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ABSTRACT

Motivation: Computer modeling of protein-ligand interactions is one
of the most important phases in a drug design process. The core
part of this modeling is a resolution of a global unconstrained optimi-
zation problem. This paper presents a comparative computational
experiments aimed at studying the efficiency of the different optimi-
zation methods applied to the docking problem. We present experi-
mental results for different optimization algorithms and draw conclu-
sions about their efficiency.

1 INTRODUCTION

Many diseases are caused by foreign protein activit protein

malfunction. For the treatment of these diseasescare try to

block these proteins by small organic moleculesesEhmolecules
can selectively bind to proteins and thus blockirtivork. This

simplified conception allows development of thegduusing pur-
poseful design of new organic compounds — inhibifor the giv-

en target-protein. The selection of the effectigaids for inhibi-
tion of the target enzyme is usually very laboridesg, and ex-
pensive process. Contemporary molecular modeliots toan ac-
celerate this process and make it much less expmenyirtual

screening by means of ligands docking is widelyogaized as a
helpful approach in modern drug design (Kitchen £0doete
20009).

The goal of docking is to find the positions ofdr#cting ligand
and a protein with a minimal energy. The stabidifythis position
is characterized by the energy value. The ligandh winimal
values are candidates for further consideratiopasntial drugs.
Thus the docking problem is reduced to the glol@indzation
problem

f(x) > min,x € P Q)

wherex is a tuple that determines the ligand position &ns a
bounding box restricting the search area to a redde region.

“To whom correspondence should be addressed.

Having fast and robust optimization algorithms fmiving the
problem (1) is crucial for an efficient docking. this paper we
evaluated different optimization algorithms for olegion of the
problem (1). We performed numerical experimentslyaed the
results and suggested the most successful comtrinattioptimiza-
tion algorithms for this problem.

2 RELATED WORK

The comparative efficiency of different optimizati@lgorithms
has been studied in various papers (Rosin 1997310998, Ta-
vares 2008, Tavares 2009). Authors consider glop&imization
approaches (genetic algorithms, simulated annéaliogal search
techniques (L-BFGS, Solis-Wets method) and themlzioation.
The best results were obtained by a combined appredoen a
genetic algorithm is combined with a local seatotthis approach
a fraction of all individuals in a generation avether optimized by
applying a local search technique.

Two local search techniques addressed in the tliterahowed the
best results. The first method proposed in (Sd¥81) is a direct
search method with an adaptive step size, whicfopes a ran-
domized local minimization of a given candidateutioh. Depend-
ing on whether a new solution if found or not, acass or a failure
is recorded. If several successes occur in a rbes,step is in-
creased to move more quickly. If the opposite oscthre step is
decreased. A bias term is applied to drive theckeir successful
directions. The method terminates when a certametebound

threshold for is passed or when a maximum numbesteps is
reached. The second method is the Broyden-FleGbkifarb-

Shanno method (Nocedal 2006). L-BFGS is a quasitblevine-

thod, where both the function to minimize and tadient must be
supplied by the user. The method stops as soonfiasls a local

optimum or when a threshold number of iterationsdiseeded.

The direct evaluation of the protein-ligand int¢i@et energy is
computationally expensive. Therefore in modern dugkools the
grid of potentials representing protein-ligand fatgions is calcu-
lated separately before the docking procedure hedehergy is
approximated using precalculated values. The iiaguitinction is
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not differentiable in the grid nodes and thus L-B-@ethod is not
applicable.

However of the energy is calculated directly losearch methods
employing gradient information can be advantagetius. shown
in (Tavares 2009) that L-BFGS method (Nocedal 20£ghifi-
cantly improves the performance of genetic algarghand gives
better results w.r.t. Solis-Wets method.

Though the efficiency of various search methods agks
dressed in the literature some important methods we
missed. For instance semi-local methods e.g. Manoto
Basin Hopping that proved to be very efficient &omic
cluster conformation problem (Leary 2000) were cwisi-
dered at all. In this paper we classify search pughinto
three groups: local, semi-local and global andgrer§ the
systematic evaluation of the several techniquedfagid
combinations.

3 CALCULATING PROTEIN-LIGAND
INTERACTION ENERGY

The protein-ligand interaction energy is the objecfunction in
the problem (1). Its accurate evaluation is crufdala success of
the whole interaction simulation and thus for ttedidity of the
numerical experiments.

Two very popular programs implementing docking &thons
GOLD (Cole 2005) and AutoDock (Morris 1998, Mori2805)
employ too simplified force field, either negledirelectrostatic
interaction in GOLD, or too simplified treating afesolvation
terms in AutoDock.

For our study we considered the interaction moddled SOL
proposed in (Romanov 2004, Romanov 2008, Oferkih120The
main idea of this model is to describe with maxipassible accu-
racy the protein-ligand interactions, using thekilog procedure
based on contemporary molecular mechanics. The distimctive
features of SOL are:
» Arrigid target-protein with the active site repnete by
a set of grids for different type potentials, désog pro-
tein-ligand interactions (electrostatic, Van der alga

Bond lengths and valence angles have been frozérein
course of the docking procedure.

4 OPTIMIZATION METHODS UNDER TEST

We considered three types of optimization methdoisal, semi-
local and global.

4.1 Local methods

The goal of local methods is to find the local mioim i.e. the
point that gives the minimal function value in areneighbor-
hood. We considered four methods described in thble

Tablel. Local optimization methods under test

Name Reference Brief description
CG (Polak 1971) Conjugate Gradients Method
TNC (Nash 2000) Truncated Newton Method

LBFGS (Nocedal 2006) The limited memory Broyden—
Fletcher—Goldfarb—Shanno
(BFGS) method

Powell's method

Powell (Powel 1964)

The conjugate gradient method is a seminal optitiizamethod
that is explained in almost every global optimiaatiextbook. It
uses conjugate directions instead of the local ignadior going
downhill. We used the Polak-Ribere form for caltinig. conjugate
directions.

The classical Newton method requires fewer itenatithan conju-
gate gradients but each iteration involves thelutiso of the sys-
tem of linear algebraic equations. The truncatedithie methods
are based on the idea that an exact solution dfléveton equation
at every step is unnecessary and can be computyiamasteful
in the framework of a basic descent method. Anyeeisdirection
will suffice when the objective function is not Wwelpproximated
by a convex quadratic and, as a solution to themimation prob-
lem is approached, more effort in solution of theatbn equation
may be warranted.

Another very successful approach to local uncomstdhoptimiza-

(VdW) forces) in the frame of Merck Molecular Force tion is Broyden—Fletcher—Goldfarb—Shanno (BFGS)hmet This

Field (MMFF) (Halgren 1996).
*  Quite rigorous description of solvation-desolvatiefi
fects upon ligand binding process, based on Geredal

algorithm belongs to the family of quasi-Newton hoets. In these
methods the Hessian matrix of second derivativesl met be eva-
luated directly. Instead, the Hessian matrix israpimated using

Born approximation (Ghosh 1998) and included in therank-one updates specified by gradient evaluagionapproximate

set of potential grids.

 The grid of potentials representing protein-ligainte-
ractions are calculated separately before the dggbwo-
cedure. Electrostatic, VdW and solvation-desolvapo-
tentials were calculated on the 101x101x101 griddie
this cube

« All ligands are considered as fully flexible, ial topo-
logically available torsion degrees of freedom wenre
frozen and allowed to rotate freely, directed obyyli-
gand internal energy preferences in the frame ofA¥M

gradient evaluations). The L-BFGS algorithm studrethis paper
stores only a few vectors that represent the apmiation implicit-
ly. Due to its moderate memory requirement, L-BF@&thod is
particularly well suited for optimization problemsgith a large
number of variables.

The three methods outlined above require the etiatuaf the
objective function gradient. However for dockingoplem the
gradient is either not known symbolically or corgtignally in-
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tractable. Thus one has to approximate the gradiemierically or
use methods that don't rely on gradient informati®or the Pow-
ell's method the objective function need not bdedéntiable, and
no derivatives are taken. The method minimizesfdinetion by a
bi-directional search along each search vector. fidwe position
can then be expressed as a linear combinationeof¢larch vec-
tors. The new displacement vector becomes a newlseactor,
and is added to the end of the search vectorMsanwhile the
search vector which contributed most to the newadtion, i.e. the
one which was most successful, is deleted fromst#eech vector
list. The algorithm iterates an arbitrary numbertiofes until no
significant improvement is made. The method is wisefr calcu-
lating the local minimum of a continuous but compfenction,
especially one without an underlying mathematicafirdgtion,
because it is not necessary to take derivatives.

4.2  Semi-local methods

For functions with multiple extremes a local seanshthods get
stuck in local minima. The semi-local methods cascape” from
a local minimum by exploring its neighborhood. Suudlkethods
have proved their efficiency for molecular confotioa problems
(Wales 1997). We considered two such methods suinedhin the
Table 2.

Table2. Semi-Local optimization methods under test

Name Reference Brief description
MBH (Leary 200i) Monotonic Sequence Basin Hopp
BP (Panteleev 2005) Best Probe Method

The monotonic sequence basin hopping method toieémprove
the minimum until the number of attempts exceedsttireshold
valueM. Starting from some poink € P MBH performs the fol-
lowing steps § = 0 at the beginning):

1. Select randomly a point € U(x).

2. Obtain point z by applying local minimization to

yeUX): z=L(y).

3. If f(z) < f(x) then assign == z, N := 0. Otherwise as-

signN = N + 1..

4. If N = M. then finish, otherwise go to 1.
where U(x) ={y e R™:|x; —y;| < p,i=1,..,n}
neighborhood of the given radips
Thus the MBH method is parameterized by the thidstalueM,
the neighborhood radiysand the local search methbd

is a box

The best probe method is based on the same id&tBas But
unlike MBH it chooses points on tlredimensional sphere rather
than in a box and uses adaptive neighborhood Siagting with a
large radius it reduces its sizeMf attempts didn’t lead to an im-
provement.

4.3 Global methods

The goal of global methods is to diversify the shain order to
explore the whole feasible set. At the moment wesitered only
one globalization strategy: the Monte-Carlo metHbdenerated a

sequence of uniformly distributed random generagtehts in a
feasible box. After that each point is used aistgupoint for semi-
local methods.

5 EXPERIMENTS

We performed several experiments for different g@retigand
pairs. Methods demonstrate the same relative beh&i all va-
riants and thus we present data only for one gaértarget protein
is thrombin (PDB code 102G) and the ligand is 4repyridine
in the protonated form.

5.1 Testing resultsfor local methods

The results for local methods are summarized intab&e 3. The
average energy is calculated as a mean value air@with ran-
domly generated initial points. The best energg iswest value
found throughout these runs. The percentage ofsesioows the
number of runs that produced a value greater theumitial value.

Table 3. Testing results for local methods

Name Avrg. Energy Best Energy  Errors (98\rg. Time(s)
Initial 15385,25 4728,66 0,00 0,00
CG 5790,28 874,80 9,52 1,81
TNC 4222,2: 1322,46 0,0C 3,9C
LBFGS  3119,9! 782,21 1,5¢ 5,2
Powell 611,49 28,66 0,00 5,12

As expected the local methods generally improvestirergy value.
The Powell method remarkably outperforms methods itély on
Taylor formula. This is an expectable result asdhjctive func-
tion obtained as a result of piece-wise linear apipnation on a
mesh is non-differentiable in minima. Therefore Taylor series
gives a poor approximation for a goal function ineaghborhood
of such points. Thus the gradient information cafy d®e used to
bias the search to the descending direction butaea stopping
criterion.

5.2  Testing resultsfor semi-local methods

Results of the previous section clearly indicatat tthe Powell
method is the best local search strategy amongdhsidered set.
Thus we used this method as a local methad MBH and BP
semi-local methods. After a set of experiments ané that the
best results are obtained if MBH uses the ragigs0.1 and the
BP uses the initial sphere radiys= 0.5 . The accuracy of results
for both methods depends on the threshold valbeshigher thre-
shold value the lower the minimum. To put both rodthin the
equal conditions we set the threshold value to 130 20 for BP
and MBH respectively. With such parameters bothhods take
approximately the same time.

The Table 4 compares the results of the basin hgpand best
probe methods. The results were averaged over 19 with dif-
ferent random initial points generated in a Fox




3rd International Workshop on Science Gateway4 ifer Sciences (IWSG 2011), 8-10 JUNE 2011

Table4. Testing results for semi-local methods

Name Avrg. Energy Best Energy Avrg. Time(s)
Initial 16885,3 5628,76 0,00
MBH -73,44 -134,60 451,37
BP -27,77 -131,93 491,84

Both methods under test gives approximately theedaest results,
however the average behavior of MBH is much better.

5.3 Testing resultsfor global methods

At the moment we tried only one globalization st Monte

Carlo method that generates random initial poiotsMBH me-

thods. Points are generated in the boundingfhdbable 5 summa-
rizes results obtained from 10 runs of this comtiama The thre-
shold value for MBH method was set to 90 and thigalrradius

was set to 0.1. The Powell method was used foca kearch. The
number of initial points generated by Monte-Carletihhods was
set to 64.

Table5. Testing results for Monte-Carlo method coupled WitBH me-
thod

Name Avrg. Energy BestEnergy  Avrg. Time (s)

Monte-Carlo -138,66 -154,47 10913,7

The obtained results demonstrate that even a vemle globali-
zation strategy gives a noticeable improvement @tain semi-
local and local methods. But the running time issiderably
higher.

6 SCIENCE GATEWAY INTEGRATION

The ultimate goal of our work is to create softwarwironment
for molecular simulation. Such environments arefuls®e isolate
the end-user from technical details of the appbeat

The use of high-performance computing in dockingnvitable

because in practice millions of ligands have tophecessed inde-
pendently. Docking is perfectly suitable for thesktep grid com-

puting (Kiss, Greenwel 2010, Kiss 2010). We anagdo develop

this application and deploy it at ISA RAS desktopidg
(boinc.isa.ru/dcsdg) and on a combined infrastmectinat connects
ISA RAS desktop grid and service grid infrastruetprovided by
EDGeS VO (www.edges.eu). Such combined infraatrest get

much attention in the grid community in recent geéldrbach

2009). This approach provides the transparent ssanmtegration
of desktop and service grids and results in hugsaaated com-
puting power.

The deployment will done on top of the BNB-Grid {&shenko
2009) programming environment — a library for seylarge-scale

optimization problems in the grid and supercomput€his tool is
currently ported to the desktop grid and is vakdator running in
the EDGeS VO. Docking will be one of the supporeglications.
Another one — atomic cluster conformation probléreafy 2000)
is already running in production. With such apptoae’ll reuse
the one deployed application for different problefkis is very
important for desktop grids and combined infradtrtes where the
deployment and validation requires lots of efforts.

The docking is only one element of a complex wankflin a drug
design process. The good software environmenuisiarfor mak-
ing the docking software tools useful for a widemeounity of
researchers. One of such environments is descirb@gdm 2008).
It flexibly integrates the convenient Web-basedr usterface and
the powerful processing back-end deployed in thd.@uch soft-
ware architecture seems to be the standard appfoaatocking
and other applications demanding for the huge coimgpyower.
To implement a consistent and flexible softwareiremment for
drug design one needs a powerful workflow engirtés Ts crucial
for combining different building blocks in Drug Dgs in a flexi-
ble and configurable way. We plan to use P-PGRAWDEal (Far-
kas 2011) which is capable to construct complexkflmwvs and
harness different types of grids and clouds.

7 CONCLUSIONS

The docking problem is basically a global optimiaatproblem
(1) where objectivef(x) is a protein-ligand interaction energy.
Possessing the powerful techniques for resolving phoblem is
crucial for the efficiency of docking. In this papse considered
several optimization methods for problem (1). Nugrexperi-
ments showed that the best results can be achlvedmbining
some globalization techniques (e.g. Monte-Carlohaet and the
monotonic basin hopping semi-local method coupleth vthe
Powell local search algorithm.

We also outlined the future software environmentcivtwill pro-
vide a consistent and convenient access for a wadge of re-
searchers to the drug-design experimetns.
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