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ABSTRACT 
Motivation: Computer modeling of protein-ligand interactions is one 
of the most important phases in a drug design process. The core 
part of this modeling is a resolution of a global unconstrained optimi-
zation problem. This paper presents a comparative computational 
experiments aimed at studying the efficiency of the different optimi-
zation methods applied to the docking problem. We present experi-
mental results for different optimization algorithms and draw conclu-
sions about their efficiency.  

1 INTRODUCTION  
Many diseases are caused by foreign protein activity or protein 
malfunction. For the treatment of these diseases we can try to 
block these proteins by small organic molecules. These molecules 
can selectively bind to proteins and thus block their work. This 
simplified conception allows development of the drugs, using pur-
poseful design of new organic compounds – inhibitors for the giv-
en target-protein. The selection of the effective ligands for inhibi-
tion of the target enzyme is usually very laborious, long, and ex-
pensive process. Contemporary molecular modeling tools can ac-
celerate this process and make it much less expensive. Virtual 
screening by means of ligands docking is widely recognized as a 
helpful approach in modern drug design (Kitchen 2004, Zoete 
2009). 
 
The goal of docking is to find the positions of interacting ligand 
and a protein with a minimal energy. The stability of this position 
is characterized by the energy value. The ligands with minimal 
values are candidates for further consideration as potential drugs. 
Thus the docking problem is reduced to the global optimization 
problem  
 

���� → ���, � ∈ �                  (1) 
 

where � is a tuple that determines the ligand position and � is a 
bounding box restricting the search area to a reasonable region. 
 

  
*To whom correspondence should be addressed.  

Having fast and robust optimization algorithms for solving the 
problem (1) is crucial for an efficient docking. In this paper we 
evaluated different optimization algorithms for resolution of the 
problem (1). We performed numerical experiments, analyzed the 
results and suggested the most successful combination of optimiza-
tion algorithms for this problem.  
 

2 RELATED WORK 
The comparative efficiency of different optimization algorithms 
has been studied in various papers (Rosin 1997, Morris 1998, Ta-
vares 2008, Tavares 2009). Authors consider global optimization 
approaches (genetic algorithms, simulated annealing), local search 
techniques (L-BFGS, Solis-Wets method) and their combination. 
The best results were obtained by a combined approach when a 
genetic algorithm is combined with a local search. In this approach 
a fraction of all individuals in a generation are further optimized by 
applying a local search technique.  
 
Two local search techniques addressed in the literature showed the 
best results. The first method proposed in (Solis 1981) is a direct 
search method with an adaptive step size, which performs a ran-
domized local minimization of a given candidate solution. Depend-
ing on whether a new solution if found or not, a success or a failure 
is recorded. If several successes occur in a row, the step is in-
creased to move more quickly. If the opposite occurs, the step is 
decreased. A bias term is applied to drive the search in successful 
directions. The method terminates when a certain lower-bound 
threshold for is passed or when a maximum number of steps is 
reached. The second method is the Broyden-Fletcher-Goldfarb-
Shanno method (Nocedal 2006). L-BFGS is a quasi-Newton me-
thod, where both the function to minimize and its gradient must be 
supplied by the user. The method stops as soon as it finds a local 
optimum or when a threshold number of iterations is exceeded. 
 
The direct evaluation of the protein-ligand interaction energy is 
computationally expensive. Therefore in modern docking tools the 
grid of potentials representing protein-ligand interactions is calcu-
lated separately before the docking procedure and the energy is 
approximated using precalculated values. The resulting function is 
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not differentiable in the grid nodes and thus L-BFGS method is not 
applicable.  
 
However of the energy is calculated directly local search methods 
employing gradient information can be advantageous. It is shown 
in (Tavares 2009) that L-BFGS method (Nocedal 2006) signifi-
cantly improves the performance of genetic algorithms and gives 
better results w.r.t. Solis-Wets method.  
 
Though the efficiency of various search methods was ad-
dressed in the literature some important methods were 
missed. For instance semi-local methods e.g. Monotonic 
Basin Hopping that proved to be very efficient for atomic 
cluster conformation problem (Leary 2000) were not consi-
dered at all. In this paper we classify search methods into 
three groups: local, semi-local and global and performs the 
systematic evaluation of the several techniques and their 
combinations. 

3 CALCULATING PROTEIN-LIGAND 
INTERACTION ENERGY 

 
The protein-ligand interaction energy is the objective function in 
the problem (1). Its accurate evaluation is crucial for a success of 
the whole interaction simulation and thus for the validity of the 
numerical experiments. 
 
Two very popular programs implementing docking algorithms 
GOLD (Cole 2005) and AutoDock (Morris 1998, Morris 2005) 
employ too simplified force field, either neglecting electrostatic 
interaction in GOLD, or too simplified treating of desolvation 
terms in AutoDock. 
 
For our study we considered the interaction model called SOL 
proposed in (Romanov 2004, Romanov 2008, Oferkin 2011). The 
main idea of this model is to describe with maximal possible accu-
racy the protein-ligand interactions, using the docking procedure 
based on contemporary molecular mechanics. The main distinctive 
features of SOL are:  

• A rigid target-protein with the active site represented by 
a set of grids for different type potentials, describing pro-
tein-ligand interactions (electrostatic, Van der Waals 
(VdW) forces) in the frame of Merck Molecular Force 
Field (MMFF) (Halgren 1996).  

• Quite rigorous description of solvation-desolvation ef-
fects upon ligand binding process, based on Generalized 
Born approximation (Ghosh 1998) and included in the 
set of potential grids. 

• The grid of potentials representing protein-ligand inte-
ractions are calculated separately before the docking pro-
cedure. Electrostatic, VdW and solvation-desolvation po-
tentials were calculated on the 101x101x101 grid inside 
this cube 

• All ligands are considered as fully flexible, i.e. all topo-
logically available torsion degrees of freedom were un-
frozen and allowed to rotate freely, directed only by li-
gand internal energy preferences in the frame of MMFF. 

Bond lengths and valence angles have been frozen in the 
course of the docking procedure.  

4 OPTIMIZATION METHODS UNDER TEST 
We considered three types of optimization methods: local, semi-
local and global.  

4.1 Local methods 
The goal of local methods is to find the local minimum i.e. the 
point that gives the minimal function value in a some neighbor-
hood. We considered four methods described in table 1. 

Table 1. Local optimization methods under test 

Name Reference Brief description 

  CG (Polak 1971) Conjugate Gradients Method 
  TNC (Nash 2000) Truncated Newton Method 
  LBFGS (Nocedal 2006) The limited memory Broyden–

Fletcher–Goldfarb–Shanno 
(BFGS) method 

  Powell (Powel 1964) Powell's method 

 
The conjugate gradient method is a seminal optimization method 
that is explained in almost every global optimization textbook. It 
uses conjugate directions instead of the local gradient for going 
downhill. We used the Polak-Ribere form for calculating conjugate 
directions.  
 
The classical Newton method requires fewer iterations than conju-
gate gradients but each iteration involves the resolution of the sys-
tem of linear algebraic equations. The truncated Newton methods 
are based on the idea that an exact solution of the Newton equation 
at every step is unnecessary and can be computationally wasteful 
in the framework of a basic descent method. Any descent direction 
will suffice when the objective function is not well approximated 
by a convex quadratic and, as a solution to the minimization prob-
lem is approached, more effort in solution of the Newton equation 
may be warranted.  
 
Another very successful approach to local unconstrained optimiza-
tion is Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. This 
algorithm belongs to the family of quasi-Newton methods. In these 
methods the Hessian matrix of second derivatives need not be eva-
luated directly. Instead, the Hessian matrix is approximated using 
rank-one updates specified by gradient evaluations (or approximate 
gradient evaluations). The L-BFGS algorithm studied in this paper 
stores only a few vectors that represent the approximation implicit-
ly. Due to its moderate memory requirement, L-BFGS method is 
particularly well suited for optimization problems with a large 
number of variables. 
 
The three methods outlined above require the evaluation of the 
objective function gradient. However for docking problem the 
gradient is either not known symbolically or computationally in-
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tractable. Thus one has to approximate the gradient numerically or 
use methods that don’t rely on gradient information. For the Pow-
ell’s method the objective function need not be differentiable, and 
no derivatives are taken. The method minimizes the function by a 
bi-directional search along each search vector. The new position 
can then be expressed as a linear combination of the search vec-
tors. The new displacement vector becomes a new search vector, 
and is added to the end of the search vector list. Meanwhile the 
search vector which contributed most to the new direction, i.e. the 
one which was most successful, is deleted from the search vector 
list. The algorithm iterates an arbitrary number of times until no 
significant improvement is made. The method is useful for calcu-
lating the local minimum of a continuous but complex function, 
especially one without an underlying mathematical definition, 
because it is not necessary to take derivatives. 

4.2 Semi-local methods 
For functions with multiple extremes a local search methods get 
stuck in local minima. The semi-local methods can “escape” from 
a local minimum by exploring its neighborhood. Such methods 
have proved their efficiency for molecular conformation problems 
(Wales 1997). We considered two such methods summarized in the 
Table 2. 
 
Table 2. Semi-Local optimization methods under test 

Name Reference Brief description 

  MBH (Leary 2000) Monotonic Sequence Basin Hopping 
  BP (Panteleev 2005) Best Probe Method 

 
The monotonic sequence basin hopping method tries to improve 
the minimum until the number of attempts exceeds the threshold 
value . Starting from some point  � ∈ � MBH performs the fol-
lowing steps (� = 0 at the beginning): 
 

1. Select randomly a point � ∈ ����.  
2. Obtain point � by applying local minimization to 

� ∈ ����: � = ����. 
3. If ���� ≤ ���� then assign � ≔ �, � ≔ 0. Otherwise as-

sign � ≔ � + 1.. 
4. If � ≥ . then finish, otherwise go to 1. 

where ���� = �� ∈ ��: |�� − ��| ≤ !, � = 1, … , �#  is a box 
neighborhood of the given radius ! .  
Thus the MBH method is parameterized by the threshold value , 
the neighborhood radius ! and the local search method �. 
 
The best probe method is based on the same idea as MBH. But 
unlike MBH it chooses points on the n-dimensional sphere rather 
than in a box and uses adaptive neighborhood size. Starting with a 
large radius it reduces its size if  attempts didn’t lead to an im-
provement.  

4.3 Global methods 
The goal of global methods is to diversify the search in order to 
explore the whole feasible set. At the moment we considered only 
one globalization strategy: the Monte-Carlo method. It generated a 

sequence of uniformly distributed random generated points in a 
feasible box. After that each point is used a starting point for semi-
local methods. 

5 EXPERIMENTS 
We performed several experiments for different protein-ligand 
pairs. Methods demonstrate the same relative behavior for all va-
riants and thus we present data only for one pair: the target protein 
is thrombin (PDB code 1O2G) and the ligand is 4-aminopyridine  
in the protonated form. 

5.1 Testing results for local methods 
 
The results for local methods are summarized in the table 3.  The 
average energy is calculated as a mean value of 64 runs with ran-
domly generated initial points. The best energy is a lowest value 
found throughout these runs. The percentage of errors shows the 
number of runs that produced a value greater than the initial value. 

Table 3. Testing results for local methods 

Name Avrg. Energy Best Energy Errors (%) Avrg. Time(s) 

  Initial 15385,25 4728,66 0,00 0,00 

  CG 5790,28 874,80 9,52 1,81 
  TNC 4222,24 1322,46 0,00 3,90 
  LBFGS 3119,95 782,21 1,59 5,92 
  Powell 611,49 28,66 0,00 5,12 

 
As expected the local methods generally improve the energy value. 
The Powell method remarkably outperforms methods that rely on 
Taylor formula. This is an expectable result as the objective func-
tion obtained as a result of piece-wise linear approximation on a 
mesh is non-differentiable in minima. Therefore the Taylor series 
gives a poor approximation for a goal function in a neighborhood 
of such points. Thus the gradient information can only be used to 
bias the search to the descending direction but not as a stopping 
criterion. 

5.2 Testing results for semi-local methods 
Results of the previous section clearly indicate that the Powell 
method is the best local search strategy among the considered set. 
Thus we used this method as a local method � in MBH and BP 
semi-local methods. After a set of experiments we found that the 
best results are obtained if MBH uses the radius ! = 0.1 and the 
BP uses the initial sphere radius  ! = 0.5 . The accuracy of results 
for both methods depends on the threshold values: the higher thre-
shold value the lower the minimum. To put both methods in the 
equal conditions we set the threshold value to 30 and 90 for BP 
and MBH respectively. With such parameters both methods take 
approximately the same time.   
The Table 4 compares the results of the basin hopping and best 
probe methods. The results were averaged over 10 runs with dif-
ferent random initial points generated in a box �. 
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Table 4. Testing results for semi-local methods 

Name Avrg. Energy Best Energy Avrg. Time(s) 

  Initial 16885,3 5628,76 0,00 

  MBH -73,44 -134,60 451,37 
  BP -27,77 -131,93 491,84 

 
Both methods under test gives approximately the same best results, 
however the average behavior of MBH is much better.  

5.3 Testing results for global methods 
At the moment we tried only one globalization strategy: Monte 
Carlo method that generates random initial points for MBH me-
thods. Points are generated in the bounding box �. Table 5 summa-
rizes results obtained from 10 runs of this combination. The thre-
shold value for MBH method was set to 90 and the initial radius 
was set to 0.1. The Powell method was used for a local search. The 
number of initial points generated by Monte-Carlo methods was 
set to 64. 

Table 5. Testing results for Monte-Carlo method coupled with MBH me-
thod 

Name Avrg. Energy Best Energy Avrg. Time (s) 

  Monte-Carlo -138,66 -154,47 10913,7 

 
The obtained results demonstrate that even a very simple globali-
zation strategy gives a noticeable improvement over plain semi-
local and local methods. But the running time is considerably 
higher. 
 

6 SCIENCE GATEWAY INTEGRATION 
The ultimate goal of our work is to create software environment 
for molecular simulation. Such environments are useful to isolate 
the end-user from technical details of the application.  
 
The use of high-performance computing in docking is inevitable 
because in practice millions of ligands have to be processed inde-
pendently. Docking is perfectly suitable for the desktop grid com-
puting (Kiss, Greenwel 2010, Kiss 2010).  We are going to develop 
this application and deploy it at ISA RAS desktop grid 
(boinc.isa.ru/dcsdg) and on a combined infrastructure that connects 
ISA RAS desktop grid and service grid infrastructure provided by 
EDGeS VO  (www.edges.eu). Such combined infrastructures get 
much attention in the grid community in recent years (Urbach 
2009). This approach provides the transparent seamless integration 
of desktop and service grids and results in huge consolidated com-
puting power. 
 
The deployment will done on top of the BNB-Grid (Evtushenko  
2009) programming environment – a library for solving large-scale 

optimization problems in the grid and supercomputers. This tool is 
currently ported to the desktop grid and is validated for running in 
the EDGeS VO. Docking will be one of the supported applications. 
Another one – atomic cluster conformation problem (Leary 2000) 
is already running in production. With such approach we’ll reuse 
the one deployed application for different problems. This is very 
important for desktop grids and combined infrastructures where the 
deployment and validation requires lots of efforts. 
 
The docking is only one element of a complex workflow in a drug 
design process. The good software environment is crucial for mak-
ing the docking software tools useful for a wide community of 
researchers. One of such environments is described in (Kim 2008).  
It flexibly integrates the convenient Web-based user interface and 
the powerful processing back-end deployed in the Grid. Such soft-
ware architecture seems to be the standard approach for docking 
and other applications demanding for the huge computing power. 
To implement a consistent and flexible software environment for 
drug design one needs a powerful workflow engine. This is crucial 
for combining different building blocks in Drug Design in a flexi-
ble and configurable way.  We plan to use P-PGRADE portal (Far-
kas 2011) which is capable to construct complex workflows and 
harness different types of grids and clouds. 

7 CONCLUSIONS 
The docking problem is basically a global optimization problem 
(1) where objective f�x� is a protein-ligand interaction energy. 
Possessing the powerful techniques for resolving this problem is 
crucial for the efficiency of docking. In this paper we considered 
several optimization methods for problem (1). Numerical experi-
ments showed that the best results can be achieved by combining 
some globalization techniques (e.g. Monte-Carlo method) and the 
monotonic basin hopping semi-local method coupled with the 
Powell local search algorithm.  
 
We also outlined the future software environment which will pro-
vide a consistent and convenient access for a wide range of re-
searchers to the drug-design experimetns. 
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