
3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

The HUBzero Platform: Extensions and Impressions
Anna	
 Alber,1,*	
 Jarek	
 Nabrzyski,1,2	
 and	
 Timothy	
 Wright1,2	

1Center	
 for	
 Research	
 Computing,	
 University	
 of	
 Notre	
 Dame	

2Department	
 of	
 Computer	
 Science	
 &	
 Engineering,	
 University	
 of	
 Notre	
 Dame	

	

ABSTRACT
Motivation: We our efforts to work with HUBzero in a significant
collaboration-oriented project, as well as our impressions of
HUBzero after nearly a year of interaction with the platform. Our
assessment is a mixed one: while the HUBzero platform does a
good job of bringing users and modeling tools together, we found
some noteworthy limitations of this recently open-sourced
technology. For example: hubs are generally configured to deploy
simulation tools of modest means with input and output data not
readily shared across user accounts; by default, the security
configuration of a HUBzero server is very open; hubs are inflexible in
terms of their deployment requirements, and there is a need for
more detailed documentation. In answer to the first (and most
serious) of these issues, we have extended HUBzero to enable the
use of more sophisticated modeling tools, such as openModeller
Desktop, and to provide seamless access to external Network File
System drive space.

1 INTRODUCTION
The open source HUBzero platform offers an effective way for
scientific and educational communities to share information,
interact, and run simulations (McLennan, 2010). The latter
capability is considered to be HUBzero’s “signature service” and,
indeed, is not typically available through similar Web platforms.
 We are currently employing HUBzero as part of an effort to
build a so-called collaboratory: a virtual space in which users may
share information and innovate. The goal of our work is to support
a multidisciplinary community of scientists with a focus on
adaptation strategies for biological systems. In addition to
publishing and discussing content related to adaptation, users of
the HUBzero portal (or “hub”) need to leverage relevant
simulation tools, such as openModeller and openModeller Desktop
(de Souza Muñoz et al., 2011).
 Such tools have requirements that may not be satisfied by a
typical hub deployment. For example, there may be a need for
software libraries that do not normally exist in HUBzero’s
virtualized Linux environment (OpenVZ [Parallels Holdings Ltd.,
2011]). Also, for functionality purposes, users may have to
manage and archive a tool’s input and output files. As part of this
management there will almost always be a need to make some files
publically accessible (e.g., simulation results) and others private.
 Tangentially related to these requirements is the need to restrict
access to a hub’s OpenVZ-based Workspace tool. Through
Workspace a user is given a private, virtual Linux workstation that
may be employed for nearly any purpose. Generally, this is

*To whom correspondence should be addressed.

intended to offer an environment for users to create and work with
simulation tools that are made available in a hub. However, there
is potential for accidental and malicious abuse of such a powerful
virtual environment; for example, by gratuitous resource use or
hacking.
 To provide hub access to openModeller and accommodate the
aforementioned needs, we have extended HUBzero in three ways.
First, we have significantly expanded the OpenVZ environment to
support the execution of a tool as complex as openModeller. Next,
we have integrated NFS (Network File System) (Smith, 2006) with
the file system made available through the HUBzero Workspace
tool. Related to this, we have enhanced the process of hub user
account creation to include the automatic setup of public and
private NFS directories for specific users. Finally, we have made
it possible to restrict which hub users are granted access to the
Workspace and openModeller tools.
 To permit long-running, computationally intense openModeller
simulations, we have embarked on a separate project to kick off
and manage such jobs outside of the HUBzero environment. The
results of these simulations can be made available to our hub
through NFS.
 The remainder of this paper is organized as follows. Section 2
presents the state-of-the art in collaborative, virtual organization
tools. Section 3 discusses the Collaboratory Project and
simulations tools that we integrate with the HUBzero
infrastructure. In section 4 we present the HUBzero architecture.
Section 5 reviews the OpenVZ configuration and what we have
done to enhance this configuration. Section 6 addresses our
integration of NFS with HUBzero, including our use of public and
private directories for each Workspace/openModeller user.
Section 7 describes our changes to HUBzero to restrict access to
the Workspace and openModeller tools. Section 8 briefly looks at
a separate project to handle more intense openModeller jobs
outside of our hub. Section 9 outlines our overall impressions of
working with HUBzero. Finally, in Section 10 we offer some
concluding remarks about this project.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

2 RELATED WORK
HUBzero offers many features that researchers need for effective
collaboration. Major components include: various interactive
simulation tools that can be accessed through almost any Web
browser, a repository for online course materials and other
publications, mechanisms for uploading new resources, a tool
development area, ratings and citations abilities, content tagging
mechanisms, wikis and blogs, private and public collaboration
areas, usage statistics, news and events, and more. While
relatively few platforms are as feature-rich, there are, nevertheless,
some worth mentioning.

MyExperiment (De Roure et al., 2009) is a virtual research
environment for collaboration and the sharing of experiments,
which aims to provide a “workflow bazaar” for any workflow
management system. An experiment is represented as an
application workflow rather than as an infrastructure or services
workflow. The design methodology of myExperiment was inspired
by the Web 2.0 approach that was used in systems such as
Facebook, MySpace, and Amazon. MyExperiment brings
functionality to the user through familiar interfaces and can be
combined with other services. Although its primary focus is on
workflows, the designers of myExperiment realized that there was
an immediate need to associate workflows with other information.
Thus, the myExperiment concept is about sharing digital objects
that include data, results, provenance information, tags, associated
documentation, etc. These individual items can be collected
together to form research objects, for example to record an
experiment. Unlike Twine (www.twine.com), BioMedExperts
(www.biomedexperts.com) or Nature Networking
(network.nature.com), myExperiment is not intended to be a
general social networking environment for scientists. Instead, the
focus is on social networking around shared artifacts. In this way
it is more like social bookmarking systems such as CiteULike
(www.citeulike.org) and Connotea (www.connotea.org)—but with
a much wider and richer remit than published articles, or social
content systems like YouTube (www.youtube.com), SlideShare
(www.slideshare.net), and Flickr (www.flickr.com). It effectively
creates a social network of people and the items that they share.
The main difference between myExperiment and HUBzero is that
HUBzero is built using portal technologies and provides simulation
tools that can be accessed from the browser and executed in the
HUBzero space. Furthermore, users of HUBzero can add new
resources and simulation tools within the HUBzero space.
MyExperiment is built using Web 2.0 Ruby on Rails, rather than a
portal framework, includes an API and offers remote execution
capabilities.

HUBzero is often compared to the highly successful Open
Courseware Initiative from MIT (web.mit.edu/ocw). However,
HUBzero is more than just a repository for course materials. It is a
place where researchers and educators can meet and accomplish
real work. The HUBzero platform offers groups for private
collaboration, software development projects in its forge area,
event calendars, and many other services designed to connect
researchers and build a community. But most importantly, it
connects users to the simulation tools they need for research and
education. Simulation jobs can be dispatched on national grid

resources, including the NSF TeraGrid, the Open Science Grid,
and others. HUBzero’s middleware hides much of the complexity
of distributed and grid computing, handling authentication,
authorization, file transfer, and visualization, and letting the
researcher focus on research.

Aside from its core features, HUBzero was chosen for our
collaboratory project due to its wide adoption by the US research
community as well as our easy access to support services that are
provided by Purdue University. We believe that MyExperiment
could be adapted to our needs, but its focus on workflows wasn’t
as good a fit as HUBzero. Our project heavily depends on climate
and adaptation simulation tools that need to be run within the
Collaboratory’s system.

3 OVERVIEW OF THE COLLABORATORY
PROJECT AND SIMULATION TOOLS

3.1 The Collaboratory Project
Climate change has compelled researchers to look not only for
causality, but also for adaptation strategies. Aimed at building a
virtual environment for comprehensive and informed decision-
making, the Collaboratory Project is comprised of a team of
researchers in ecology, computer science, law, and social science.
We anticipate that our work will help foster an understanding of
complexity in natural systems and charter a path from data to
knowledge to insight and, finally, to action. Integrated with on-
going and proposed survey research on expert opinion, we also
plan to carry out social network analysis (collaboration networks,
in particular) and study the impact of a virtual organization on the
decision-making process. We anticipate that our efforts will result
in various cyber tools that can be adapted by any domain requiring
collaborative decision-making.

The role played by our hub (see Figure 1) is to operate as a
shared space where researchers from numerous fields related to
climate adaptation can run projection and simulation tools, devise
new hub tools, and share results with colleagues and the public.
Our initial work focused on making computational simulation and
projection tools publicly available. However, we soon extended
our hub architecture to better enable easy data sharing with added
privacy control. As more tools become available, we plan on our

Fig. 1. The Collaboratory Project’s hub home page.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

hub becoming a central point of contact for experts in climate
change and adaptation strategies—a space where a suite of
computational tools can be leveraged to simulate the effects of
climate change on species and project future distribution patterns.
As its community of users grows in both number and diversity, our
hub will become more than a repository of publicly available tools
and data: it will evolve into a virtual community for climate
adaptation research where members contribute back by sharing
new tools, publications, use cases, and data.

3.2 OpenModeller Desktop
OpenModeller Desktop is an open source, fundamental niche
modeling library with embedded Geographic Information System
(GIS) using the Quantum GIS (QGIS) libraries. It provides a
uniform method for modeling distribution patterns using a variety
of widely used algorithms (de Souza Muñoz et al., 2011). The
openModeller library is used to generate a projected occupancy
map on the basis of environmental parameters considered in the
model (e.g., temperature, precipitation, altitude) and biological
data with point locations (see Figure 2). The openModeller
package can run simulations with multiple species and multiple
algorithms, and includes the ability to add newly developed models
as plug-ins. This flexibility and versatility is central to the
collaborative nature of our project, as it permits users to run a wide
variety of projections, and develop/share new algorithms.

Projected occupancy maps (see Figure 3) as well as other output
can be shared, but with an option to keep user-specified files
private. Ecologists, biologists, policy makers, and experts in other
fields can use scientific data and simulation results to make
informed decisions about climate change and its effect on species
population.

4 HUBZERO ARCHITECTURE
4.1 HUBzero Infrastructure
The HUBzero platform was developed at Purdue University to
support nanoHUB.org, an online community for the Network for
Computational Nanotechnology (McLennan, 2010). HUBzero is
comprised of a Joomla! content management system, a ticketing
mechanism, version control, a wiki system based on Trac Open

Source Project, and middleware that enables the execution of hub
tools inside a user’s Web browser. To provide an easy-to-use
portal system for the scientific community, HUBzero also
incorporates features for publishing articles and presentations, a
Q&A area, a wish list feature, and user group management. All
hub tools run in restricted virtual containers that control access to
the underlying file system, networking, and other processes. Each
user is granted access to their own home directory with quota

limitations and a Debian Linux X Window environment.

4.2 Site Walk-through
Our hub users can access various resources about climate
adaptation strategy ranging from legal documents to simulation
tools. Users can also become contributors by uploading articles,
documents, and event information; creating new tools; and
participating in forum discussions. As new tools are added to the
hub, they contribute to the overall capacity for analysis and lead to
more data; in turn, these data become input for steps in the
adaptation decision-making process.

Adding a new tool to the hub begins with a registration process
on the site, which alerts the hub administrator to create a code
repository for the tool. The owner of the tool then iterates though a
software engineering process until the tool is ready for publication
to the hub’s community. There is, of course, extensive
documentation available on the hub to assist newcomers with all
HUBzero features, including tool creation.

User groups may also be created to facilitate discussions and the
exchange of ideas through the hub. This mechanism offers
different levels of privacy, ranging from public to “by invitation
only,” and permits users to more finely manage their discussions
and the sharing of data.

5 OPENVZ CONFIGURATION
5.1 Containers and VNC
HUBzero’s middleware relies on OpenVZ to operate multiple,
isolated containers (or virtual environments [VEs]). Because

Fig. 3. An openModeller simulation experiment with multiple models
with output map inside user's browser

Fig. 2. The openModeller experiment designer with multiple
algorithms, available environmental layers, and biological data running
on the Collaboratory Project’s hub.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

OpenVZ utilizes Linux, any computational tools deployed within a
hub must also be able to run under Linux. When a hub user
launches a tool, the corresponding application is executed within a
lightweight VE.

In addition to OpenVZ, HUBzero employs VNC (Virtual
Network Computing [Richardson, Stafford-Fraser, Wood, &
Hopper, 1998]) as a means of interacting with the interfaces of
tools through a Web browser. Hub tool interfaces are displayed by
connecting a TightVNC Java Applet to a RealVNC-enabled X
Window server (Kisseberth, 2010). Both the applet and server are
modified to work with the HUBzero system; the applet, of course,
runs on a user’s Web browser, while the server executes inside an
OpenVZ VE.

5.2 Extending the OpenVZ Environment
The standard open source installation of HUBzero includes a basic
OpenVZ configuration that we chose to enrich with additional
software packages. For example, Subversion can be added to
provide a more functional development environment for hub tools
(although, in the most recent release of HUBzero, Subversion is
already included). We found significant value in adding a
graphical editor (gedit), Web browser (kazehakase), a compression
package, and other essential utilities.

The installation of gedit was not limited to just package
deployment. Additional changes to HUBzero’s File Alteration
Monitor (FAM) scripts are required before gedit can be installed
without errors. FAM notifies applications when specific files or
directories are changed (Silicon Graphics International, 2010).

 In order to successfully execute a hub tool inside a VE, libraries
on which the tool relies must also be added to the OpenVZ
environment. For our hub, we needed to provide various C/C++
libraries (starting with the installation of the Debian build-essential
package) and an extensive list of additional packages such as qgis,
gdal, sqllite, expat, grass and qt. In addition, through a locally
mounted directory accessible within our hub’s VEs, we provided

access to precompiled libraries for openModeller (in general, the
libraries found inside our VEs differ from those of the underlying
HUBzero host system).

We found it beneficial to test new tools with the hub Workspace
tool. Through Workspace, error messages are displayed and
provide hints about any missing libraries or problems with
invocation scripts. For example, the binary package we manually
created for openModeller contained several libraries that were not
carried along internally during HUBzero’s process of promoting
the openModeller tool from initial registration to installation. In
this case, we had to manually copy the missing libraries to their
destination. This issue may have been the result of the HUBzero
project not foreseeing the use of tools as extensive and complex as
openModeller.

For other hub tools developed in Java, we configured a more
complete Java environment for use by OpenVZ. In addition to the
installation of the sun-java6-jdk package, we had to make changes
to x86_64-linux.gnu.conf file for Java libraries.

5.3 X Window Configuration
Beyond providing access to all the necessary utilities and libraries
for our openModeller hub tool, we also added an X Window
window manager, IceWM, to properly display openModeller
Desktop within the HUBzero TightVNC Java applet. With IceWM
in place, openModeller Desktop appeared and behaved as it
normally would on a graphical workstation. We employed the
same window manager configuration used by the HUBzero
Workspace tool, although we changed themes and preference files
to better handle the openModeller icons and window behavior.

It is noteworthy that a special script is needed to invoke a hub
tool; for openModeller certain requisites had to be in place within
this script. In particular, we had to ensure that various
openModeller libraries were pointed to and the IceWM window
manager was started.

As a result of our efforts, users familiar with openModeller
Desktop who visit our hub do not have to learn a new interface.
We have also embarked on an effort to construct new
openModeller plugins for our hub tool. These extensions will be
made available for hub users as they become ready.

6 NFS CONFIGURATION
In a hub, files (as opposed to Web content) are typically accessible
through the Workspace tool, which provides a Linux workstation
within a VE. Our extensions to HUBzero employ NFS thin clients
that operate within our hub’s VEs and on our hub server.

6.1 Extended Storage
NFS allows sharing the resource of an external file system with
many thin clients. In our case, these clients execute inside hub
VEs and permit users to access an external file system as though it
were local to the hub’s server. As a result we can 1) use less disk
space on our HUBzero server and provide access to external,
scalable data storage; and 2) leverage the external NFS storage to
permit public and private directories for hub users.

Initially, we made an effort to avoid running the NFS client on
our server, but found that this made collecting and processing user
data difficult and did not easily integrate with HUBzero’s existing
configurations. Also, it became cumbersome to automate the

Database

 Middleware

NFS Server

NFS Client

VE NFS
Client

VE NFS
Client

VE NFS
Client

Web Server

User's desktop

Hub Extended Architecture

Fig. 4. The Collaboratory Project’s HUBzero infrastructure.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

creation of public and private user account directories under NFS
(HUBzero’s middleware already has access to the user information
we need for the dynamic creation of public/private directories
under NFS file system).

With our present architecture, an NFS client executes on both
our hub server and inside the VEs. Under this configuration, our
NFS space is mounted when the OpenVZ service starts. We made
our NFS mount persistent for all VEs such that each VE becomes
an NFS client that is accessible by the user via the Workspace tool.
This permits us to access user data on the host machine while
simultaneously providing access to the NFS space from inside the
hub VEs. With this, NFS can be used for storing and sharing
openModeller input and results.

6.2 Security Considerations
While data sharing is an important task, the ability to control data
access is also important. To accommodate our researchers’ need to
manage how their data are shared, we automated our hub to create
a public and a private directory for each user who is permitted to
use the Workspace tool. When a given user launches the
Workspace tool, HUBzero automatically checks to see if this is a
new user, and, if they are new, creates their public and private
directories in NFS space. If the user is later deleted, a maintenance
routine is run to reclaim the defunct user’s storage. A user’s public
NFS directory is accessible by all Workspace tool users as a read-
only folder, while their private NFS directory is accessible only to
them.

7 WORKSPACE AND TOOL RESTRICTIONS
By default, the HUBzero platform makes the Workspace tool
available to any registered user. With such a configuration, our
system’s resources (including NFS) would be open to use and,
possibly, abuse by anyone who registered with our hub. Given the
CPU cycles and large data sets involved in simulations, the misuse
of hub resources is a significant risk.

To better manage resource usage, we modified HUBzero so that
new users are granted access to the Workspace tool only upon
request and after being vetted. When an unauthorized (but
registered) user tries to launch Workspace, they are given an
option to request access through a trouble ticket. This request is
dispatched to the hub administrator who may then determine
whether or not to approve the desired access. If approved, the user
will be able to employ Workspace with access to both their home
directory and NFS public/private space.

Our extensions to restrict the Workspace tool required a number
of changes to the tool’s configuration. First, a new group was
created to manage the use of Workspace. Next, we created a new
resource through the HUBzero administrative interface, associating
the aforementioned group name with this resource. Finally, we
published the new resource and manually updated the hub database
so that Workspace access became limited to the newly created
group.1 In a related enhancement, we also extended the HUBzero
ticketing system logic to include a ticket status for Workspace
access approval (as touched upon above).

1 This method was provided to us through communications with the
HUBzero project team.

Access control for tools similar to openModeller can be handled
during the tool publishing process and restricted to a previously
created group.

It is worth noting that testing HUBzero extensions can become
somewhat cumbersome due to a requirement that each registered
user have only one unique email address. For example, with our
added restrictions to the Workspace tool, we needed to test
multiple users who are members of various groups. Each user
account, of course, requires a unique email address in order to be
registered. However, this creates significant limitations for
fabricating test accounts, since a legitimate email address must be
devised for each account. Thus, we altered our hub so that this
requirement, which we find useful in general, is relaxed for
specific accounts that we set aside for testing purposes only.

8 HANDLING OPENMODELLER RESOURCE
CHALLENGES

The expectations of our hub’s user community are that simulation
results are forthcoming with little delay. Even for small, simple
jobs, however, openModeller’s memory and CPU overhead is not
insignificant. Moreover, the openModeller Desktop user interface
can contribute a fair amount to this overhead, too. In general, such
resource consumption can have a deleterious affect on any system
if enough users simultaneously execute large openModeller jobs.

To better handle this type of workload, we have begun
implementing a stand-alone system to execute multiple numbers of
simultaneous openModeller jobs. Although job processing is
handled outside of HUBzero’s environment, job submission will
take place through a webpage hosted on our hub, while simulation
results will be accessible through the same NFS space that is made
available to users of our hub’s Workspace tool.

9 OVERALL IMPRESSIONS OF HUBZERO
After having been under development for a number of years,
HUBzero was released to open source in 2010. This happened to
coincide with the start of our collaboratory project and, for the
reasons already noted, we decided to try HUBzero and deploy our
own hub rather than pay for a hosting plan through Purdue
University.

Because we have only recently made our project’s hub available
to the Internet, we have yet to accumulate enough traffic and
benchmarking to offer a worthwhile opinion of HUBzero’s
capabilities while in production use and under load. Nevertheless,
we can comment on deploying and securing HUBzero, as well as
the support offered by the HUBzero project.

9.1 Deployment
We have deployed the open source HUBzero platform onto three
different servers (one test and two production systems) multiple
times. Each server operates Debian Lenny as a virtual machine
(VM) running under the Kernel-based Virtual Machine (KVM)
hypervisor (Solomon, 2011) with Red Hat Enterprise Linux 6 as
the host. We found it helpful to deploy HUBzero as a VM since
we could make snapshots of successful installations and return to
these if things went awry. Also, operating a hub as a VM is a good
way to manage the risk of incompatible hardware—for example, at

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

one point we attempted to install Debian Lenny on a new physical
machine and ran into an unresolvable problem with the RAID
adapter. With a VM acting as a layer of abstraction from
underlying hardware, such issues generally cannot happen. To
counteract the potential for loss of speed, especially with respect to
I/O operations, our production host server is outfitted with 32
cores, 128 gigabytes of RAM, and 1.6 terabytes of hard disk space;
all cores, 120 gigabytes of RAM, and 1.5 terabytes of disk are
made available to the HUBzero VM.

The HUBzero installation process at the time of this writing
consists of 77 steps spread over 25 major areas. This complexity
often results in errors that are challenging to debug. One option
the HUBzero project might consider implementing is a checkpoint
system for their install process. With this, at key intervals it would
be possible to know that a given installation is correct. To this
end, we have compiled our own internal list of checkpoints,
especially with regard to Workspace configuration. In a related
matter, although we have not yet tested it, the HUBzero project has
recently devised a beta version of a simplified installation process.

Over time our familiarity and expertise improved regarding
HUBzero installations. Our team now maintains an internal wiki
to help maintain institutional knowledge on this front and keep
solutions to common problems close at hand. It now takes us
roughly eight hours to setup a new HUBzero server (without
adding our extensions).

9.2 Speed and Resource Consumption
An informal benchmarking of simultaneous openModeller Desktop
tool executions offered some encouraging results. In our test (see
Figure 5), each openModeller Desktop tool processed through a
149-megabyte data set, resulting in no perceptible delay for 18
simultaneous sessions. The maximum CPU utilization was 56%
and the total running time was 76 seconds. As the number of
sessions was decreased, we observed that the total maximum
running time changed only slightly (e.g., 70 seconds for six
simultaneous sessions); we believe this was due to the abundance
of available resources for the tested number of sessions. For
comparison, we found the maximum CPU utilization was 37% for
12 simultaneous sessions and 19% for six sessions. Memory usage
was not significant given the amount of data processed (it
remained below 6% of our hub’s total memory throughout the
test). On a previous HUBzero VM (four CPU cores, four
gigabytes of RAM, and 500 gigabytes of hard disk) we had carried
out a similar test of the openModeller Desktop tool, but with fewer
simultaneous sessions. There, for 15 simultaneous sessions we
noted the memory usage peaked at 31%, while CPU utilization
reached 94%; running time was considerably greater at about three
minutes.

9.3 Security
The “out of the box” security posture of HUBzero is best described
as open. To begin with, a newly installed hub will start life with
several critical services exposed to its network. These include:
SSH, SMTP, MySQL, and LDAP. Each of these should be
appropriately restricted—in the case of SMTP, MySQL, and
LDAP, these can be safely restricted to the hub itself. Next, other
than “root,” it is not possible to install a user account on a hub.
This makes it very difficult to know who is using the root account

(since anyone logging into a hub server must do so as root) and
significantly reduces the utility of OS activity audit trails. Related
to this, the root account is exposed to password guessing through
SSH login attempts. Finally, efforts to install file space monitoring
tools such as Tripwire appear to cause malfunctions in HUBzero.
(Although, we cannot offer much detail about Tripwire’s erroneous
interactions with our hub deployments, as we elected not to spend
time diagnosing this issue.)

9.4 Support
The support available through the HUBzero project has improved
significantly over time. We typically see responses to our email
queries within 24 hours and, in some cases, even on weekends.
Often, the issues we raise are already known to the HUBzero
project team and do not require much troubleshooting on their part.
Both a knowledge base and a “Questions & Answers” resource are
available through the HUBzero project website. Although anyone
can post a question, only a handful of institutions appear to be
deploying their own hubs (as opposed to purchasing a hosting plan
through Purdue), so there is relatively little information to be found
in existing support resources.

10 CONCLUSION
The abilities to execute simulation/modeling tools and share
information are paramount to our collaboratory project. As such,
we found the HUBzero platform to be a proper fit for sharing
computational tools and data. While the HUBzero platform does a
good job of bringing users and modeling tools together, we
extended its functionality to enable the use of sophisticated,
computationally intensive modeling tools. Also, we discovered
that a default hub requires additional security measures to protect
its network services (e.g., SMTP, MySQL, and LDAP) and restrict
access to its OpenVZ environment. In terms of resource
consumption, we tested relatively modest sets of data with the
openModeller Desktop tool and will continue evaluating resource
consumption for larger data sets as they become available. Finally,
we provided seamless access to external Network File System
drive space to store and share input and output data.

Fig. 5. CPU utilization for 6, 12, and 18 simultaneously executing
openModeller jobs.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1029584.

REFERENCES

De Roure, D., Goble, C., & Stevens, R. (2009). The design and realisation of the

virtual research environment for social sharing of workflows. Future Generation
Computer Systems, 25(5), 561-567.

de Souza Muñoz, M., De Giovanni, R., de Siqueira, M., Sutton, T., Brewer, P.,
Pereira, R., et al. (2011). openModeller: A generic approach to species' potential
distribution modelling. GeoInformatica, 15(1), 111-135. doi:10.1007/s10707-009-
0090-7

Kisseberth, Nicholas J. (2010), "Hub set-up - Setting up Middleware,"
http://hubzero.org/resources/186

McLennan, M., & Kennell, R. (2010). HUBzero: A platform for dissemination and
collaboration in computational science and engineering. Computing in Science
Engineering, 12(2), 48-53.

Parallels Holdings Ltd. (2011). OpenVZ project website. Retrieved 3/19, 2011, from
http://wiki.openvz.org/Main_Page

Richardson, T., Stafford-Fraser, Q., Wood, K. R., & Hopper, A. (1998). Virtual
network computing. Internet Computing, IEEE, 2(1), 33-38.

Silicon Graphics International. (2010). File alteration monitor. Retrieved 4/5, 2011,
from http://oss.sgi.com/projects/fam/

Smith, M. C. (2006). Linux NFS project website. Retrieved 3/19, 2011, from
http://nfs.sourceforge.net/

Solomon, H. (2011). KVM - the linux kernel-based virtual machine. Retrieved 3/22,
2011, from http://www.linux-kvm.com/

