measure value on the
full reference alignment as well. With those considerations in mind, we have imple-
mented a prototype to further analyze the potential of improving ontology matching by
automatically configuring matchers based on example mappings.

3 Implementation

We have implemented our approach using a variety of algorithms for parameter opti-
mization, as well as different matching tools. Fig. 2 shows the basic architecture of the
system, based on the “classic” matching architecture proposed by Euzenat and Shvaiko
[8]. The system takes as input two ontologies and a partial reference alignment, i.e., a
set of known mappings.

The ECOMatch system itself treats the matcher it uses as a black box. For creating
an optimized mapping, it performs the following steps:

1. Create an initial configuration for the matcher.
2. Run the matcher with that configuration on the pair of input ontologies and observe

the mapping created.
3. Compute the f-measure F ′ based on the partial reference alignment.
4. Based on that resulting F ′, decide for a new configuration to try out.

Steps 2 to 4 are repeated until a stopping criterion – e.g., a fixed number of matcher
runs or a time limit – is reached, or until the configuration generator decides not to
proceed any further, e.g., because a search algorithm has reached a local optimum, or
the whole search space has been covered. At that point, the mapping achieved with the
configuration yielding the maximum F ′ is returned.

3.1 Configuration Generators

Besides a baseline algorithm which generates random configurations, we have included
five metaheuristic algorithms for determining configurations from the large variety of
parameter tuning approaches (see, e.g., [2] for a survey). As parameter optimization can
also be regarded as a machine learning problem, we have furthermore implemented two
machine learning algorithms.

Metaheuristics Metaheuristics are a family of stochastic optimization algorithms.
They are especially practicable for problems for which it is hard to describe how to find
an optimal solution, but which allow for easily assessing the quality of a given solution
[17]. Metaheuristics subsequently create solutions and rate them according to a quality
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Fig. 2. Prototype architecture

function (in our case: the f-measure F ′ computed on the partial reference alignment).
The rating determines which solution to examine next. Given that not every possible
solution is examined, the optimal solution may not be found because it has not been ex-
amined at all. Thus, metaheuristics are usually used to solve optimization problem with
a huge search space where it is hardly feasible to examine every possible solution [21].
In the prototype of ECOMatch, we have implemented the following metaheuristics: hill
climbing [21], genetic algorithm [11], differential evolution [23], harmony search [10]
and cuckoo search [26].

Machine Learning Techniques Machine learning methods are very widespread in
various fields, e.g. in search engines, natural language processing or recommendation
systems. While metaheuristics only examine a fixed set of candidate solutions, machine
learning techniques can be used to train an explicit model, e.g., a decision tree or an
artificial neural network, of the parameter space. This model can be used to predict
the performance of other parameter combinations, which have not examined before.
In ECOMatch, a small set of random parameter configurations is created and serves
as training data. The employed methods M5’, based on modeltrees [20], and artificial
neural networks [9] each build a model which is used to predict the f-measure values
F ′, called F ′predicted, for unseen random examples. For the configurations with best
F ′predicted, the matching tool is run to determine the exact value F ′ and in turn the
configuration with best F ′ is used to create the final mapping.

While determining the exact value F ′ using the matching tool is a costly opera-
tion, which takes minutes or even up to hours, calculating the value F ′predicted using a
learned model can be performed within milliseconds. Thus, a much larger amount of
configurations can be examined using the trained model. To avoid negative effects due
to wrong predictions, the predicted best configurations are double-checked using the
matcher before taking them for producing a mapping.



3.2 Matching Systems

Besides different algorithms for parameter configuration, matching tools may be
plugged into the ECOMatch framework. We have tested the framework with two match-
ers that performed very well in the last OAEI evaluations: Falcon-AO5 [12] and Lily6

[25]. While it is possible to run ECOMatch with every matching tool that provides a
means to be run from the command line in batch mode, we have chosen those matchers
because of their popularity and their performance in evaluations, as well as the pro-
vision of a sufficient size of the parameter set. Falcon-AO has 33 parameters in total,
while Lily has eight. For our experiments with Falcon-AO, we have manually reduced
the size of the parameter set to 26, discarding all parameters that do not have an effect
on the result quality (e.g., parameters that only have an effect when processing large
scale ontologies).

For each matching tool, we store a configuration description as an XML Schema
Definition (XSD) file, which contains a list of the tool’s parameters, as well as their re-
spective types and ranges of values. This definition file represents the parameter space
of the matching tool and is used by the configuration generator for creating the config-
urations.

4 Evaluation

To examine the impact of automatic parameter configuration on the result quality of
ontology matching tools, we have conducted experiments on different data sets.

4.1 Evaluation Setup

For our evaluation, we have used all possible combinations of configuration generation
algorithms and matchers, as described in Section 2.

We have used three different datasets for our evaluation:

– A subset of the OAEI benchmark dataset7, which consists of the four non-artificial
ontologies with reference alignments to one common ontology

– The OAEI conference dataset8, consisting of seven ontologies and 21 reference
alignments

– The six pairs of ontologies delivered with the FOAM ontology matching tool9

Altogether, we have tested the tool with 31 different pairs of ontologies and corre-
sponding reference alignments.

To allow for comparison between the parameter optimization algorithms, we let
each algorithm run the matching tool a certain amount of times depending on their

5 Using the 2008 version, which can be downloaded from http://ws.nju.edu.cn/falcon-
ao/index.jsp

6 http://code.google.com/p/lilyontmap/
7 http://oaei.ontologymatching.org/2010/benchmarks/index.html
8 http://oaei.ontologymatching.org/2010/conference/index.html
9 http://people.aifb.kit.edu/meh/foam/ontologies.htm
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Fig. 3. Evaluations with Falcon-AO on the FOAM datasets

runtime, i.e. Falcon-AO 250 times and Lily 50 times (since running the matching tool
is the most time consuming step). The machine learning approaches used 200 (Falcon-
AO) resp. 40 (Lily) random configurations for training the respective models, 10,000
randomly generated configurations were rated by the trained model. Out of those, the 50
resp. 10 best-rated configurations were re-evaluated by running the matching tool with
them. For each experiment, the average of three runs has been taken into the evaluation
to reduce the impact of random outliers.

In order to show the value of our approach, we have tested against three baselines.
The first baseline is the result quality achieved with default configuration of each tool.
The second baseline is to choose the best out of 250 resp. 50 random configurations
(since we let each algorithm perform 250 resp. 50 runs of the matcher). The third base-
line is the result quality which would be achieved if the partial reference alignment
would be returned as is, without running any matcher. For showing that parameter op-
timization based on example mappings has any value, it should at least perform better
than the default configuration and the use of the partial reference alignment as is. A so-
phisticated approach for parameter optimization should outperform all three baselines,
including the use of randomly generated configurations.

4.2 Evaluation Results

Running the evaluations leads to mixed results. For Falcon-AO, the default configura-
tion proves to be rather robust and yield better results on most data sets than configura-
tions found with any other approach. Figure 3 shows the average results for the FOAM
datasets, which were the only ones where an optimized configuration could perform
better than the default configuration.

The results reveal that most approaches, except for differential evolution, perform
slightly worse than the random baseline. This is most likely due to the large size and
dimensionality of the search space, combined with the restriction of the number of runs
of the matching tool, which in the end make the search algorithms terminate early (and
possibly too early to search the parameter space far enough for yielding good results).
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Fig. 4. Evaluations with Lily on the conference datasets

With Lily, the improvements that could be achieved over the standard configuration
were more significant. Figure 4 depicts the average results achieved on the conference
dataset. Again, a very good performance of the random baseline can be observed, with
evolutionary algorithms performing slightly better. As for Falcon-AO, a possible expla-
nation is the large search space which has to be explored with a low number of matcher
runs for the optimization.

In all cases, the results achieved with partial reference alignments of up to 25%
outperformed the baseline of using the partial reference alignment as is. Thus, the value
gained from the partial reference alignment is higher than the effort that has to be used
for producing that alignment. Partial reference alignments larger than 25% serve better
as final mappings, rather than using them as input for parameter optimization.

The results achieved with both matchers also reveal that the size of the partial ref-
erence alignment does not significantly influence the result quality. This is a very en-
couraging result, as the provision of example mappings may be a crucial bottleneck for
the ECOMatch approach. The observation that the result quality already significantly
increases with a partial reference alignment of 15% (and probably even with smaller
sizes) demonstrates that the ECOMatch approach is not only feasible in theory, but may
also be practically applied.

When looking more closely at the parameter configurations that are created by the
different approaches, there are several observations that can be made. We have com-
pared those configurations both with each other as well as with the respective tool’s
default configuration. The first observation is that approaches perform better if they
create more different configurations. This also explains the good performance of the
random baseline, which ensures a maximum entropy of configurations. The second ob-
servation is that the best configurations that are found by the algorithms are rather close
(although not identical) to the default configuration.

In summary, some optimization approaches, such as cuckoo search or harmony
search, do not perform very well on that problem, while significant improvements of



the resulting mapping quality are possible with a suitable approach, even when the set
of examples is not too large.

5 Related Work

Despite the large body of work in the field of ontology matching and its predecessor,
schema matching, there is little work done which is focused on automatic or semi-
automatic parameterization of matching tools.

eTuner [16] is a tool which is directed at the parametrization for schema matching
techniques and their combination. For evaluating different settings, eTuner generates
synthetic pairs of schemes from the input schemes using predefined rules (similar to our
approach using the result quality on a partial reference alignment as an approximation).

A problem closely related to parameter tuning of matching tools is selecting a suit-
able matcher – or a suitable combination of matchers – for a specific matching task.
Such a combination can be described by a set of weights for each matcher, as done,
e.g., with the matching framework CROSI [14] and can be seen as a special case of the
parameter tuning problem. One work uses meta-level learning in order to find the best
ensemble of matchers, as discussed by Eckert et al. [3]. Other strategies are based on
Bayesian Networks [24] or Support Vector Machines [13]. Mochol et al. [18] propose
an approach to find the best matcher to match two specified ontologies from a set of
matchers.

Many matching tools like the systems QOM [5] or PROMPT [19] support semi-
automatic matching processes, e.g. by presenting the user suggestions or potential prob-
lems. They typically use the examples provided by the user as anchors for searching for
new mappings, rather than for tuning the parameters of the underlying matching algo-
rithms. A very related idea which also takes user support into account is APFEL [4]. It
tries to improve the alignment by involving the user into the matching process. It first
creates potential correspondences based on initial settings, presents them to the user,
the user marks the correct ones which serve as training set for the machine learning
approach. The whole process is repeated to gradually improve the alignment.

In our approach, we have used partial reference alignments provided by a domain
expert to optimize different matching tools. The matching tool SAMBO [15] also uses
partial reference alignments for various purposes. They are used as anchors to give hints
for partitioning larger ontologies in a preprocessing step, as well as for filtering poten-
tial incorrect results in a post-processing step. A schema matching system exploiting
examples and applying machine learning methods is LSD [1]. The approach defines
the matching problem as a classification problem, where the class to predict for an ele-
ment of a source schema is the corresponding target schema element. Thus, a machine
learning algorithm is trained using correspondences provided by the user.

The key differences between those approaches and ECOMatch are that existing ap-
proaches typically work in dialog mode and require constant user attention, while our
approach works in batch mode once the user examples are given. Futhermore, ECO-
Match is not restricted to a particular matching algorithm, but can be used with any
existing matching tool.



6 Conclusion and Outlook

In this paper, we have presented the ECOMatch approach for automatically parameter-
izing ontology matching tools based on example mappings. Since we could observe a
significant correlation of the result quality, it is possible to test different matcher config-
urations against a set of example mappings, and thereby find a good or even an optimal
matcher configuration. ECOMatch treats the matcher it uses as a black box; thus, our
approach can be easily adopted by developers of other matching tools or used as a
generic framework for optimizing ontology mappings.

Since it is often not feasible to test every possible combination of parameter settings,
we have used a number of heuristics for determining good, near-optimal parameter
settings. We have tested our approach with two state-of-the-art matching tools and a
set of benchmark ontologies. The results show that parameter optimization based on
example mappings can help providing significant better results than using the default
configuration of matching tools, and is a good alternative to manually trying to find a
good configuration, since no understanding of the parameters is required.

The two main bottlenecks of our approach are the provisioning of examples (which
typically means manual work for a domain expert), and the running of matching tools
(which is a costly operation that drastically increases the overall processing time).
These two bottlenecks point at the main opportunities for improving the ECOMatch
system: reducing the amount of examples required, and reducing the number of re-
quired matcher runs.

In our experiments, we have used a random subset of a gold standard mapping
for emulating a domain expert creating example mappings. This may not be entirely
correct, as such an expert may first determine a set of obvious mappings, which may
not be a representative random sample of the full mapping. Thus, we want to further
evaluate how the selection of the mapping subset influences our approach. To reduce
the workload for the domain expert providing the partial mapping, we would also like
to explore how the size of the partial mapping can be minimized, e.g., in an interactive
mode where the tool interrogates a domain expert and tries to determine mappings
which efficiently divide the search space. As negative examples may be retrieved with
less work than positive ones, we also want to explore how a combination of positive
and negative examples can be used to find an optimal mapping.

Most matchers are tuned for achieving a good f-measure, i.e., a good trade-off be-
tween precision and recall. However, it is possible to develop matchers with high pre-
cision at the cost of worse recall. Such a matcher could be used as a generator for the
example mappings, so that the whole tuning process of the target matcher could even
be fully automatized in the future. In the context of ontology matching for linked open
data, other mechanisms for obtaining the example mappings are also possible, such as a
community creating a set of example mappings (the same as they are creating links be-
tween instances) [27], or guessing example mappings for classes of different ontologies
that share a lot of common instances.

So far, we have only investigated the quality of the generated configurations after
a fixed number of runs of the matching tool. In order to speed up the whole process,
it would be interesting to look at the gradient, i.e., the time it takes for a certain opti-
mization approach to find a good configuration. This would allow for a more sophis-



ticated comparison of the individual strategies for finding an optimum configuration.
Furthermore, our experiments have shown that most of the good configurations found
by ECOMatch are similar, yet not identical, to the default configuration. This insight
may also help improving the process of searching for a good configuration, e.g., when
creating a starting population for a genetic algorithm.

In summary, the work presented in this paper has addressed one of the top ten chal-
lenges in ontology matching. We have proposed a solution that is suitable for domain
experts with low skills in ontology matching, since we only rely on a set of example
mappings provided by a domain expert. The results show that matcher configurations
can be automatically improved based on example mappings, which makes this approach
a promising research direction for future ontology matching tools.
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