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Abstract

We describe a system that uses graphical mod-
els to perform real-time high-level perception.
Our system uses Markov Logic Networks to re-
late entities in images via first-order logical sen-
tences to perform real-time semi-supervised per-
son recognition. The system is a collection of
“commodity-level” vision algorithms such as the
Viola-Jones face detector, histogram matching
and even low-level pixel comparisons, together
with logical relationships such as mutual ex-
clusivity and entity confusion combined with a
small number of labeled examples into a Markov
random field which can be solved to provide la-
bels for faces in the images. We describe the
methodology for constructing the logical rela-
tions used for the system, and the (many) pit-
falls we encountered despite the small number
of relations used. We also discuss several fu-
ture approaches to achieve interactive speeds for
such a system, including bounding the size of the
graph using temporal weighting of instances, ap-
proximating the structure of the graphical model,
parallelizing graphical model inference, and low-
level hardware acceleration.

Introduction

In this paper, we describe a real-time system1 (Figure 1)
for recognition using a small labeled dataset plus first-order
logic relations. The system assumes a constrained environ-
ment, i.e., one in which the same people generally occur
and that the instances that we want to classify are localized
in time.

1A batch version of this system along with empirical results
was described by Chechetka et al. (2010). Here we focus more on
the implementation details as well as the knowledge management
of the system.

In recent years there has been an explosion of work on ex-
ploiting in-frame context for entity classification in images
(Torralba, 2003, Kumar and Hebert, 2005, Torralba et al.,
2005, Heitz and Koller, 2008, Heitz et al., 2008, Gupta and
Davis, 2008, Rabinovich and Belongie, 2009, Gould et al.,
2009). The work typically involves finding some useful
relations for the specific domain at hand, e.g., “the sky is
usually above the ground”(Gupta and Davis, 2008), build-
ing a customized conditional random field model over the
entities in a frame and jointly classifying each entity in an
image given the observed pixel values. Despite these suc-
cesses, at present few if any practical real-time systems ex-
ist that attempt to do high-level reasoning by integrating
context at a high-level. In this paper, we discuss our at-
tempts at building such a system using Markov Logic Net-
works (MLNs) and by constructing a database of logical
relationships that are useful for relating entities to be iden-
tified.

This paper also makes the point that MLNs provide a uni-
form, intuitive and modular interface for performing high-
level perception. More importantly, we show that MLNs
can provide a newer more global sense of context that al-
lows them to jointly classify an entire dataset of images
(entities), using meaningful relations between these enti-
ties, in a manner similar to the collective classification of
citation entries done by Singla and Domingos (2006). The
image representation provides a wealth of relations that can
be brought to bear on the problem, such as mutual exclu-
sivity of multiple faces in an image, temporal and spatial
stratification, personal traits that may relate people to vari-
ous objects or distinctive clothes, etc. We thus expect that
this application is even more suited for the use of a power-
ful tool like MLNs than the case of citation matching.

This use of MLNs for collective classification resembles
graph-based semi-supervised learning (SSL) approaches
(c.f., Fergus et al., 2009), which relate entities across a cor-
pus via a distance or similarity measure. However, com-
pared to SSL approaches, MLNs provides a much richer
way of connecting labeled/unlabeled instances, allowing
one to combine multiple similarity metrics at the same time



Figure 1: System Overveiw



as well as incorporate arbitrary logical relationships. In fact
we argue that MLNs can provide an approximate gener-
alization to some of the standard SSL approaches by dis-
cretizing a distance/similarity measure and incorporating
them into the MLN. In addition one can continue to ex-
ploit other relations that would not fit well within the SSL
framework, such as contextual information that relates enti-
ties within frames. We show empirically that this approach
yields favorable results for face recognition in images of
three datasets collected by us, and that the use of the addi-
tional logical relations, which would be difficult in standard
SSL, is crucial for the best classification accuracy.

MLN Background

Markov logic (Richardson and Domingos, 2006) is a prob-
abilistic generalization of finite first-order logic. A Markov
logic network (MLN) consists of a set of weighted first-
order clauses. Given a set of constants, an MLN defines a
Markov network with one binary variable for every ground
atom and one potential for every possible grounding of
every first-order clause. The joint probability distribution
over the ground atom variables is defined as

P (x) =
1

Z
exp

∑
f

∑
xi

wff(xi)

 , (1)

where f is an indicator function corresponding to a first-
order clause (1 if that clause is true and 0 otherwise), wf
is a weight of that clause, and xi is the set of ground atom
variables in a particular grounding of that clause. The inner
summation in (1) is over all possible groundings. There-
fore, for every grounding of every first-order clause, the
higher the weight for that clause, the more favored are as-
signments to x where that grounding is true.

Two fundamental problems in Markov logic that apply
to our application are those of learning optimal weights
for the known set of first-order clauses given the knowl-
edge base of known ground atoms, and inference, or find-
ing the most likely assignment to unknown ground atoms
given the knowledge base. Even though both problems are
intractable in general, well-performing approximate algo-
rithms are available. For weight learning, we used precon-
ditioned conjugate gradient with MC-SAT sampling imple-
mented in the Alchemy package (Kok et al., 2009). For
inference, we used a high-performance implementation of
residual belief propagation (Gonzalez et al., 2009) along
with a lazy instantiation of MLN structure as recommended
by Poon et al. (2008).

Model Description

In the existing literature, many types of very different
features have been shown to be useful for face recogni-

tion (and object recognition more generally). In particu-
lar, SSL approaches (Fergus et al., 2009) exploit similar-
ity in object appearances in different images to propagate
label information from labeled to unlabeled blobs, and be-
tween unlabeled blobs. In a supervised setting, typically
a low-dimensional representation of blob appearances is
extracted (e.g., Turk and Pentland, 1991) and a standard
technique such as a support vector machine (Vapnik, 1995)
is then applied. Besides the blob appearance information,
it has been shown that taking context in which the blob
appears, such as blob location within the frame or labels
of other objects in the scene, is crucial to accurate object
recognition. In this section, we show that all the above
sources of information can be combined efficiently using
a Markov logic network. Our approach thus combines the
advantages of the diverse existing approaches to improve
face recognition accuracy. In the MLN described below, we
will use the query predicate Label(b, o), which is true if
and only if blob b has label o. The evidence predicates will
be introduced gradually, as they are needed for the MLN
rules.

We assume that face detection has already been performed
by some standard approach, such as that of Viola and Jones
(2001). The input to our system thus consists of a set of
images, and for each image, a set of bounding boxes for
the detected faces, some of which are labeled with people’s
names. The goal is to assign labels to the remaining unla-
beled face blobs.

Label propagation: semi-supervised component

A key idea of the SSL approaches is to classify all the ob-
jects of the test set simultaneously by rewarding the cases
of similar-looking objects having the same label (equiv-
alently, penalizing labels mismatches for similarly look-
ing objects). Let xi and xj be the appearances of blobs
bi and bj respectively. Denote ‖xi − xj‖ to be the dis-
tance between xi and xj . We define the evidence predicate
SimilarFace(bi, bj) that is true if and only if ‖xi−xj‖ <
∆f , where ∆f is a threshold. Then the rule to favor match-
ing labels for similar faces is simply

SimilarFace(bi, bj) ∧ Label(bi, o)⇒ Label(bj, o)
(2)

We selected threshold ∆f so as to get precision 0.9 on the

training data:
∑

i,j I(SimilarFace(bi,bj)=true)∑
i,j,o I(Label(bi,o)=Label(bj,o))

= 0.9, where

I(·) is the indicator function. For simplicity of implementa-
tion, we used 16-bin color histograms as representations for
xi and χ2 distance ‖xi − xj‖χ2 ≡

∑#bins
k=1

(xi(k)−xj(k))
2

xi(k)+xj(k)
.

Naturally, any other choice of representation and distance
can be used instead.

Observe that similar face appearance is not the only possi-
ble clue that two image fragments actually depict the same
person. For example, similar clothing appearance is an-



other useful channel of information, as was demonstrated
by Sivic et al. (2006). In our approach, information about
clothing appearance similarity is used in the same way to
the face similarity: for every face blob bi, we define the
corresponding torso blob ti to be a rectangle right under
bi; the scale of the rectangle is determined by the size of
bi. Let yi be the appearance representation of ti. We de-
fine the evidence predicate SimilarTorso(bi, bj) which
is true if and only if ‖yi − yj‖ < ∆t and introduce the
corresponding label smoothing rule

SimilarTorso(bi, bj) ∧ Label(bi, o)⇒ Label(bj, o)
(3)

into the MLN. One can see that we have two versions of
essentially the same rule exploiting different channels of
information for label propagation. Even though it is possi-
ble in principle to achieve the same effect in standard graph
Laplacian-based SSL approaches (Fergus et al., 2009), one
would need to use costly cross-validation to find a good
way to combine the two separate distance metrics into one
(alternatively, find the relative importance of the torso dis-
tance and face distance metrics). In contrast, standard algo-
rithms for MLN weight learning provide our approach with
the relative importance of the two rules automatically.

More fine-grained label smoothing. One advantage of
the graph Laplacian-based unsupervised methods over our
approach is that the former naturally support real-valued
blob similarity values, while our approach requires thresh-
olding. However, our approach can also be adapted to
handle varying degrees of similarity: instead of a single
similarity threshold, one can use multiple different sim-
ilarity thresholds and introduce corresponding similarity
predicates. For example, suppose we want to use two
different thresholds, ∆

(1)
f < ∆

(2)
f , for face blob similar-

ity. Then we would introduce two similarity predicates,
SimilarFace(1)(bi, bj), which is true if and only if ‖xi−
xj‖<∆

(1)
f , and analogously SimilarFace(2)(bi, bj), for

∆
(2)
f . Then for highly similar blobs, those with ‖xi −

xj‖ < ∆
(1)
f , both versions of the formula in Eq. 2 for

SimilarFace(1) and SimilarFace(2) will have the left-
hand side to be true, providing a higher reward for match-
ing the labels. On the other hand, for weakly similar blobs,
those with ∆

(1)
f < ‖xi − xj‖ < ∆

(2)
f , only the version of

Eq. 2 corresponding to SimilarFace(2) will have the LHS
to be true, providing a weaker reward for matching labels.

Exploiting single-image context

In addition to the appearance of the blob of interest itself
and the labels of similar blobs in other images, power-
ful contextual cues often exist in the image containing the
blob. In the broader context of object recognition, spacial
context (e.g. sky is usually in the top part of an image),
co-occurrence (computer keyboards tend to occur together

Figure 2: Example security images for datasets 1–3 (top
to bottom). The top image shows an example of torso ex-
traction (faces on this set have been blurred by subjects’
request). The middle image shows a view of a kitchen area
where a coffee machine (red) is in the middle of the frame,
while the refrigerator (green) is on the right; thus coffee
drinkers might be more likely to appear in the middle.

with monitors) and broad scene context (fridges usually oc-
cur in kitchen scenes) have all been shown to enable dra-
matic improvements in recognition accuracy. Here, we de-
scribe the MLN rules used by our system to take single-
image context into account.

A person only occurs once in an image. In the absence
of mirrors, for every person at most one occurrence of their
respective face is possible in a single image. Therefore,
if two faces are present in the same image, they necessar-
ily have to either have different labels, or be both labeled
as unknown. Hence we introduce an evidence predicate



SameImage(bi, bj) which is true if and only if bi and bj
are in the same image, and the following MLN rule:

SameImage(bi, bj)⇒!Label(bj, o1)∨
!Label(bj, o2) ∨ (o1! = o2) ∨ (o1 == Unknown) (4)

Face location. For multiple images taken with the same
camera pose, such as images from a security camera, of-
ten different people will tend to occupy different parts of
the frame. For example, in the middle image of Fig. 2
the refrigerator is in the right part of the frame, and the
coffee machine is in the middle. Therefore, faces of cof-
fee drinkers may be more likely to appear in the middle
of the frame, while those preferring soft drinks may spend
more time in the right part. In addition, false-positive face
detections (which are given the label “junk”) will appear
randomly whereas actual faces appear in more constrained
locations. Using the spacial prior in such settings will bene-
fit the recognition accuracy. In our approach, we subdivide
every image into 9 tiles of the same size, arranged in a 3×3
grid and introduce an evidence predicate InTile(b, tile)
and an MLN rule capturing the spacial prior:

InTile(b,+tile)⇒ Label(b,+o)

Notice we use the Alchemy convention +tile and +o,
meaning that for every combination of the tile and label a
separate formula weight will be learned, yielding different
priors over the face labels for different regions of the image.

Time of the day. Similar to face location, a time-
dependent label prior is also useful when processing im-
ages from security cameras: “early birds” will be more
likely to occur in images taken earlier in the day and vice
versa. We subdivide the duration of the day into 3 in-
tervals: morning (before 11AM), noon (11AM to 2PM)
and evening (after 2PM), introduce an evidence predicate
TimeOfDay(b, time) and the corresponding MLN rule:

TimeOfDay(b,+time)⇒ Label(b,+o)

Again, to obtain a time-dependent label prior we force the
system to learn a separate weight for every combination of
the time interval and face label.

One can see that extracting the relations introduced in this
section requires little preprocessing, and it is possible to
come up with similar common-sense relations to improve
accuracy for settings other than security camera image se-
quences.

Plugging in existing face recognizers

The relations and predicates described so far only use sim-
ple representations and similarity metrics. However, there
is a large amount of existing literature and expert knowl-
edge dealing with design of representations, distance met-
rics and integrated face recognition systems that improve

accuracy significantly over simpler baselines in a super-
vised setting. If such a recognition system is available, it is
desirable to be able to leverage its results in our framework
instead of completely discarding the existing system and
replacing it with the MLN model. Fortunately, it is easy
to combine any existing face recognition system with our
approach by using the face labels produced by the existing
system as observations in our model. Formally, we use an
evidence predicate ObservedLabel(b, observedLabel),
which is true if and only if the external face recognition
system assigned observedLabel as the label for blob b.
The MLN rule

ObservedLabel(b,+observedLabel)⇒ Label(b,+o)
(5)

then provides the observation model. Observe that sev-
eral different external classifiers can be used as observa-
tions simultaneously, by mapping the labels produced by
different classifiers to disjoint sets of atoms. For example,
if there are two different classifiers, clf1 and clf2, and
both label blob b1 as John, then one would set two ground
predicates to true: ObservedLabel(b1, John clf1) and
ObservedLabel(b1, John clf2). Again, as in the case of
multiple measures of blob similarity, MLN weight learning
would automatically determine the relative importance and
reliability of the two classifiers by assigning corresponding
weights to the groundings of the observation model.

We used a boosted cascade of Haar features as given by
Viola and Jones (2001) for face detection, and face recog-
nizer of Kveton et al. (2010) as observations for the MLN
rule in Eq. 5. This classifier is based on calculating the L2

distance in pixel space for down-sampled (92× 92 resolu-
tion) and normalized images. This method was shown by
Sim et al. (2000) to be generally superior to the more com-
mon method based on PCA for face classification in sin-
gle images. For evaluating torso similarity for SameTorso
evidence predicate, simple torso occlusion handling was
performed by assuming that larger faces were in the fore-
ground. Thus, larger-faced torsos were assumed to lie in
front of smaller-faced torsos, and the resulting torso bound-
ing boxes did not intersect (see Fig. 2 for an example).

Results

Quantitative results for a batch version of this model were
presented by Chechetka et al. (2010). Here, for some added
context, we just present some of the qualitative lessons
learned from those experiments.

Exploiting additional information channels dramati-
cally improves accuracy. Classification error is reduced
by our approach by a factor from 1.35 to 5.2 compared to
the baseline of Kveton et al. (2010). Such an improvement
confirms the long-standing observation that using the con-
text, such as time of the day, is crucial for achieving high
recognition accuracy. It also shows that the framework of



Markov logic is an efficient way to combine the multiple
sources of information, both within a single image, and
multiple types of relations between different images, for
the goal of face recognition.

No single relation accounts for the majority of the im-
provement. Over all the dataset, the most extreme single-
relation accuracy improvement over the baseline of Kveton
et al. (2010) (InTile predicate and the corresponding lo-
cation prior is less than 40% of the total performance im-
provement of the full model over the baseline. Therefore,
the multiple relations of our full model are not redundant
and represent information channels that complement each
other. It is the interaction of multiple relations that enables
significant accuracy improvements.

Relation importance is not uniform across datasets.
One can see that the effect of the same relation can be
dramatically different for different datasets, depending on
those datasets’ properties. Only label propagation via the
SimilarTorso relations provides a consistently signifi-
cant performance improvement, the effect of other relations
is much more varied. The varying degree of relation im-
portance for different datasets makes it important for a face
recognition approach to be easily adjustable to emphasize
important relations and ignore the unimportant ones. Fortu-
nately, the Markov logic framework makes such adjustabil-
ity extremely easy on two levels. First, learning the weights
of the formulas automatically assigns large weights to im-
portant formulas and close to zero weight to irrelevant ones.
Second, any relation or formula can be easily taken out of
the model or put back in, enabling the search for the opti-
mal set of relations using cross-validation.

Building a Real-time system

In this section, we explore how the ideas in this paper can
be augmented into a real-time system. There are two broad
objectives that need to be addressed:

1. Updating the model as new instances come in (online
learning).

2. Performing graphical model inference at interactive
speeds (online inference).

To perform these two tasks simultaneously, we chose an
asynchronous architecture (Figure 3) where learning and
inference are performed in separate processes. This pro-
vided a natural parallelism for the whole system. Even
with this parallelized approach, both learning and infer-
ence components required special enhancements to enable
real-time operation. Online learning was necessary when-
ever a new labeled instance was observed by the system.
This could happen whenever Incorporating new instances
caused the graph structure to change.

Online inference was triggered whenever a new unlabeled
instance was observed. In this case, the structure of the
graph was altered. Specifically, new nodes correspond-
ing to new instantiations of all propositions involving the
new observed faces will be added to the network. At this
point, since the structure of the network has changed, the
beliefs of the network are necessarily invalidated. Thus, an
exact algorithm would run belief propagation over the en-
tire graph after such events occurred. In our system, we
avoided this with the following heuristic: we maintained
the current beliefs of the network (as of the last iteration),
and we pushed the beliefs of the new nodes on the top of
the priority queue in the Residual BP calculation. This had
the effect of focusing the next round of computation on the
new nodes until convergence was reached.

Related Work

There exists quite a lot of work now on incorporating re-
lations into image classification. Rabinovich and Belongie
(2009) provides a good overall review of this work, and
contrasts “scene-based” and “object-based” context. The
former methods are represented by (Torralba, 2003, Ku-
mar and Hebert, 2005, Heitz and Koller, 2008, Heitz et al.,
2008), which all attempt to understand the scene (“the
gist”) before trying to recognize objects. Gould et al.
(2009) and Torralba et al. (2005) use MRFs to do joint
segmentation and object recognition by exploiting physical
relations between entities. Gupta and Davis (2008) uses
prepositions present in annotated images to help determine
relative positions of objects in images. For example, if an
image is annotated with “car on the street”, one might in-
fer that a car is above a street in the image. Many of these
efforts have a different aim from our work. Namely, they
attempt to do object class detection, i.e., detect all the ob-
jects of some given classes in an image; whereas in our
face recognition application, we are doing object-instance
recognition: given the presence of objects of a given type,
find specific labels for those objects. On the other hand,
these methods have in common with us the intent to ex-
ploit physical relations between objects and abstract rela-
tions between a set of objects and the gist of a scene to
improve their results. The difference between their appli-
cation of this principle and ours is that they all attempt to
relate entities across a single image; whereas we use cross-
image relationships. Second, by using the framework of
Markov Logic, we have a unified, automated mechanism to
add arbitrary relations and automatically generate the CRF.

Fergus et al. (2009) and Kveton et al. (2010) present
approximations to the graph Laplacian-based semi-
supervised learning solution for classifying images. These
methods in general have the advantage over our method
that they allow continuous similarity measures rather than
our discretized version, and they can be solved effi-
ciently. However, these approaches are typically restricted



Figure 3: Real time system architecture



to similarity-based classification; whereas we can incorpo-
rate much more general relations such as our mutual exclu-
sivity. Furthermore, our approach can easily incorporate
any of these classifiers (as we do in this paper by taking the
classifier of Kveton et al. (2010)) and use them as core face
recognizers in an object model. Finally, our approach can
approximate these approaches (albeit much less efficiently)
by using a discretized version of a similarity-measure, as
we do using face and torso histograms in this work.

Conclusions

Our contributions in this paper are as follows: First,
we present a real-time perception system that incorpo-
rates Markov Logic for multilabel classification in images.
Whereas there has been much existing research showing
the benefits of exploiting local and global in-frame context,
they all have involved custom-made graphical models and
therefore are less accessible as a general modeling tool for
specific domains. Second, we show that Markov Logic can
also provide a powerful new type of context for collective
classification across frames, especially when the database
is expected to have many repeated shots of the same entity
in different circumstances. We have argued that this type
of context generalizes graph-based SSL approaches, and
adds much to these approaches in the expressibility of the
relations across frames that can guide the collective clas-
sification of entities. Thus, we show that Markov Logic
can provide a beneficial unification of two quite dissimi-
lar cutting-edge techniques for entity classification in im-
ages. Finally, for the specific case of person identification,
we have shown empirically that relations such as clothing
preferences, mutual exclusivity, spatial and temporal strati-
fication as well as multiple similarity channels can dramati-
cally improve face recognition over the state-of-the-art. Al-
though much work remains to be done, we present some of
the specific modeling issues involved with this system, as
well as some of the obstacles to making the system operate
at interactive speeds.
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