
Context Awareness in the Networked Enterprise:

Methodological and Technological Issues

Fabio A. Schreiber, Letizia Tanca

PEDiGREE (PErvasive Database GRoup of EnginEers)

Dipartimento di Elettronica e Informazione

Politecnico di Milano

{schreibe,tanca}@elet.polimi.it

Abstract. The formidable amount of heterogeneous information, accessed by the

networked enterprise through all the available channels, makes it difficult for

users to find the right information at the right time and at the right level of detail.

Contextual meta-data about the system and the users can be used to reduce this

plethora of information, providing high-quality, focussed knowledge to users and

applications at all decision-making points. We propose context-aware system

design methodologies and techniques exemplified within the wine production

scenario, where several classes of users access the networked-enterprise data

sources, the sensors used for monitoring the productive cycle, and external

sources of different nature.

Keywords: context-awareness, data integration, data management, design

methodology, sensor networks language

1. Introduction

Data and information constitute the main assets of an information system, and must

be conveniently exploited to provide the enterprise with the appropriate knowledge, at

each decision level and for each business need. This fact is particularly true when the

enterprise itself co-operates with fellow-enterprises to amplify its prospects and

opportunities, constituting a Networked Enterprise. In such an enterprise, the

available data sources may have different natures, varying from simple relational data

to semantically annotated knowledge, to data coming from sensors. The knowledge

about the current user’s context enables the system to interpret, integrate and filter

(tailor) the available information in order to: 1) provide the user or the application

with the appropriately tailored set of data or services, thus eliminating information

noise, 2) match devices' physical constraints, in particular in mobile applications, 3)

appropriately tailor sensor queries.

The ArtDeco project [1] focuses on the problems of finding, extracting,

representing and formalising knowledge, in all various forms in which it may be

embedded, in order to build a context-aware, semantic model of the business domains

of networked enterprises. After a quick introduction to the architecture of the ArtDeco

Web Portal, we concentrate on context-aware knowledge elicitation and querying.

2

The applicability of the proposed context-aware design model and techniques is

referred to a scenario where several classes of users access the networked-enterprise

internal data sources, external sources of different nature and the peripheral pervasive

devices (e.g., RFID tags, sensors, WSNs) used for monitoring the production cycle.

These physical data, besides being used for monitoring the production process, also

concur in determining the state of the context.

2. System Architecture

Fig. 1 depicts the general architecture of the ArtDeco Web Portal, which provides five

main functionalities: taxonomy-driven word tagging and tag-based querying;

knowledge extraction from natural language sources and concept-based natural

language querying; knowledge extraction from applications and sensor networks;

ontology extraction from structured data sources; and collection of data from

enterprise processes. Such modules rely on information stored in the Domain Model,

describing the domain by means of a Taxonomy, a Domain Ontology, a Semantic

Network and a Mapping Model.

The Taxonomy, compiled by a domain expert, provides a hierarchy of tags that

associate labels to the words that lexicalise them. This simple model is then used by

the OmniFind module to provide taxonomy-driven word tagging and support user tag-

based queries. The Domain Ontology, a knowledge base defined by means of

Description Logics, contains the concepts relevant for the application domain and is

defined by a domain expert, starting from, and extending, the Taxonomy, Domain

Ontology, Semantic Network and Mapping Model are used by the Knowledge

Fig. 1 The ArtDeco Context-Aware Web Portal

3

Indexing & Extraction module to provide knowledge extraction from natural language

sources and support concept-based natural language queries.

The Extractors gather data from heterogeneous sources, such as textual

documents, applications, sensor networks, database, XML files, and processes. While

the OmniFind and the Knowledge Indexing & Extraction modules analyse and index

the content of textual documents, data coming from application and sensor networks

are given to the Internal Enterprise Data module, while the ontologies extracted from

structured repositories, such as relational databases and XML files, are used by the

AD-DDIS module to allow on-the-fly access from external applications.

Users interact with the system by means of the Context-aware Web Portal. The

portal provides different users with different context-aware views on the database or

the data warehouse. Each view corresponds to a different working context of the

ArtDeco Web Portal and it is determined on the basis of a context-model and a

methodology for Context-Aware View Design [2], and queries coming from the Web

Portal will be answered by means of the views associated to the current context

instead of resorting to the whole database or data warehouse that may contain

unnecessary information. Enterprise Applications can exchange information with the

Internal Enterprise Data database, in order to take advantage of the data collected by

the system, or interact with the portal to gain information from the other data sources,

possibly filtered on the basis of the context.

The information management sub-system of the ArtDeco project is devoted to

providing a uniform, ontology-based semantic access to information coming from

heterogeneous data sources. In ArtDeco, we chose to keep a centralised repository, in

the form of a Relational Database with an associated Data Warehouse used to

provide also for context-aware analytical queries, temporal trend analyses and similar

mining tasks to the aim of supporting the product design and innovation processes.

The internal relational database is constituted by two sets of tables: the enterprise

database (the so-called Enterprise Tables), and a set of domain-independent tables used

to structure the information coming from the extractors (the Web-Search Tables).

These tables contain the findings in web documents that are considered “relevant” by

the extraction engine and are linked to the semantically relevant enterprise tables. As

an example, the following sentence appeared in a blog entry of a wine-expert titled

“Barbera 2010: Pride in Simplicity?”: “[…] so she poured us the unoaked wines, a

fantastic Langhe Nebbiolo and a Barbaresco.[…]”. From this sentence we can derive

the interesting fact that “Langhe Nebbiolo” and “Barbaresco” are “unoaked wines”

and the fact that the author of the entry considers them “fantastic”. Each of these

findings corresponds to tuples in Web-Search Tables which are linked to the entries of

the enterprise tables that store internal information about Nebbiolo and Barbaresco.

While the centralised repository is useful for analytical query processing,

mediated on-line access to the original data sources (e.g. XML documents and legacy

and current databases from the networked business partners) is supported by AD-

DDIS, the integration component of the ArtDeco framework [1]. Sensors data are

handled as relational databases since we rely on the PerLa Language (see below). The

Domain Ontology is used by AD-DDIS as Global Schema and later mapped to a set

of ontologies, each describing the semantics description of one data source and

extracted by means of domain-aware wrappers. Data source ontologies are (semi-)

automatically mapped to the domain ontology and used to enable query distribution.

4

3. The Context Model

In this section we informally introduce the context model [2] adopted to represent the

various contexts the enterprise members are working into. A set of context dimensions

is used to capture different characteristics of the environment; each dimension can

assume different values (a.k.a. concepts): we use black nodes for the dimensions and

white nodes for the concepts. In Figure 2 we present the graphical representation of a

simplified context schema (the Context Dimension Tree (CDT)) for a wine

production monitoring application. In the wine production process CDT of Fig. 2, the

Role dimension describes the “actors" involved: Farmer, Oenologist and

Driver; the Phase dimension describes the phases of the wine production process

and can assume the concepts Growth, Ageing and Transport; the third

dimension is related to the risks to be kept under control, with the two concepts of

Overheating, owing to exposure of wine bottles to sun- light, and Disease

which can affect the grapes. A context instance is then a conjunction of propositions:

Context ≡ ∧i,j(Dimensioni = Concepti,j).

We can now define the Transport_ Monitoring_context; the bottled wine, in fact,

must not be kept under direct sunlight for more than a certain amount of time to avoid

overheat and a consequent alteration of the wine flavour: Transport_Monitoring ≡

(Role = Driver) ^ (Phase = Transport) ^ (Risk = Overheat). It is worth noticing that

not all possible sets of concepts are valid contexts: for instance the dimension Role

cannot assume simultaneously the Driver and Farmer concepts (the children

concepts of a dimension are always to be instantiated in mutual exclusion). Invalid

contexts are thus ruled out by appropriate constraints [2].

Fig. 2 The CDT schema (for the wine production process)

The context model [2] allows the representation of context in terms of observable

entities, which have a symbolic representation within the system (e.g. the Overheat

risk concept) and possibly a numerical value gathered from the environment sensors.

Gathering context data from the environment requires a simple interface, possibly

based on a declarative approach, which, on the one side, interacts with the network of

highly heterogeneous physical devices and, on the other, is correctly interfaced with

the internal, symbolic representation of context. Then, it is possible to analyse how

symbolic observables can be mapped to numeric observables (e.g.: temperature

ranges), which are instantiated by retrieving them from the pervasive system. The

Role Risk Phase

Farmer
Driver

Oenologist

Disease
Growth Transport

Overheat
Ageing

5

PerLa system [4,5], presented in the next section, allows to perform this important

task effectively and efficiently.

4. Managing Context Through PerLa

We illustrate now the middleware layer and a specific language permitting to install

context-aware queries on, and extract data from, peripheral pervasive devices (e.g.,

RFID tags, sensors, WSNs) allowing seamless integration of such data within the rest

of the information at the enterprise’s disposal. As extensively presented in [4], PerLa

is a framework to configure and manage modern pervasive systems. Adopting a data-

centric approach, it relies on a query language using an SQL-like metaphor. PerLa

queries allow to retrieve data from the pervasive system, to prescribe how the

gathered data have to be processed and stored and to specify the behaviours of the

devices. A typical PerLa query, deployed on a group of sensors, and used to gather

data from the field is shown below:
…….

SELECT ID , temperature , humidity , location_x , location_y

SAMPLING EVERY 1 m

EXECUTE IF EXISTS (temperature) AND is_in_vineyard (location_x , location_y)

REFRESH EVERY 10m

PerLa is based on a middleware whose architecture exposes two main interfaces:

a high-level interface which allows query injection, and a low-level interface that

provides plug&play mechanisms to handle devices. Moreover, the PerLa language

supports the definition and the management of context [6] through CDT Declaration

and Context creation:

CDT Declaration

CREATE DIMENSION <Dimension Name>

[CHILD OF <Parent Node >]

{ CREATE CONCEPT <Concept Name>WHEN <Condition>

[EVALUATED ON <Low Level Query >]}*

The CREATE DIMENSION clause is used to declare that a new dimension must be

added to a CDT, possibly as a child of a concept node (CHILD OF clause). Once a

dimension has been declared, it is possible to specify the values it can assume, using

the CREATE CONCEPT/WHEN pair. For each pair the designer must specify the

name and the condition for assuming the specified values by means of numeric

observables that can be measured from the environment. We postpone the explanation

of the EVALUATED ON clause to the next Subsection, where it plays a fundamental

role. The CDT of Figure 5 is specified by the following set of statements:

CREATE DIMENSION Role

CREATE CONCEPT Farmer WHEN get_user_role ()=' farmer '

CREATE CONCEPT Oenologist WHEN get_user_role ()=' Oenologist '

CREATE CONCEPT Driver WHEN get_user_role ()=' driver '

CREATE DIMENSION Risk

CREATE CONCEPT Disease WHEN get_interest_topic ()=' disease '

CREATE CONCEPT Overheat WHEN temperature > 30 AND brightness > 0.75;

CREATE DIMENSION Phase

CREATE CONCEPT Growth WHEN get_phase ()='growth '

CREATE CONCEPT Ageing WHEN get_phase ()=' ageing '

CREATE CONCEPT Transport WHEN get_phase ()=' transport '

6

In this CDT, the get_user_role(), get_phase() and

get_interest_topic() functions are employed to retrieve context information

that cannot be deduced from sensors readings, but have to do with other aspects of the

application. This information is typically gathered from some external XML source or

database. This clearly highlights how PerLa supports the passage from symbolic to

numeric observable: the Overheat symbolic value is in fact defined in terms of the

Temperature and Brightness physical quantities (numeric observables) that

can be sampled from the environment using very simple queries.

Context creation

CREATE CONTEXT <Context Name>

ACTIVE IF <Dimension>=<Value> [AND <Dimension>=<Value>]

ON ENABLE <PerLa Query>

ON DISABLE <PerLa Query> /*one-shot only */

REFRESH EVERY <Period>

The CREATE CONTEXT statement is used to create a context instance in PerLa

and allows to associate a unique name to it. The ACTIVE IF statement translates the

Context ≡ ∧i,j(Dimensioni = Concepti,j) statement of Section 3 into PerLa. This

statement is fundamental for the middleware in order to decide if a context is active or

not. The actions that must be performed in both these situations must be specified

using the ON ENABLE clause and are expressed using any type of PerLa query . The

ON DISABLE clause can be coupled only with “one-shot" queries, that is, queries that

are executed only once upon deactivation of a context, and thus do not create conflicts

with the queries enabled by the next active contexts. The middleware will also

perform the necessary controls according to the condition specified in the REFRESH

clause that completes the syntax. In the next example we show how context

management statements and queries/actuation commands on the target system are

uniformly mixed in order to achieve a context-aware behaviour. For the

Transport_Monitoring context we can use the following statements:

CREATE CONTEXT Transport_Monitoring

ACTIVE IF Phase = ' transport ' AND Role=' driver ' AND Risk=' overheat '

ON ENABLE:

SELECT temperature , gps_latitude , gps_longitude

WHERE temperature > 30

SAMPLING EVERY 120 s

EXECUTE IF location = ' truck_departing_zone '

SET PARAMETER ' alarm ' = TRUE;

ON DISABLE:

DROP Transport_Monitoring ;

SET PARAMETER ' alarm ' = FALSE;

REFRESH EVERY 24 h ;

In this example, after creating the context, a very short query is issued: the

SELECT clause specifies that both temperature and GPS location must be retrieved

every two minutes (SAMPLING EVERY clause), while the WHERE clause allows to

filter the sampled values. The EXECUTE IF finally deploys the query only on those

devices located into the vineyard truck departing zone. This query features also an

actuation query introduced by the SET PARAMETER clause and is used to activate an

alarm if the risk of overheat becomes real.

The internal structure of the PerLa middleware also supports the Context Language

(CL). A Context Manager (CM) is in charge of: 1) creating and maintaining the CDT;

7

2) detecting which contexts are active or not in a precise moment; 3) performing the

correct actions expressed by the user according to context statuses. In the following

we analyse these steps.

Creation of the CDT During this phase all the necessary numeric observables

(declared using the CREATE CONCEPT/WHEN clauses) are retrieved, and the

EVALUATED ON clause becomes important. In fact, as long as this clause is

unemployed, the CM executes a series of independent queries in order to retrieve the

necessary information from the pervasive system. The designer could be interested in

modifying this default behaviour, especially when the environment changes rapidly

and the same observable is employed in different concepts (leading thus to some

inconsistencies using different queries). This clause is useful also to introduce some

optimisations (e.g.: discarding some unwanted devices). For example, on the

Overheat dimension:
CREATE CONCEPT Overheat WHEN temperature > 30 AND brightness > 0.75 ;

EVALUATED ON:

SELECT temperature , brightness

EXECUTE IF location=' truck_departing_zone ' AND battery > 0.7

In this example the observables temperature and brightness are

sampled simultaneously using one single query (instead of two independent queries).

Moreover the query is executed only on those devices that are located in the truck

departing zone and whose battery power is enough to operate efficiently (EXECUTE

IF clause); notice that functional and non-functional data are collected in the same

way. Once all the results are available (independently of the presence of the

EVALUATED ON clause) the system can create a series of tables (one for each

dimension with concepts nodes) that contain a column for every attribute expressed in

the CREATE CONCEPT/WHEN clauses. The table reports also the IDs of the devices

that were taken into account during the retrieval phase. Every table entry then

represents the actual value (sampled from the environment) and the device that

physically produced it. If we consider again the Overheat dimension and supposing

that the computation of the relative EVALUATED ON returned only the 1,3,4 IDs, a

table for this dimension could be the following:

ID temperature brightness

1 28 0.60

3 31 0.71

4 33 0.80

Fig. 3 Table for the Overheat dimension

Once all the necessary information has been gathered it is possible to evaluate every

condition expressed by the WHEN clauses used during the CDT declaration. In

particular, simply looking up every table, the CM assigns to a CDT concept node the

ID(s) of those devices whose sampled values satisfy the condition expressed by the

WHEN clause of the concept definition. When this phase is concluded the system

knows which devices are in the situation described by the concepts of every

dimension of the CDT. For example, referring to the Overheat in Figure 3, the CM

can deduce that only sensor number 4 is detecting the risk of overheat since both

temperature >30 and brightness >0.75 conditions are true simultaneously, while this is

8

not the case of sensors number 3 and 1. With similar computations the CM also

selects the concepts that correspond to the results calculated by the static functions,

such as get_user_role().

Context detection A context is active if the dimensions that define it assume the

values specified by the Context ≡ ∧i,j(Dimensioni = Concepti,j) statement.

Considering also the results of the static functions, the system recognises as active all

the contexts whose CDT concepts contain a not-empty device list. In fact, from the

CM point of view, if one ID has been associated with a concept it means that, for at

least one device, a CDT dimension is currently assuming that value. If this situation is

true for every < Dimension > = < Concept > used to define a context C then the

environment is exactly in the situation expressed by C, and C is considered as active.

Performing context actions Once a context has been recognised as active, the

CM simply injects the query specified by the ON ENABLE clause into the middleware

dedicated components. At this point the execution flow equals the one of any other

query that is manually injected into the system, and is thus completely controlled and

managed by the middleware dedicated components.

5. Conclusions

In this paper we have proposed a model for the organization and exploitation of

context-awareness in a networked Enterprise. Context-aware thinking is useful for

structuring systems in a way that clearly separates concerns into what is strictly

functional to the applications and what concerns the environment in which they act.

More advantages of this approach are described in [3]

References
1. Anastasi G., Bellini E., Di Nitto E., Ghezzi C., Tanca L., Zimeo E. (Eds.):

Methodologies and Technologies for Networked Enterprises. Springer Verlag (to

appear 2012)

2. Bolchini C., Curino C.A., Quintarelli E., Schreiber F.A., and Tanca L.: Context

information for knowledge reshaping. Intl. Journal of Web Engineering and Tech-

nology, 5(1):88–103, (2009).

3. Bolchini C., Orsi G., Quintarelli E., Schreiber F. A., Tanca L.: Context Modeling

and Context Awareness: steps forward in the Context-ADDICT project. Bulletin

of the IEEE Technical Committee on Data Engineering, 34(2), pp. 47-54, (2011)

4. Schreiber F.A., Camplani R., Fortunato M., Marelli M., Rota G.: PerLa: A

Language and Middleware Architecture for Data Management and Integration in

Pervasive Information Systems. IEEE Transactions on Software Engineering,

(2011). http://doi.ieeecomputersociety.org/10.1109/TSE.2011.25

5. PerLa website: http://perlawsn.sourceforge.net/index.php

6. Schreiber F.A., Tanca L., Camplani R., Vigano' D.: Towards autonomic pervasive

systems: the PerLa context language. Proceedings of the 6th International

Workshop on Networking Meets Databases, Co-located with SIGMOD 2011,

Athens, (2011)

