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Abstract

Lung cancer is a very frequent tumor in the
developed world and the leading cause of can-
cer death, with non-small cell lung cancer be-
ing the most prevalent type and with most
difficult prognosis. In this paper we present
a decision support system built for finding
the optimal selection of tests and therapy
for each patient. The system basically con-
sists of an influence diagram with super value
nodes. The parameter A, which in cost-
effectiveness analyses represents the amount
of money that the decision maker is willing to
pay to obtain a unit of effectiveness, has been
included in the influence diagram, and has al-
lowed us to find a trade-off between cost and
effectiveness. Finally, given the uncertainty
on the values of the parameters, we have as-
signed, with the expert’s help, a probability
distribution to each parameter of the model
and have performed a probabilistic sensitiv-
ity analysis.

1 INTRODUCTION

Lung cancer is a very frequent tumor in the developed
world and the leading cause of cancer death. Lung
cancer can be classified into two major types: small-
cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). The first one appears in 20% of cases, is usu-
ally inoperable and only treatable with chemotherapy
or chemo-radiotherapy. In contrast, when limited to
the lung, certain adjacent structures, and lymph nodes
proximal to the lung, surgery resection remains the op-
timal treatment for NSCLC. However, more than 80%
of NSCLC patients can not be treated with surgery be-
cause the disease is out of control due to an advanced
local extension of the tumor or spreading to other parts
of the body (metastasis). A disappointing fact is that
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a high percentage of patients that may benefit from
surgery die of lung cancer. A correct assessment at
an early stage of the disease and an accurate selection
of patients (staging phase) is very important to apply
surgery in good prognosis patients, and, in turn, to
avoid dangerous, painful, and unnecessary surgery in
bad prognosis patients.

When there are no distant metastases, mediastinal
staging, i.e., determining whether malignant mediasti-
nal lymph nodes are present or absent, is the most
important prognostic factor in patients with NSCLC
and, consequently, determines the therapeutic strat-
egy. Different techniques are available to study the me-
diastinum. There are non-invasive imaging techniques,
such as CT scan and PET, with high sensitivity but
low specificity; there are also minimally invasive en-
doscopic techniques (TBNA, EBUS, EUS)!, with low
risk, high specificity and varying degrees of sensitivity,
as well as more invasive surgical techniques, such as
mediastinoscopy, which is considered as the gold stan-
dard.

The main treatment options for lung cancer in-
clude surgery, chemotherapy, radiation therapy, radio-
chemotherapy, and palliative and supportive care. The
applicability of each treatment depends on the stage
of the tumor.

Because of this variety of available tests and treat-
ments, each one having pros and cons, there is a
vivid debate among specialists about which technolo-
gies should be used (Fritscher-Ravens et al., 2003;
Schimmer et al., 2006). Nease and Owens (1997) pro-
posed an influence diagram for the mediastinal staging
of NSCLC, which provides a strategy for a simplified
version of the problem. We propose here a new ID,
with important improvements. We also describe how
we have searched for a tradeoff between cost and effec-

LCT scan stands for computer tomography, PET for

position emission tomography, TBNA for transbronchial
needle aspiration, EBUS for endobronchial ultrasound, and
EUS for endoscopic ultrasound.



tiveness by including in the influence diagram the pa-
rameter A\, which represents the amount of money that
the decision maker is willing to pay to obtain a unit of
effectiveness. Finally, we present the probabilistic sen-
sitivity analysis (PSA) that we have performed given
the uncertainty on the values of the parameters.

2 CONSTRUCTION OF
MEDIASTINET

In this section, we describe the construction of MEDI-
ASTINET, an influence diagram (ID) for the mediasti-
nal staging of non-small cell lung cancer (NSCLC).

2.1 STRUCTURE OF THE GRAPH

Influence diagrams (Howard and Matheson, 1984) are
a framework for representing and solving decision
problems. An ID consists of an acyclic directed graph
having three kinds of nodes: decision (graphically rep-
resented by squares or rectangles), chance (circles or
ovals), and utilities (diamonds). Each decision node
represents to actions under the direct control of the
decision maker. Each chance node represents a ran-
dom variable. In medical IDs, utility nodes represent
medical outcomes and costs (morbidity, mortality, eco-
nomic cost...). We will use the terms node and variable
indifferently.

We next describe how the ID has been built by ex-
ploiting expert knowledge.

2.1.1 Identification of variables

Chance variables Given that our objective is the
mediastinal staging of NSCLC, we have included a
variable representing the value of N factor in the
TNM classification? (Lloyd and Silvestri, 2001). Even
though the N factor takes on four possible values, from
NO to N3, we have modeled it as a binary variable be-
cause the cancer is operable for groups NO and N1, but
it is inoperable for N2 and N3. The variable has been
named N2_N3 (see Figure 1).

The laboratory tests that can be performed are rep-
resented by the binary variables CT _scan, TBNA,
PET, EBUS, EUS, and MED (the result of the me-
diastinoscopy). We have also created the variable
MED__Sv, which represents whether the patient has
survived mediastinoscopy.

2The TNM classification is a cancer staging system us-
ing three factors (T, N and M) to describe the extent of can-
cer in a patient’s body. N factor describes regional lymph
nodes that are involved.

Decision variables The set of possible treatments
is represented by the variable Treatment. Its states are
thoracotomy, radio-chemotherapy, and palliative.

The decisions about whether to perform the different
laboratory tests have been represented by the variables
with the prefix Decision__ on the name.? These deci-
sions forced us to add a new state no_result to the
variables TBNA, PET, EBUS, EUS, and MED, to re-
flect that when we do not perform a medical test its
result is not available.

Ordinary utility nodes The quality-adjusted life
expectancy (QALE) (Weinstein and Statson, 1977) of
the survivors to the medical tests (except the medi-
astinoscopy) and the treatment is represented by the
node Survivors QALE.

The morbidities due to TBNA, EBUS, EUS, and me-
diastinoscopy, are depicted by TBNA_ Morbidity,
EBUS __Morbidity, EUS Morbidity, and

Med__Morbidity respectively, and measured in
QALYs.

Med__Survival indicates whether the patient has sur-
vived to the mediastinoscopy.

The probability of survival to the treatment is repre-
sented by Immediate_ Survival.

Super value nodes The ordinary utility nodes pre-
sented above have been combined by using super-value
nodes (SVNs), as proposed by Tatman and Shachter
(1990). SVNs are either of type sum or product. The
type of each SVN has been represented by attaching
the corresponding sign of sum or product, as shown in
Figures 1 and 2.

Nodes Survivors QALE (QALE of the survivors
to the medical tests and the treatments) and
Med_Survival (probability of survival to the medi-

astinoscopy), have been combined into the product
node Net_QALE.

Nodes TBNA__Morbidity, EBUS _Morbidity,
EUS_Morbidity, and Med  Morbidity have been
combined with Net QALE into the sum node
Total QALE.

2.1.2 Arcs of the graph

The influence diagram contains four kinds of arcs:

1. Arcs into chance nodes. They represent prob-
abilistic dependencies. In our influence diagram,

30ther possible treatments are irrelevant from a medical

point of view in the scenarios considered in this diagram.
4“We do not include a node Decision_ CT_scan because
CT scan is always performed to a patient.
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Figure 1: Influence diagram of MEDIASTINET.

an arc from a node representing the decision of a
test, such as the arc Decision TBNA— TBNA,
indicates that the result (in this case TBNA)
is only available when we perform the test
(Decision_ TBNA=yes)

2. Arcs into decision nodes. They imply in-
formational precedence. Based on the “non-
forgetting” assumption (Nielsen and Jensen,
1999), we have not drawn non-forgetting links, to
make the influence diagram more clear. For ex-
ample, the arc CT _scan— Decision_PET is not
necessary due to the no-forgetting assumption.

3. Arcs into ordinary utility nodes. They rep-
resent functional dependencies. For example, the
arcs into the node Immediate Survival means
that the domain of its utility function consists of
nodes N2 N& and Treatment.

4. Arcs into SVNs. They indicate the set of
utility nodes that are combined into the SVN.
For instance, the arcs pointing at the node
Net  QALE mean that is the combination of
Survivors_QALE, MED_Survival and Immedi-
ate_Survival.

2.2 PROBABILITIES AND UTILITIES

The quantitative part of the ID consists of a set of
probability and utility potentials. For example, for
each chance node C' we must give a conditional prob-
ability potential p(C|pa(C)) for each configuration of

its parents, pa(C'). Then, the table for p(C|pa(C)) re-

quires |[dom(C)|- [] |dom(X)| numbers, but given
Xepa(C)

the restriction that > P(c|pa(C)) = 1, only some of

(&
them are independent.

Given that the parameters of MEDIASTINET are not
known with precision we attached a probability distri-
bution to each parameter. We identified the type of
distribution of each parameter with the expert’s help.
For the probabilities (prevalence of the disease, the
sensitivities and the specificities of tests) we assigned
beta distributions. For the utilities (QALE of the sur-
vivors to the treatments) we assigned normal distribu-
tions.

In spite of the uncertainty of the parameters, the anal-
ysis of the optimal strategies requires to focus on a
particular model, called reference case, in which all the
parameters are assumed to be known with certainty.
We have assumed that the reference case of MEDI-
ASTINET takes the mean of each numerical parameter
as the value in the reference model.

2.3 COST-EFFECTIVENESS AND
NET HEALTH BENEFIT

The version of MEDIASTINET presented above does not
include the economic cost of the diagnostic tests and
the treatments. However, in medical decision making,
costs cannot be ignored. Including the economic cost
turns the above problem into a multiobjective prob-



lem with two attributes: the effectiveness, measured
in clinical unit, which we want to maximize, and the
economic cost, measured in monetary units, which we
want to minimize.

One approach to solve the above problem is based on
the concept of net health benefit (Stinnett and Mul-
lahy, 1998), defined as follows:

NHB=FE — C/A=FE — \*C, (1)

where F is the effectiveness, C is the cost, A\, some-
times called willingness to pay, is used here to convert
the effectiveness into a monetary scale, and A* = 1/\.
The value of A depends on each decision maker, it is
assumed to be positive, but it is usually unknown.

Other possible solution in the framework of IDs would
be to use multi-currency IDs (Nielsen et al., 2007).
However, this approach would require to specify two
parameters, oy and «g, which act as weights of the
efectiveness and the economic cost. We have instead
preferred to use the approach based on the NHB, be-
sides other reasons (see Section 5), because it only
requires one parameter, A\, which has been included
explicitly in the ID.

In our model, we identified the effectiveness with the
QALE, whose unit is the quality-adjusted life year
(QALY) (Weinstein and Statson, 1977).

Nevertheless, instead of performing the analysis based
on the incremental cost-effectiveness ratios (ICERs)
(Gold et al., 1996), which is the standard method, we
will apply an equivalent approach: the maximization
of the net health benefit, defined in Equation 1. Its in-
tegration in MEDIASTINET is as follows (see Figure 2):

e The cost, C, is represented by the sum node To-
tal_FEconomic_ Cost, whose parents represent the
economic costs of tests and treatments.

e The effectiveness, F, is depicted by Total QALE,
explained in Section 2.1.

e The parameter A*, the inverse of }, is represented
by C2F (cost to effectiveness).

o Weighted FEconomic_Cost is a product node
standing for A*C.

e Net Health Benefit represents the NHB (Equa-
tion 1).

With regards to the utilities, the economic costs have
been attached to normal distributions, and parameter
A was characterized by a log-normal distribution.

If we make A\* = 0, the evaluation of the ID returns
the strategy that maximizes the effectiveness, without

taking into account the economic costs. The medi-
cal doctor participating in this study was very inter-
ested in knowing this strategy, which turns out to
be different from the one obtained with the value of
A = 30,000 €/QALY, used as a reference point for the
Spanish public health system (Sacristan et al., 2002).

This justifies why in our ID we have used \* as a
parameter in Equation 1 instead of A: because when
looking for the maximum-effectiveness strategy (with-
out caring about the costs), it suffices to make A* = 0,
In contrast, making A = +oo0 would present computa-
tional problems.

3 OPTIMAL STRATEGIES FOR
THE REFERENCE CASE

3.1 COMPUTATION AND
REPRESENTATION OF THE
STRATEGIES

The object of decision analysis on a probabilistic de-
cision problem, represented for example in a decision
tree or an ID, is twofold: to determine an optimal
strategy, and to compute the maximum expected util-
ity (MEU).

We have computed two strategies for MEDIASTINET
with two different criteria: the maximization of the ef-
fectiveness (disregarding costs) and the maximization
of the net health benefit. They have been obtained
by solving MEDIASTINET twice: one with A* = 0
(see Eq. 1), and the other one making \* = 1/\ =
1/30,000. Changing A* in MEDIASTINET only implies
setting the utility node C2FE to the value of \*.

The optimal strategy of an ID contains a policy for
each decision. Policies are usually presented in the
form of a policy table, containing a column for each
configuration of informational predecessors of the de-
cision. For example, Figure 3 displays optimal policy
for Decision PET of MEDIASTINET.

However, given that the size of the policy tables grows
exponentially with the number of informational pre-
decessors, we felt the need of presenting the optimal
policy of each decision in the form of a policy tree (see
Figure 4). A policy tree (PT) is similar to a deci-
sion tree (DT) (Raiffa and Schlaifer, 1961): it consists
of chance and decision nodes, and arcs labeled with
the states of the nodes. The ancestors of a decision
node in the PT are informational predecessors in the
ID. Leaves indicate the optimal decision in the corre-
sponding scenario. In contrast with DTs, a PT only
represent scenarios that are possible by following the
optimal strategy. This reduces enormously the size
of the representation and makes it more understand-
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Figure 2: A new version of MEDIASTINET, including economic costs.
TEMNA positive  |positive  [positive  |positive  |negative |negative |negative |megative  no_result jno_result no_result |no_result
Decdision_TEMNA | yes yes nao no yes yes nao no yes yes no nao
CT_scan positive  |negative |positive  |negative |positive |negative |positive |negative |positive  |negative  |positive  negative
Dedsion_PET |no no yes yes no no yes yes yes yes no no
Figure 3: Policy table for Decision_PET
able for the medical expert. For example, the pol-
icy table for decision Treatment of MEDIASTINET has
15,552 columns. In contrast, the PT of Treatment in
. . CT__scan
MEDIASTINET when considering costs has 5 leaves (see
Figure 4). That PT also represents the entire optimal neg, 0s.
strategy of the ID. EBUS/EUS? N BNA?
ebus yes
3.2 SUBJECTIVE EVALUATION OF
MEDIASTINET’S STRATEGIES EBUS TBNA
neg. 0S. neg. 0s.
After obtaining the two optimal strategies we have Troat. Treat. T Treat.
presented it to the expert to know his opinion about thor. chem. ' chem.
the policies obtained. He said that he would apply a ebus
slightly different strategy but he is not sure whether —
his decisions are better than those recommended by
MEDIASTINET. However, the expert’s recommenda- 8 o
tion and MEDIASTINET’s agree in that the treatment it st
thor. chem.

must be selected depending on the result of the last
test performed: If it is positive then apply chemother-
apy, otherwise apply thoracotomy.

The expert concluded that the optimal strategies
yielded by MEDIASTINET were very reasonable and
“logic”, and that the system was “quite intelligent.”

Figure 4: Optimal strategy for MEDIASTINET with
economic costs.



Figure 5: Part of the augmented ID of MEDIASTINET
for performing SA of the prevalence of node N2_N&.

4 PROBABILISTIC SENSITIVITY
ANALYSIS IN MEDIASTINET

After computing the optimal policies and the MEU
for the reference case, we investigated whether the re-
sults depend on (are sensitive to) the uncertainty in
the model. This post-hoc investigation is called sensi-
tivity analysis (SA).

4.1 UNCERTAINTY ON THE
NUMERICAL PARAMETERS OF
MEDIASTINET

We have performed a SA that can be characterized as
quantitative, probabilistic, multi-one-way.?

It is quantitative because we only consider variations in
the numerical parameters and do not vary the struc-
ture of the ID. It is probabilistic because we have a
probability distribution for each parameter.

It is multi-one-way because we consider the individual
variations of a set of parameters, as for example in a
tornado diagram.

Depending on the effects analyzed, value SA measures
variations in the EU, and decision SA explores the
changes in the optimal strategy.

For the SA we have built an augmented ID for each pa-
rameter. For example, Figure 5 shows the augmented
ID for performing SA of the prevalence of N2 N3,
identical to MEDIASTINET except that we have added
the node Iteration and two arcs: one to the node af-
fected by the parameter, N2_N3&, and another to the
first decision of the ID. Because of the non-forgetting
hypothesis, this link implies that we will obtain the op-
timal strategy for each value of the parameter under
study, and we can determine whether it is the same
as the optimal strategy for the reference case. It also
allows us to calculate the expected value of perfect
information (Felli and Hazen, 1998).

5A complete definition of the characterizations of SA in
IDs can be found in (Nielsen and Jensen, 2003).

All the chance and decision variables in MEDIASTINET
are discrete. Each continuous distribution has been
discretized by taking 100 points of an interval of the
domain of the parameter. The intervals partitioned
for normal and log-normal distributions of parame-
ters u and o2 have been [u — k- o, + k - o] and
[et—ko ertk-o] respectively, by using k = 3.5, which
accumulates 99.953 % of the probability mass. We
have taken the entire interval [0, 1] when discretizing
beta distributions.

4.2 RESULTS OF THE SA

We recorded three metrics of analysis:

e the thresholds of policy change, which define a
set of intervals, contained in the domain of the
parameter, where the optimal strategy is identical
to the reference case,

e the expected value of perfect information (EVPI),
very well-known in SA literature (Felli and Hazen,
1998), and

e the sensitivity of each decision to each parameter,
which analyzes the probability of change in the
optimal policies when the parameter varies.

4.2.1 Thresholds of policy change

Our analysis has shown that most of the parameters
have a wide range of variation where the optimal poli-
cies do not change, and thus the optimal strategy is
very robust. However, there are some exceptions, such
as the sensitivity of CT scan. Its value in the refer-
ence model is 0.51, but its policy change thresholds are
given by the interval [0.41,0.574]. It means the value
of sensitivity of CT scan in the reference model is not
very far from the thresholds, and some policy might
change if the value of the parameter varies.

4.2.2 EVPI

Most of the parameters present very small values of
EVPI. The parameter with the highest EVPI is A, as
we expected. Thus, knowing its value with certainty
would have a high impact on the MEU of the ID.

4.2.3 Sensitivity of each decision to each
parameter

We have also observed that decisions are not sensi-
tive to the variations of the parameters in most cases,
which indicates that the optimal strategy is very ro-
bust.

The three parameters with highest probability of
changing the optimal policies are: (1) the QALE of the



survivors to the thoracotomy when there is no metas-
tasis; (2) the sensitivity of the TBNA when the result
of CT scan is negative; and (3) A\. The only parameter
that affects the policies of all the decisions is .

Finally, the decisions more affected by the variations
on the parameters are Decision_ TBNA and Treat-
ment.

The main conclusion of the SA is that there are only
two parameters that can have significant impact on the
strategy: the QALE of the survivors to the thoraco-
tomy when there is no metastasis and A. Even though
the former is the parameter with the highest impact on
a decision (Dec_TBNA), the parameter that reflects
to have more overall impact in the strategy is \.6

5 RELATED WORK

Our model MEDIASTINET has several differences with
the ID for the mediastinal stating of NSCLC built by
Nease and Owens (1997):

1. MEDIASTINET assumes that a CT scan is always
performed.

2. Four new laboratory tests have been included,
namely TBNA, PET, EBUS, and EUS, as well
as the decisions about whether to perform them.

3. MEDIASTINET considers the morbidities of the
tests.

4. In MEDIASTINET the results of CT scan and PET
influence the sensitivity and specificity of the
other tests.

5. Palliative care is a possible treatment.

6. The economic costs of tests and treatments and
A (willingness to pay) are represented in MEDI-
ASTINET.

As a result, MEDIASTINET is much bigger and more
complex than the model of Nease and Owens (1997).
For example, the decision table of the treatment has a
domain of 72 columns in their model, while it contains
15,552 scenarios in MEDIASTINET.

Nease and Owens (1997) also built an ID that ana-
lyzes any arbitrary sequencing of CT scan and medi-
astinoscopy. In contrast, the order of decisions has
been set in MEDIASTINET because the dependence re-
lations of the test results in the problem are quite dif-
ficult to analyze in an ID with partial order and would
need additional expert help. This would require a hard

5The overall impact in the strategy is calculated as the
average impact on each of the decisions of the ID.

work of elicitation because the result of a test in our
model can influence the sensitivity and specifity of fu-
ture tests. For example, if the result of CT scan is
positive then it also gives valuable information about
where the doctor has to stick in the needle during the
TBNA. However, that information is not available if
the TBNA is performed before the CT scan.

We discarded the use of multi-currency IDs (Nielsen
et al., 2007) for representing and solving the prob-
lem because that approach is a bit more difficult to
be understood by a medical expert and there are no
software tools with explanation capabilities for multi-
currency IDs. In contrast, explanation capabilities of
Elvira system for IDs (Lacave et al., 2007) have been
quite useful while building and debugging the model
with the expert’s help.

Although quantitative SA has also been studied by
Nielsen and Jensen (2003), the main preliminary steps
in PSA in IDs can be found in (Felli and Hazen,
1998) and (Bielza et al., 2000). However, they do not
consider the computation of the thresholds of policy
change and the sensitivity of each decision to each pa-
rameter.

6 CONCLUSIONS AND FUTURE
WORK

We have built an ID, MEDIASTINET, for the mediasti-
nal staging of NSCLC.

From a medical point of view, there is a vivid debate
among specialists about which technologies should be
used for the mediastinal staging of NSCLC, and it is
not possible to arrive at a consensus (Fritscher-Ravens
et al., 2003; Schimmer et al., 2006). For this reason,
MEDIASTINET is very useful as a decision analysis tool
that combines objective data and subjective estimates
and may show whether the discrepancies are due to
differences in the numerical parameters used by each
expert or to a wrong estimation of the consequences
of each policy.

From the perspective of IDs, we have proposed a
method for finding a tradeoff between cost and effec-
tiveness, based on A, the willingness to pay, which is
also used in cost-effectiveness analyses. This param-
eter has been included explicitly in our model, which
allows us to modify its value easily.

Additionally, we have performed a probabilistic sensi-
tivity analysis that has studied three metrics, one of
them is very well known (EVPI), and the others are
new: the probability of change in the optimal strategy,
and the intervals of the parameters where the optimal
policies do not change. We have used for each param-



eter the most appropriate distribution: beta, normal,
or log-normal. We have proposed efficient methods for
recording the three metrics when analyzing the vari-
ations of all the parameters on an ID of considerable
size such as MEDIASTINET.

Finally, due to the interest of the expert in considering
the possibility of having partial orderings of the deci-
sions, unconstrained IDs (Jensen and Vomlelova, 2002)
are a future research topic line. Decisions were totally
ordered in MEDIASTINET because tests are not inde-
pendent given that sensitivities and specificities can
be influenced by other tests, as we explained above. A
partial order would require a hard work of elicitation
for every possible ordering.

The expert would also like to include in the model the
possibility of repeating some decisions, which is known
as restaging.
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