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Abstract

In this paper we present a new method for high-
level event recognition, demonstrated in real-
time on video. Human behaviours have under-
lying activities that can be used as salient fea-
tures. We do not assume that the exact tempo-
ral ordering of such features is necessary, so can
represent behaviours using an unordered “bag-
of-activities”. A weak temporal ordering is im-
posed during inference, so fewer training exem-
plars are necessary compared to other methods.
Our three-tier architecture comprises low-level
tracking, event analysis and high-level recogni-
tion. High-level inference is performed using a
new extension of the Rao-Blackwellised Particle
Filter. We validate our approach using the PETS
2006 video surveillance dataset and our own se-
quences. Further, we simulate temporal disrup-
tion and increased levels of sensor noise.

1 INTRODUCTION

Considerable attention has been given to the detection of
events in video. These can be considered low-level events
and include agents entering and exiting areas (Fusier et al.,
2007), and object abandonment (Grabner et al., 2006).
High-level goals have been recognised from none-visual
data sources with reasonable success (Liao et al., 2007).
However, there has been far less progress towards recog-
nising high level goals from low-level video.

Detecting events from surveillance video is particularly
challenging due to occlusions and lighting changes. False
detections are frequent, leading to a high degree of noise
for high-level inference. Although complex events can be
specified using semantic models, they are largely deter-
ministic and treat events as facts (e.g. (Robertson et al.,
2008)). Mechanisms for dealing with observation uncer-
tainty are unavailable in these models (Lavee et al., 2009).

On the other hand, probabilistic models are very successful
in noisy environments, and are at the core of our approach.

Plan recognition researchers such as (Bui and Venkatesh,
2002; Nguyen et al., 2005) used hierarchical structures to
model human behaviour. By decomposing a goal into states
at different levels of abstraction (e.g. sub-goals, actions), a
training corpus can be used to learn the probability of tran-
sitioning between the states. Although this work does con-
sider video, a major shortfall is the necessity for training
data, which is often unavailable in surveillance domains.

A common way to avoid this issue is to model “normal” be-
haviours for which training data is easier to obtain (Boiman
and Irani, 2007; Xiang and Gong, 2008). Activities with a
low probability can then be identified as abnormal. Be-
cause semantic meanings cannot be attached to the abnor-
mal activities, they cannot be automatically reasoned about
at a higher level, nor explained to an operator.

Another alternative to learning temporal structure is to have
it defined by an expert. For simple events this is trivial,
but increases at least proportionally with the complexity
of the event. In (Laxton et al., 2007) the Dynamic Belief
Network for making French Toast was manually specified.
Their approach only considers a single goal.

Dee and Hogg showed that interesting behaviour can be
identified using motion trajectories (Dee and Hogg, 2004).
Their model identified regions of the scene that were vis-
ible or obstructed from the agent’s location, and produced
a set of goal locations that were consistent with the agent’s
direction of travel. Goal transitions were penalised so ir-
regular behaviours were identified via their high-cost.

In (Baxter et al., 2010) a simulated proof of concept sug-
gested behaviours could be identified using temporally un-
ordered features. This has the advantage that training ex-
emplars are not required. Our work furthers the idea that
complex behaviour can be semantically recognised using a
feature-based approach. We present methods for represent-
ing behaviours, performing efficient inference, and demon-
strate validity and scalability on real, multi-person video.
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Figure 1: (a) When two agents enter together, an item left by one agent is not a threat when the second agent remains close.
(b) When two agents enter separately, it cannot be assumed that the item is the responsibility of the remaining agent

This paper presents a framework with three major compo-
nents : (1) low-level object detection and tracking from
video; (2) detecting and labelling simple visual events (e.g.
object placed on floor), and (3) detecting and labelling
high-level, complex events, typically including multiple
people/objects and lasting several minutes in duration. Our
high-level inference algorithm is based upon the Rao-
Blackwellised Particle Filter (Doucet et al., 2000a), and can
recognise both concatenated and switched behaviour. Our
entire framework is capable of real-time inference.

We validate our approach chiefly on real, benchmarked
surveillance data: the PETS 2006 video surveillance
dataset. We report classification accuracy and speed on
four of the original scenarios, and one additional scenario.
The fifth scenario was acquired by merging frames from
different videos to provide a complex, yet commonly ob-
served behaviour. Further evaluation is conducted by sim-
ulating sensor noise and temporal disruption, and on addi-
tional video recorded in our own vision laboratory.

Throughout this paper the term activity is used to refer to a
specific short-term behaviour that achieves a purpose. An
activity is comprised of any number of atomic actions. Ac-
tivities are recognised as simple events. These terms are
interchanged depending upon context. Similarly, collec-
tions of activities construct goals, and will be referred to as
features of that goal. Goals are detected as complex events.

2 RECOGNITION FRAMEWORK

Figure 1 illustrates two complex behaviours: Watched Item
and Abandoned Item. Watched Item involves two persons
who enter the scene together. One person places an item
of luggage on the floor and leaves, while the other person
remains in close proximity to the luggage. This scenario
is representative of a person being helped with their bags.
Abandoned Item is subtly different: the two people do not
enter the scene together (Frames 1 and 3 in Figure 1b).

Traditionally, the proximity of people to their luggage is
used to detect abandonment. This would generate an alert
for both of the above scenarios. To distinguish between
them, we integrate low-level image processing with high-
level reasoning (Figure 2). We use a hierarchical, modular
framework to provide an extendible system that can be eas-
ily updated with new techniques. Video data is provided
as the source of observations and is processed at three dif-
ferent levels: Object Detection and Tracking, Simple Event
Recognition, and Complex Event Recognition. Image pro-
cessing techniques provide information about objects in
the scene, allowing simple semantic events to be detected.
These then form observations for high-level recognition.

2.1 OBJECT DETECTION AND TRACKING

Static cameras allow foreground pixels to be identified us-
ing background subtraction. This technique compares the
current frame with a known background frame. Pixels that
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Figure 2: Our architecture for complex event recognition

are different are classed as the foreground. Connected fore-
ground pixels give foreground blobs, and are collectively
referred to as Bt. The size/location of each blob can be
projected onto real-world coordinates using the camera cal-
ibration information. Two trackers operate on Bt.

Person Tracker: Our person tracker consists of a set of
SIR filters (Gordon et al., 1993). SIR filters are similar to
Hidden Markov Models (HMMs) in that they determine the
probability of a set of latent variables given a sequence of
observations (Rabiner, 1989). However, when latent vari-
ables are continuous, exact approaches to inference become
intractable. The SIR filter is an approximation technique
that uses random sampling to reduce the state space.

Our filters consist of one hundred particles representing the
person’s position on the ground plane, velocity, and direc-
tion of travel (Limprasert, 2010). For each video frame, the
blobs (groups of foreground pixels) that contain people are
quickly identified from Bt using ellipsoid detection. We
denote these blobs Et. For each ellipsoid that cannot be
explained by an existing filter, a new filter is instantiated to
track the person.

In order to address the temporary occlusion of a person
(e.g. people crossing paths), particles also contain a visi-
bility variable (0/1) to indicate the person’s disappearance.
This variable applies to all particles in the filter. By comb-
ing this variable with a time limit, the filter continues to
predict the person’s location for short occlusions, while
longer occlusions will cause the track to be terminated.

Object Tracker: Our second tracking component con-
sists of an object detector. In the video sequences this
detects luggage and is similarly heuristic to other success-
ful approaches (Lv et al., 2006). To remove person blobs
and counteract the effect of lighting changes, which spuri-
ously create small foreground blobs, the tracker eliminates
blobs that are not within the heuristically defined range:
0.3 ≤ width/height ≤ 1m. Each remaining blob is clas-
sified as a stationary luggage item if the blob centroid re-

mains within 30cm of its original position, and is present
for at least 2 continuous seconds. The red rectangle iden-
tifies a tracked luggage item in Figures 1a&b, frame 2. In-
versely, if the blob matching a tracked luggage object can-
not be identified for 1 second, the luggage is classed as
“removed”. To prevent incorrect object removal (e.g. when
a person is occluding the object), the maximum object size
constraint is suspended once an object is recognised.

2.2 SIMPLE EVENT RECOGNITION

Simple events can be generated by combining foreground
detection/tracking with basic rules. Table 1 specifies the
set of heuristic modules used in our architecture to encode
these rules. It should be highlighted that the GroupTracker
only uses proximity rules to determine group membership
(we suggest improvements in Future Work). Group Formed
events are trigged when two people approach, and remain
within close proximity of each other. Inversely, GroupSplit
events are triggered when two previously ”grouped” people
cease being in close proximity.

Although these naive modules achieve reasonable accuracy
on the PETS dataset, it is important to acknowledge that
they would be insufficient for more complex video. The
focus of our work is high-level inference and thus state-
of-the-art video processing techniques may not have been
used. The modularity of our framework allows any compo-
nent to be swapped, and thus readily supports the adoption
of improved video processing algorithms. Furthermore,
we demonstrate via simulation that high-level inference re-
mains robust to increased noise.

2.3 COMPLEX EVENT RECOGNITION

Human behaviour involves sequential activities, so it is nat-
ural to model them using directed graphs as in Figure 1.
Dynamic Bayesian Networks (Figure 3) are frequently cho-
sen for this task, where nodes represent an agent’s state,
solid edges denote dependence, and dashed edges denote
state transitions between time steps (Murphy, 2002). Each
edge has an associated probability which can be used to
model the inherent variability of human behaviour 1.

Like many others, (Bui and Venkatesh, 2002) learnt model
probabilities from a large dataset. However, annotated li-
braries of video surveillance do not exist for many inter-
esting behaviours, making there no clear path for training
high-level probabilistic models. Similar problems occur
when dealing with military or counter-terrorism applica-
tions, where data is restricted by operational factors. Alter-
native approaches include manually specifying the proba-
bilities, and using a distribution that determines when tran-
sitions are likely to occur (Laxton et al., 2007).

We hypothesise that many human behaviours can be recog-
1Figure 3 will be fully explained in section 3



nised without modelling the exact temporal order of activ-
ities. This means that model parameters do not need to
be defined by either an expert, or training exemplar. We
consider activities as salient features that characterise a be-
haviour. Goals can be recognised by combining a collec-
tion (bag) of activities with a weak temporal ordering.

Feature based recognition algorithms have primarily been
developed for object detection applications. To identify
features that are invariant to scale and rotation, object im-
ages are often transformed into the frequency or scale do-
mains, where invariant salient features can be more readily
identified (Lowe, 1999). The similarities between recog-
nising objects and human behaviours has previously been
noted (Baxter et al., 2010; Patron et al., 2008), and it is this
similarity upon which we draw our inspiration.

Figure 1 helps visualise a behaviour as a set of features.
Each ellipse represents a complex event as a bag of activi-
ties (cardinality: one). We formally denote a bag by T , the
Target event, where each element is drawn from the set of
detectable simple events α. Each simple-event is a feature.

The agents progress towards a target event can be moni-
tored by tracking the simple events generated. Fundamen-
tally, the simple events should be consistent with T if T
correctly represents the agent’s behaviour. For instance, if
simple event αi is observed but αi 3 T , then αi must be a
false detection, or T is not the agent’s true behaviour.

As time increases more events from T should be generated.
If we make the assumption that each element of a behaviour
is only performed once, then the set of expected simple
events reduces to the elements of T not yet observed. If
T = 〈γ, δ, ε〉 and γ has already been observed, then the set
of expected events is 〈δ, ε〉. In this way a weak temporal or-
dering can be applied to the elements of T without learning
their absolute ordering from exemplar.

If C is defined as the set of currently observed simple
events, T\C is the set of expected events. At each time
step, events in T\C have equal probability, while all other
events have 0 probability. This probability distribution en-
capsulates the assumption that each simple event is only
truthfully generated once per behaviour, and is consistent
with other work in the field (Laxton et al., 2007). We dis-
cuss the implications and limitations of this assumption in
section 5.

Worked Example: Using Figure 1’s Watched Item be-
haviour as an example, at time step t=0 each of the
5 events (LeaveItem, EnterAgent, ExitAgent, PartGroup,
PlaceItem) has equal probability. In frame 1 (t = 1),
p (EnterAgent) = 0.2. At t = 2, p(EnterAgent) =
0, while ∀i ∈ T\C : p(i) = 0.25. Note that
p(FormGroup|T = WatchedItem) = 0 at all time
steps, because FormGroup 3 WatchedItem.

Table 1: The simple event modules used by our architecture
Module Description
Agent Tracker Detects the entry/departure

of people from the scene.
Object Tracker Upon luggage detection, as-

sociates that luggage with
the closest person.

Group Tracker Identifies when people are
in close proximity, and split
from a single location.

Abandoned Object
Detector

Detects when luggage is≥ 3
metres from its owner.
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Figure 3: The top two layers of the Dynamic Bayesian Net-
work predict low-level events for a complex event

3 DYNAMIC BAYESIAN NETWORK

This approach can be captured by the Dynamic Bayesian
Network (DBN) in Figure 3. Nodes within the top two lay-
ers represent elements of the person’s state and can be col-
lectively referred to as x. The bottom layer represents the
simple event that is observed. The vertical dashed line dis-
tinguishes the boundary between time slices, t− 1 and t.

Activity observations: Recognition commences at the
bottom of the DBN using the simple-event detection
modules. Ours are described in section 3. Each detection
must be attributed to a tracked object or person.

Desire: Moving up the DBN hierarchy the middle layer
represents the agent’s current desire. A desire is in-
stantiated with a simple-event (activity) that supports the
complex-event (goal). Given the previous definitions of T
and C the conditional probability for D (desire) is:

p
(
di
)
= p

(
dj
)
∀i,j : di, dj ∈ C\T (1)

p
(
dk

)
= 0 ∀k : dk 3 C\T (2)



Define TP
(
αi
)

as the true positive detection probability
of simple event αi. Having now defined A and D the the
emission probabilities can also be defined by the function
E (At, Dt):

E (At, Dt) = p
(
At = αi|Dt = αj

)
(3)

= TP
(
αi
)

: i = j (4)

= 1− TP
(
αi
)

: i 6= j (5)

Goal Representation: The top layer in the DBN repre-
sents the agent’s top-level goal and tracks the features that
have been observed. The final node; I , removes an im-
portant limitation in (Baxter et al., 2010). I represents be-
haviour interruption, which indicates that observation At

cannot be explained by the state xt (the top two layers of
the DBN). It implies one of two conditions. 1) A person
has switched their complex behaviour (e.g. goal) and thus
Tt−1 6= Tt. Although humans frequently switch between
behaviours, this condition breaks the assumptions made by
(Baxter et al., 2010), causing catastrophic failure. 2) At is
a false detection. In this case, the elements of T and C are
temporarily ignored.

3.1 MODEL PARAMETERS

Given the model description above, the DBN parameters
can be summarised as follows.

Variables: α is the set of detectable simple events. T rep-
resents a single behaviour (complex event) and ∀t ∈ T :
t ∈ α. C represents the elements of T that have been ob-
served and thus ∀c ∈ C : c ∈ T . D is a prediction of the
next simple-event and is drawn from T\C. Finally,A is the
observed simple event and is drawn from α.

Probabilities: Define Beh (β) as the target feature set for
behaviour β, and Pr (β) as the prior probability of β. The
transition probabilities for latent variables C and T can
then be defined as per Table 2.

The distribution on values of D is defined by equations 1
and 2, and the emission probabilities by equations 3 to 5.

It should be noted that of all these parameters, only func-
tions Beh (β) and E (At, Dt) need to be defined by the
user. It is expected that Beh (β) (the set of features rep-
resenting behaviour β) can be easily defined by an expert,
while E (At, Dt) may be readily obtained by evaluating
the simple-event detectors on a sample dataset. All other
parameters are calculated at run-time, eliminating learning.

3.2 RAO-BLACKWELLISED INFERENCE

The DBN in Figure 3 is a finite state Markov chain and
could be computed analytically. However, given our target
application of visual surveillance, which has the require-
ment of near real-time processing, we adopt a particle fil-
tering approach to reduce the execution time. In Particle

Filtering the aim is to recursively estimate p(x0:t|y0:t), in
which a state sequence {x0, ..., xt} is assumed to be a hid-
den Markov process and each element in the observation
sequence {y0, ..., yt} is assumed to be independent given
the state (i.e. p(yt|xt)) (Doucet et al., 2000b).

We utilise a Rao-Blackwellised Particle Filter (RBPF) so
that the inherent structure of a DBN can be utilised. We
wish to recursively estimate p(xt|y1:t−1), for which the
RBPF partitions xt into two components xt : (x1t , x

2
t )

Doucet et al. (2000a). This paper will denote the sampled
component by the variable rt, and the marginalised com-
ponent as zt. In the DBN in Figure 3, rt : 〈 Ct, Tt, It 〉
and zt : Dt. This leads to the following factorisations:

p(xt|y1:t−1) = p(zt|rt, y1:t−1)p(rt|y1:t−1) (6)

= p(Dt|Ct, Tt, It, y1:t−1)p(Ct, Tt, It|y1:t−1) (7)

The factorisation in 7 utilises the inherent structure of
the Bayesian network to perform exact inference on D,
which can be efficiently performed once 〈 Ct, Tt, It 〉
has been sampled. Each particle i in the RBPF repre-
sents a posterior estimate (hypothesis) of the form hit :
〈 Ci

t , T
i
t , I

i
t , D

i
t, W

i
t 〉, where Wt is the weight of the

particle calculated as p(yit|xit).

For brevity we will focus on the application of the RBPF
to our work, but refer the interested reader to (Bui and
Venkatesh, 2002; Doucet et al., 2000a) for a generic intro-
duction to the approach.

3.2.1 Algorithm

At time-step 0, T is sampled from the prior and C = ∅
for all N particles. For all other time steps, N particles
are sampled from the weighted distribution from t− 1 and
each particle predicts the new state 〈Ci

t , T
i
t , I

i
t〉 using the

transition probabilities in Table 2.

After sampling is complete, the particle set is partitioned
into those where p(yt|Ct, Tt, It) is non-zero, and zero. The
first partition is termed the Eligible set because the parti-
cle states are consistent with the new observation, while
the second partition is termed the Rebirth set. Particles in
the Rebirth set represent those where an interruption has
occurred. For each particle in this set, T and C are re-
initialised according to the prior distribution with a prob-
ability of p(TP ), indicating the true positive rate of the
observation. With a probability of 1− p(TP ), particles are
flagged as “FP” (False Positive), and are not re-initialised.

At the next step, the Eligible and Rebirth sets are recom-
bined and the Rao-Blackwellised posterior is calculated:
p(zit|rit, y1:t−1) = p(Di

t|Ci
t , T

i
t , I

i
t , y1:t−1). The value of

Di
t (the agent’s next desire) is then predicted according to

the Rao-Blackwellised posterior. At this point each particle
has a complete state estimate xit, and can be weighted ac-
cording to equation 8. It is important to note that particles



Table 2: DBN transition probabilities between time steps t− 1 and t

p (Ct = Ct−1 ∪ {Dt−1}|It = 0) = TP (At−1) when Dt−1 = At−1

p (Ct = Ct−1 ∪ {Dt−1}|It = 0) = 0 when Dt−1 6= At−1

p (Ct = ∅|It = 1) = 1

p (Tt 6= Tt−1|It = 0) = 0
p (Tt = Beh (β) |It = 1) = pr (β) if At−1 not assumed false positive
p (Tt = Tt−1|It = 1) = 1 if At−1 assumed false positive

flagged as “FP” are weighted with 1− p(TP ).

p(yt|xit) = p(At|Ci
t , T

i
t , I

i
t , D

i
t) (8)

The final step in the algorithm is to calculate the transi-
tion probabilities. This step ensures that the algorithm is
robust to activity recognition errors. The transition proba-
bility encapsulates the probability that the agent really has
performed the predicted feature Di

t, observed via At.

4 RESULTS AND DISCUSSION

Two datasets were used to evaluate our framework. Five
complex behaviours were extracted from four PETS 2006
scenarios, and our own video dataset contains the same be-
haviours but encompasses more variability than PETS in
terms of luggage items and the ordering of events. Experi-
ments were run on a Dual Core 2.4Ghz PC with 4GB RAM.

Figure 4 shows the average F-Scores for the low-level de-
tectors (trackers, event modules). An F-score is a weighted
average of a classifiers accuracy and recall with range [0:1],
where 1 is optimal. Our person tracker performs well (F-
Score ≥ 0.92), but occasionally misclassified non-persons
(e.g. trolley), instantiates multiple trackers for a single per-
son, or does not detect all persons entering in close prox-
imity. The object tracker has an F-Score ≥ 0.83, and is
limited by partial obstructions from the body and shadows.

The naivety of our simple event modules makes them re-
liant on good tracker performance. Although the average
score is 0.83, the “Group Formed” module is particularly
unreliable (F-Score: 0.6).

4.1 COMPLEX EVENT RECOGNITION

The five complex behaviours used in our evaluation are:
Passing Through 1 (PT-1): Person enters and leaves, Pass-
ing Through 2 (PT-2): Person enters, places luggage, picks
it up and leaves, Abandoned Object 1 (AO-1): Person meets
with a second person, places luggage and leaves, Aban-
doned Object 2 (AO-2): Person enters, places luggage and
leaves, and Watched Item (WI): Two people enter together,
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increased (reducing speed).

one places luggage and leaves, one remains. This last be-
haviour was synthesized for the PETS dataset by merging
track data from scenarios six and four.

Figure 5 compares the average classifier F-Scores as the
number of particles is increased. Classifications are made
after all simple events have been observed by selecting
the most likely complex event. A minimum likelihood of
0.3 was imposed to remove extremely weak classifications.
As the number of particles increases accuracy/recall is im-
proved. The algorithm remains very efficient with 500 par-
ticles, and is capable of processing in excess of 38,000 sim-
ple events per second. The classifiers achieve 0.8 F-Score
on Dataset 2, and 0.87 on PETS.

In section 3 we highlighted that our naive simple-event
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Figure 6: Observations arriving in different orders still
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modules would perform poorly on more complex video.
To simulate these conditions, we artificially inserted noise
into the observation stream to lower the true positive rate
to 60%. Figure 5 shows that even with this high degree of
noise, complex events can be detected with 0.65 F-Score.

Table 3 shows classifier confusion across both datasets.
Missing object detections cause confusion between PT-1
and PT-2. Behaviours AO-1 and WI differ by only one
event (Form Group), and thus absent group detections lead
to confusion here.

Table 3: Confusion Matrix for the combined video datasets
Scenario

PT-1 PT-2 WI AO-1 AO-2

PT-1 0.92 0 0 0.08 0
PT-2 0.33 0.58 0 0 0.08
WI 0 0 0.9 0.1 0

AO-1 0 0 0.2 0.8 0
AO-2 0 0 0 0 1

4.2 TEMPORAL ORDER

We proposed that the exact temporal order of observa-
tions does not need to be modelled to recognise hu-
man behaviour. Figure 6 supports this thesis by showing
complex-event likelihood for three different activity per-
mutations of the AO-1 behaviour. In all three cases AO1
is highly probable, although there are differences in prob-
ability. These differences are because some activity sub-
sequences are shared between multiple behaviours. For
instance, 〈PlaceItem,LeaveItem,Exit〉 matches both
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Figure 7: Probability of each behaviour as observations are
made. Behaviour switches from WI to PT-2 at observation
6, causing a similar shift in behaviour probability.

AO-1 and AO-2. There is a low probability that observa-
tions 〈FormGroup, PartGroup〉 were false detections,
and thus some probability is removed from AO1 in sup-
port of AO2, which can also explain the subsequence
〈PlaceItem,LeaveItem,Exit〉. Although observation
order can have an impact on goal probability, it is clear that
our thesis holds for these behaviours.

4.3 BEHAVIOUR SWITCHING

Our inference algorithm contains components to detect be-
haviour switching, which occurs when an agent concate-
nates or otherwise changes their behaviour (see Section
2.3). To demonstrate the effectiveness of these components
Figure 7 plots the probability of each behaviour as observa-
tions are received from two concatenated behaviours. The
behaviours are WI, followed by PT-2.

In observation 1 the agent enters. The distributions on
the features within each behaviour causes PT-1 to be most
probable because it has the least features. The second ob-
servation can only be explained by two behaviours and is
reflected in the figure. At observation six “EnterAgent”
cannot be explained by any of the behaviours, triggering
behaviour interruption. Observation seven can only be ex-
plained by PT-2 and this is reflected in the figure. As a
result, the behaviours that best explain the observations are
WI and PT-2, which matches the ground truth.



5 CONCLUSION AND FUTURE WORK

This paper has argued that data scarcity prevents the ad-
vancement of high-level automated visual surveillance us-
ing probabilistic techniques, and that anomaly detection
side-steps the issue for low-level events. We proposed that
simple visual events can be considered as salient features
and used to recognise more complex events by imposing
a weak temporal ordering. We developed a framework
for end-to-end recognition of complex events from surveil-
lance video, and demonstrated that our “bag-of-activities”
approach is robust and scalable.

Section 2.3 made the assumption that for a set of features
defining a behaviour, each feature is only performed once.
This assumption limits our approach but is not as strong as
it may at first appear. An agent who enters and exits the
scene can still re-enter, as this is simply the concatenation
of two behaviours. Each individual behaviour has only in-
volved one ’EnterAgent’ event so the assumption is not in
conflict. Furthermore, it is also possible to consider actions
that are opposites. For instance, placing and removing a
bag, or entering and exiting the scene, can both be con-
sidered action pairs that ’roll-back’ the state. Although not
implemented in this paper, further work has shown that this
is an effective means of allowing some action repetition.
The only behaviours prevented by the assumption are those
that require performing action A twice (e.g. placing two
individual bags).

Clearly, improving the sophistication of the simple event
detection modules is a priority in extending our approach to
more complicated data. The Group Tracker module could
be improved by estimating each person’s velocity and di-
rection using a Kalman filter. These attributes could then
be merged with the proximity based approach to more ac-
curately detect the forming and splitting of groups.
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