
Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.

Low latencies as conditione sine qua non
for interactive data exploration and timely collaboration
Hajo N. Krabbenhöft1,*, Steffen Möller2
1University of Lübeck, Institute for Neuro- and Bioininformatics, Lübeck, Germany
2University of Lübeck, Department of Dermatology, Lübeck, Germany

ABSTRACT
Motivation: High-throughput technologies, like gene expression
arrays and next-generation sequencing, provide enormous data
sets, which are too large to transfer or download quickly. The study
of such data, for our application this means explaining the meas-
urements with a molecular interpretation of disease etiology, re-
quires continuous updates and refinements as novel interpretations
are pursued. The complexity of the problem requires a diverse range
of expertise. And thus a shared view is crucial for a successful col-
laboration - within and between institutions.

Web services and traditional web pages provide centralized data
storage and synchronized presentation. Relying on a single central
server, though, comes with its own flavor of reliability and perfor-
mance issues. Every time the server is busy solving a request, the
user is forced to wait. It is therefore very beneficial to combine the
integrity of web services and the share-ability of web pages with the
fluency of a desktop application. Increasing the interactivity of data
presentation to each individual user allows for a more interactive
knowledge exchange on the group scale.

Here, we present a combination of Open Source technologies for
distributed, synchronized and failure-resistant storage of huge data
sets as the technological basement for globally fast access to re-
search data. Accordingly, this work explores the derived possibilities
for interactive presentation to a group of locally distributed research-
ers, as enabled by a problem-tailored web application. To aid in the
investigative work, the user interface shows minimal latencies. The-
se goals are achieved by capitalizing on related developments in
distributed data storage and asynchronous web technologies, most
notably the non-relational database Apache Cassandra and the
Google Web Toolkit. This combines efficient pre-processing with
parallelisation.

The developed web application looks akin to a typical desktop appli-
cation and is highly responsive, since it downloads needed data in
parallel, while the user is happily working. The researcher can pre-
pare different data set views for different aspects of his analysis,
which are immediately available for colleagues and collaborators. By

*To whom correspondence should be addressed.

underpinning every decision and conference call with a synchro-
nized shared data set, group communication is greatly improved.
This work demonstrates that the interactivity with the user to work on
large data sets is strengthened with remote applications and typical
“show next page” delays are overcome by employing the latest web
technologies. This way, the strong server-user interaction allows for
the seamless extension for serving additional users and thus allow
for collaborations.

Availability: Source code for the web application and the data stor-
age back-end was released under GNU Lesser General Public Li-
cense and is freely available for download from
http://github.com/fxtentacle/eQTL-GWT-Cassandra

1 INTRODUCTION
The problem is as old as Bioinformatics itself: biological research
yields more data than a human can handle manually.

Technological advancements in biochemistry and better insights
in computational biology together have accelerated and broadened
the avalanche of information. We are already losing this fight, as
much data is generated in labs, which is never rendered available
for analyses in other contexts, since the information is not publicly
available. Given the inter-individual differences of patients and
controls, many new model organisms, many more tissues investi-
gated at an ever more detailed level and additional test conditions,
the avalanche of usable knowledge will not stop in any foreseeable
future.

For the analysis of large data, one needs to find human-

digestible aggregations of it. It shall be a goal-oriented presentation
where the essential information to form hypotheses is brought
together. Further statistical evidence in the data will guide the
downstream analysis, as will additional external information. For
our application, the molecular interpretation of disease phenotypes,
this is a process of continuous refinements and updates, accompa-
nied by fruitful discussions with fellow researchers and collabora-
tors. Every researcher needs software to look at and evaluate all
possible measurements and explanations, without being forced to
manually download or update the huge underlying data set. The

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

This volume is published and copyrighted by its editors.

researcher is doing investigative work and, therefore, it should be
possible to browse all of the data interactively.

1.1 Prior art
The most common approach found in the Bioinformatics commu-
nity for presenting and browsing data sets is to store research data
inside a relational database and write custom-made software or
web pages to present the data. Some approaches also include the
ability to produce diagrams, but most are limited to text and tabular
data. While generated web pages are usually static, this form of
presentation is to be considered interactive if the user can issue
filtering requests to the web server and retrieve a new web page
containing the response within an acceptable response time.

Inside a relational database, data are stored as sorted by the pri-
mary key and separate look-up tables are generated for column
range and equals queries. Since these look-up tables need to be
identical for every database server in the system, common database
software does not allow write requests to be distributed. There is,
however, a range of solutions for replicating databases to multiple
servers such that read requests can be distributed. This means that
a relational database scales well with huge data sets when it comes
to read requests and does not scale at all with write requests.

For very basic applications where research data are imported on-

ly once and then never modified, this works well. However, as
soon as data are being processed or annotated on the user’s behalf,
the write rate of a single server is sustained. With traditional data-
bases, only reads can be executed on a replica of the data and,
therefore, the system as a whole cannot scale for writes.

We would like to see a word-processor like working environ-

ment: every data editable and inspectable with local views on the
full data, helped by search tools and situation-dependent statistics
like word counts. We want to avoid data transfer (takes too long),
web-forms based “paged” interactions, any non-scalable compo-
nents and want to directly support inter-user communication.

2 METHODS
The system evolved in Java from the PHP implemented TiQS interacting
QTL System (tiqs.it). It does not require any local installation work apart
from unzipping and executing a shell script. Web service requests are han-
dled by a custom-written Java servlet inside a Jetty 6 (codehaus Founda-
tion) servlet container. Jetty was chosen for its capability to run with the
same configuration file on Windows, Mac OS X and Linux. Its direct com-
petitor, Apache Tomcat, instead needs to be set up individually for each
machine.

Data describing the topology of the system are stored in a PostgreSQL

database (www.postgresql.org) with Hibernate 3 (www.hibernate.org). The
valuable scientific data is stored inside a distributed Apache Cassandra
(Lakshman and Malik, 2010) database. Load distribution is handled by a
nginx load balancer (wiki.nginx.org), which was chosen for its high per-
formance, stability and ease of configuration. Optimized example data set
refinements, for the example of our expression QTL are provided. There is
a plug-in API which allows researchers to write arbitrary filters and data
processors in Java.

3 RESULTS

3.1 Minimal technical requirements
From the previous PHP implementation, no code could be saved
and a separate execution environment was designed from scratch.
It was taken special care to ensure the application to remain com-
patible with common IT constraints in research institutions: the
application needs HTTP access on a random port for each worker
node, as well as two configurable ports on which the peer-to-peer
communication of the distributed database will take place.

The system can work with almost any memory and hard disk con-
figuration and every Windows, Mac OS X and Linux computer can
be turned into a worker node simply by copying a folder and run-
ning a shell script. The worker node software could also be de-
ployed remotely.

The used database is data center aware in its distribution of redun-
dancy. Accordingly, a complete self-contained copy of the data is
kept at each physical facility, if the researcher has appointed one or
more machines to use for data storage. The researcher can immedi-
ately start working, even while a local copy of the data set is being
synchronized with coworkers and collaborators round the globe
automatically. There is no initial waiting time for downloading the
complete data set or manually deploying updates. Current Linux
distributions like e.g. Debian (Möller et al., 2010) have all packag-
es readily available or downloadable at the developers’ websites.

3.2 Reliability and performance
Most current research software does not include any sort of failure
tolerance and data replication, which comes as a surprise given the
price of good research data. With growing data sets, storing and
retrieving the correct subset is not a simple task anymore. A chain
is only as strong as its weakest limb and therefore a bad database
and schema choice will completely ruin a data exploration soft-
ware.

Apache Cassandra was chosen because it is stable, fast and repli-
cates data. This database is used in production at Facebook with
billions of rows and therefore can be assumed to be reliable. Mov-
ing away from conventional relational databases towards a novel
distributed system out of a key-value store and manually managed
indexes payed off well.

Database query times average at 25ms and the system has shown a
maximum in throughput of 10,000 expression QTL entries written
per second on a single machine. Evaluating the performance on
three machines showed that scalability was achieved and is simple
to set up. When the database system is using the same configura-
tion file on every machine, different worker nodes will automati-
cally find each other and relocate the distributed data accordingly.
Fault tolerance was evaluated by randomly disconnecting one of
the three machines from the network. While the processing time
for background tasks did go up when disconnecting an active
worker node, the presentation front-end still responded as fast as
before.

It was also verified that the data set stays complete and consistent
as long as not more than half of the worker nodes are disconnected

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.

at the same time. So from a scalability and reliability point of view,
this novel approach is superior to any conventional system relying
on a single centralized database.

3.3 Example user interface for expression QTL
Above described technologies where applied for interactively pre-
senting high-throughput data in statistical genetics. A web applica-
tion provides a front-end to expression QTL data in a genomic
context provided by DAS (Dowell et al., 2001). This ensures that
users can easily share data with each other by sharing their links.
By integrating a menu bar and by allowing the web page to be
viewed in full screen, the user can interact with the web application
akin to a desktop program. Since the whole program is run in the
user’s web browser, the user can use any operating system and
does not require any prerequisites, except for the aforementioned
web browser.

Figure 1 shows the developed web application running inside the
web browser Google Chrome on Mac OS X. On the top, one can
see the so-called data set layers. When the user invokes a filter or a
processing operation, a modified copy of the shown data set is

created and prepared for viewing in the background. The research-
er can thereby prepare different presentations of his data for differ-
ent aspects of his analysis. Since data set layers need to be com-
puted only once, as opposed to workflows, for example, these
views of the data set are immediately available for colleagues and
collaborators.

On the lower half of the screen, one can see the chromosome
browser with DAS tracks and annotations for the provided research
data. One feature of the novel approach that was received especial-
ly well was the ability to change the viewing area in the chromo-
some browser without reloading the page. The user can click on
and drag the chromosome to scroll. While the user is moving the
display area using his mouse, the web application downloads the
needed data in parallel, so it can update the view while the user is
still scrolling. The table view below is also dynamically updated to

Fig. 1. The web application after loading a data set and selecting a data

set layer. The chromosomal gauge view shows an overview of the chro-

mosome, with important expression QTL locations marked by

green/yellow blocks. Right alongside the overview, a table is displayed

which shows the 25 most important expression QTL inside the area shown

by the chromosomal gauge.

A

B

D

E

D FE

C

G

G

Fig. 2. The chromosomal map view. One can easily see which loci are

interacting with which genes in the map area (F) as well as their border

distribution (E). Note that the researcher has hidden the data set layer selec-

tor on the top to give more room for viewing the data. Shown are also the

menu bar (A), the tab area for selecting a preferred presentation type (B),

the settings for the chromosomal map presentation (C) and the chromosome

bands, retrieved from Ensembl using DAS (D). On this zoom level, the

scrollbars (G) are grayed out and the contig and transcript DAS tracks are

inactive. The user can move click any displayed expression QTL or DAS

track to get more information. The user can also drag and move the chromo-

somal map view and zoom in or out using the mouse wheel. This allows the

user to dynamically switch between a genome-wide overview and a local

detail view depending on the task at hand.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

This volume is published and copyrighted by its editors.

always show the most relevant data rows, in this case the 25 most
probable expression QTL in the specific area of the chromosome,

which is currently visible in the chromosome browser. The chro-
mosomal map view shown in figure 2 was found to work great for
getting a quick overview of which gene is interacting with which
loci and later on investigating those locations. To ease the process
of following up on these locations, transcripts and known genes
retrieved from Ensembl DAS tracks are displayed alongside the
expression QTL data when the user zooms in. The columns used
for positioning along the X and Y axis can be freely chosen to
accommodate different flavors of two-dimensional data.

The web application approach is highly reactive in comparison to
normal web pages. That is presumably because most calculations
are done when data are written. Hence, the data are stored already
prepared, sorted and preformatted, which makes their presentation
cheap in terms of network and CPU usage.

By working with a synchronized local copy of the database, read
latency is as low as for traditional desktop applications. Each sepa-
rate user benefits from this increased interactivity, thereby acceler-
ating overall team communication.

3.4 How to obtain reliability, scalability
and interactivity

3.4.1. Homogeneous replication of software and data

With exceptions for mobile computing, a local copy is always
faster to access than relying on a remote service. However, users
are not willing to wait hours or even days for a slow initial down-
load of the whole data set. Therefore, our software system repli-
cates commonly-accessed data automatically while falling back to
remote access while replication or synchronization is in progress.
This allows new user to immediately start working and by dynami-
cally creating a local replica of the data set, we ensure that no row
needs to be sent twice.

A research collaboration includes a number of computers distribut-
ed over several networks. It is safe to assume that on such a scale,
at least one machine or network connection will fail. When scaling
to work with huge data sets, even more computational power is
needed and with more machines, component failures will get more
and more often. In fact, we planned for and accepted them as part
of the normal operation of a distributed software system.

For the system to stay operational and interactive under such con-
ditions, the data need to be replicated. One simply cannot afford to
lose data. Also, no worker node in the system should pose a single
point of failure. Therefore, all nodes are running the same software
and communicate with each other as equal peers. This approach is
a stark contrast to the commonly used pattern of master-slave data-
base replication. In cloud environments, this homogeneous config-
uration enables us to provide demand driven load balancing.

3.4.2. Copy on write

Not duplicating read-only data has been common sense in operat-
ing system design for decades, however with the growing amount
of data stored in research databases, it is becoming increasingly
important for maintaining a high read throughput. While creating a
newly aggregated data presentation should preferably be fast, it is a
rare event when compared to inspecting the data through already
existing presentation views.

A research database should therefore rather create a modified and
filtered copy of the data rather than using complex WHERE claus-
es and JOINs. If JOINs are unavoidable, most database systems
provide a VIEW capability which gives the developer a warm
fuzzy feeling of having thought ahead. Sadly, most VIEWs are not
materialized by default. Therefore, performance of a standard da-
tabase VIEW is as bad as calling the underlying JOINs and
WHERE clauses on every access to any row of the VIEW.

This might seem trivial to state, but if one knows beforehand, that
a certain VIEW will only be modified sparingly, that VIEW should
be manually materialized. (CREATE TABLE … SELECT …)
This trades a one-time creation overhead in return for significantly
increased read throughput on following queries.

Using these two optimization techniques, the computational work
can be moved from the presentation towards storage of the data,
which allows for parallelisation and distribution on a compute grid.
Keeping data stored the way it’s supposed to be presented also
ensures that all researches in the collaboration, independent of their
available computing power, can immediately access and work with
all presentations of the data.

3.4.3. Distribute work

Research data sets may easily contain thousands of rows. While
enriching, annotating or filtering the data set, these rows can be
processed independently. By distributing one-time computational
tasks, such as the creation of a new presentation of the data, to all
machines in the collaboration, everyone can see the result data set
faster.

In our case, using a distributed database gives every worker node
low-latency access on the whole data set and so one can actually

Fig. 3. Low latency is achieved by employing a traditional application

model written in JavaScript to execute inside the users web browser. All

data is being transferred asynchronously with a datacenter-aware multi-

layered caching and replication strategy.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.

do workload distribution on a row scale. If you’re forced to stick
with a conventional relational database system, work distribution

of low-level tasks might even be counter-productive or should at
least be done with reasonably-sized blocks of data.

3.4.4. Prioritized non-blocking presentation as a stream of
blocks of interest

Tables are the dominant form of presentation for research data. In
Bioinformatics, gene locations and interactions play an important
role and, therefore, different flavors of genome scales, chromo-
some browsers and interaction maps have been invented. Especial-
ly graphical presentations provide the researcher with a quick
overview of his data. The possibility to zoom in and move around
in a map of his data closes the gap between an overview of the
complete data and a detailed close-up of specific features.

Interactive bars and maps constantly require new data to be shown,
as the user is moving around and inspecting different aspects of the
experiment. This puts an enormous strain on the back-end data-
base, since it means a constant flow of search queries for aggregat-
ing the data to show and distance-comparisons are usually O(N2).
It is also important, that only the most relevant information for a
given zoom level is displayed, to make the resulting graphic not
only sufficient, but also succinct.

While updating the data or creating a new presentation view, the
location where each item will be visible on the bar or map is usual-
ly known beforehand. Similarly, when applying our suggestion of
copying the data on write time, the relevance of every item for
every zoom level can also be calculated offline.

We therefore propose to divide the possible view area into a hier-
archical set of equally-sized blocks, as seen in figure 4. Assuming
that display position and relevancy score have already been calcu-
lated, the data should look akin to table 1.

We now compare these positions to figure 3. On zoom resolution
1, all items are in the first block. The same applies to zoom resolu-
tion 2. On resolution 3, the item with ID=1 is in the second block,
while the other two items are in the first block. Now we can create
a look-up table for every block at every resolution, which is easy
given the schema-less nature of our chosen distributed key-value
store. Example look-up tables are shown in table 2. Please note
that the rows of each table have been sorted by their relevancy
scores.

Relevancy scores are stored alongside in the index table, to allow
for dynamic merging of blocks. If the user requests the range 0-500

on resolution 3, we could dynamically merge the tables “Resolu-
tion 3, Block 1” and “Resolution 3, Block 2”. Given the hierar-
chical nature of our block scheme, that request would, of course,
be easier satisfied by using “Resolution 2, Block 1”.

Now, for dynamically filling the visual presentation, items are
streamed for the requested zoom level. The streaming follows the
order of those tables, presenting the most relevant rows first and
filling the image as remaining data arrives. The client application
can then choose itself how many items it needs to adequately
populate the view and close the connection when enough data was
received. This allows or web application, for example, to dynami-
cally adapt the number of displayed expression QTLs to the users
display resolution.

4 DISCUSSION
Setting aside the parallel database, the major contribution towards
a new sense of responsiveness is due to the selective transfer of
information of blocks from the server to the user. This is what a
local application would also attempt to perform, but what tradi-
tional web forms just cannot achieve when they rebuild the page
from scratch.

This way, the introduction of JavaScript - well hidden behind Java
classes by the Google Web Toolkit - contributed far more than just
the usual eye candy. The approach was so much more responsive
than traditional PHP-produced tables, showing the same infor-
mation, that we have not even taken measurements. It was “in-
stant” versus “wait a few seconds”. Also, the approach was found
to consume less bandwidth. We hence expect this sort of web ap-
plications to be adopted by many public Bioinformatics databases
throughout the next years.

The technologies described above are used in a series of well
known Internet sites like Facebook or the Google family of web-
based applications. With these prime examples in mind, and tap-
ping into our experiences gained over this implementation, we

Resolution1:

Location 0 - 1000 Location 1000 - 2000

Resolution2:

Location
0 - 500

Location
500 - 1000

Location
1000 - 1500

Location
1500 - 2000

Resolution3:

Fig. 4. Improving display performance by pre-calculating sorted lists of

displayed items in order of decreasing relevance.

Table 1. Example data

ID Position Score …

 1 394 14
 2 112 3
 3 113 5

Table 2. Example look-up tables

 Resolution 1,
Block 1

Score

1 14
3 5
2 3

Resolution 3,
Block 1

Score

3 5
2 3

Resolution 3,
Block 2

Score

1 14

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

This volume is published and copyrighted by its editors.

shall compare other contemporary eQTL infrastructures with what
they could achieve, when they adopted those technologies.

4.1 XGAP
A related project is the eXtensible Genotype And Phenotype plat-
form (XGAP) (Swertz et al., 2010). The XGAP project aims to
provide a flexible and open platform for working with data sets,
specifically developed with expression QTL data in mind. The
XGAP project aims to make working collaboratively easy and
provides integrated tools for importing and exporting data.

It is noteworthy, that the XGAP project shares many design deci-
sions with the web application approach presented here. For exam-
ple, developing a web page rather than a program gives researchers
the freedom to share the interface and therefore access to the data
without requiring the recipient to have a matching operating sys-
tem and sufficient processing power available. It is expected, that
more and more applications and data interfaces in general will be
developed as web pages to shift the burden of installation and con-
figuration from the users towards the software developers.

The second shared approach is that of grid computing and back-
ground processing. XGAP supports invocation of computationally
intensive tasks asynchronously in the background, with the work-
load distributed on a PBS cluster. The novel approach presented in
this paper incorporates asynchronous distributed processing as a
core feature and can therefore support load-balancing and failure
tolerance at a level deeper than XGAP. It is expected that this trend
will continue and eventually flash over to consumer applications.
This is essential in order to reap the full benefits of newer proces-
sors, which come with more and more cores whereas further in-
creasing the frequency is getting more and more difficult.

XGAP completely lacks a distributed data storage. When their
MySQL database as a storage back-end breaks down, the XGAP
system will loose all of its data, therefore presenting a single point
of failure. Neither is it prepared for parallel data management.

4.2 Gene Network
Another related project is Gene Network (Wang et al., 2003). Gene
Network providing follow-up information about genes, loci and
gene networks and their module WebQTL allows the user to up-
load own research data for further analysis. Gene Network says to
archive more than 25 years of research data and provides a very
good coverage of additional information.

Obvious shortcomings of the Gene Network are that data transfer
is not being encrypted using the industry standard HTTPS and that
there exists no version which the researchers could deploy on-site
inside their own firewall. Apart from security issues, WebQTL
allows for a very convenient analysis of small data sets. It provides
a plentiful selection of visualization methods, such as box plots,
correlation diagrams and even directed graphs.

From a technical point of view, the Gene Network is considered to
be inferior to both the novel approach presented as well as XGAP.
Data set presentation in Gene Network is implemented as down-
loading ready-made images from their web servers. This leaves the
user with no further possibility for interaction than changing pa-
rameters and waiting for the next image to be downloaded. Since
the researcher has no possibility of running Gene Network on own
computational resources, the web servers provided by Gene Net-
work are essentially shared by all users.

In its choice of presentation methods, Gene Network is very simi-
lar to the R language for scientific computing. Due to Gene Net-
works focus on reasonably small data sets, using such a scripting
language as computational back-end seems a wise choice. Gene
Network is there wholeheartedly recommended for analytical and
investigative work on classical QTL.

4.3 Extendability of presented concepts
By going new ways in terms of data storage, we combined the low
latency of local data storage with the benefits and integrity of a
centralized storage server. This technological design decision al-
lowed us to greatly increase interactivity of our data presentation,
without forcing the user to download the complete data set before-
hand. While during development, there was a strong focus on ex-
pression QTL, that is their positioning on the chromosome and
their associated genes, the system was designed to be plug-able for
a multitude of data processors and data visualisation applications.

The chromosome browser allows for arbitrary chromosomes to be
displayed along with arbitrary annotation information, as long as
the DAS file format is being used. Similarly, the map view allows
for arbitrary positioning measures to be used on the X and Y axis,
as long as there is a data processor available to calculate said posi-
tions. While theoretically any user could develop such data proces-
sors using a simple Java API, it might be beneficial to broaden our
showcase of example processors to support additional forms of
high-throughput data.

Data replication allows a whole team a consistent shared view of
their experiment. A new presentation created by one collaborator is
immediately available to the entire team. Driven by the high inter-
activity between every user and the web application, overall team
communication is speeding up, and there is a general demand for a
deeper integration of social aspects into the data presentation. We
envision a future version of our system where researchers can dis-
cuss current and past measurements in real-time using a special
comment and annotation system adapted to work directly on the
data presentation.

With computing nodes gradually getting cheaper and more readily
available, dynamic grid brokering will replace static worker queues
and present us with unprecedented peak amounts of compute pow-
er. While grid technologies traditionally suffer from their own
transiency, the distributed and homogeneous nature of our pro-
posed system can easily compensate for node failures, while still
retaining near-perfect performance.

ACKNOWLEDGEMENTS
The authors thank Thomas Martinetz and Saleh Ibrahim for com-
ments and a nice working atmosphere. Lydia Lutter is thanked for
her critical reading of the manuscript.

REFERENCES
codehaus Foundation. Jetty 6 http server. URL http://jetty.codehaus.org/jetty/.

William Cookson, Liming Liang, Goncalo Abecasis, Miriam Moffatt, and Mark
Lathrop. Mapping complex disease traits with global gene expression. Nat Rev
Genet, 10(3): 184–194, 03 2009.

Robin Dowell, Rodney Jokerst, Allen Day, Sean Eddy, and Lincoln Stein. The dis-
tributed annotation system. BMC Bioinformatics, 2(1):7, 2001. ISSN 1471-2105.
doi: 10.1186/ 1471-2105-2-7

David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., 2006.

Ewald Geschwinde and Hans-Jürgen Schonig. Postgresql Developer’s Handbook.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

Copyright © 2011 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.

Sams, Indianapolis, IN, USA, 2001.

International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931–945, Oct 2004.

FA Kolpakov, EA Ananko, GB Kolesov, and NA Kolchanov. GeneNet: a gene net-
work database and its automated visualization. Bioinformatics, 14(6):529–537,
1998.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35–40, 2010.

Steffen Möller, Hajo Nils Krabbenhöft, Andreas Tille, David Paleino, Alan Williams,
Katy Wolstencroft, Carole Goble, Richard Holland, Dominique Belhachemi,
Charles Plessy. Community-driven computational biology with Debian Linux.
BMC Bioinformatics 11 Suppl 12 (2010): S5.

M Rosenberg and D Court. Regulatory sequences involved in the promotion and
termination of rna transcription. Annu. Rev. Genet, 13:319–53, 1979

R Sachidanandam, D Weissman, S C Schmidt, J M Kakol, L D Stein, G Marth, S
Sherry, J C Mullikin, B J Mortimore, D L Willey, S E Hunt, C G Cole, P C Cog-
gill, C M Rice, Z Ning, J Rogers, D R Bentley, P Y Kwok, E R Mardis, R T Yeh,
B Schultz, L Cook, R Davenport, M Dante, L Fulton, L Hillier, R H Waterston, J
D McPherson, B Gilman, S Schaffner, W J Van Etten, D Reich, J Higgins, M J
Daly, B Blumenstiel, J Baldwin, N Stange-Thomann, M C Zody, L Linton, E S
Lander, D Altshuler, and International SNP Map Working Group. A map of hu-
man genome sequence variation containing 1.42 million single nucleotide poly-
morphisms. Nature, 409(6822):928–33, Feb 2001. doi: 10.1038/35057149.

Jay Shendure, Gregory J. Porreca, Nikos B. Reppas, Xiaoxia Lin, John P. McCutch-

eon, Abraham M. Rosenbaum, Michael D. Wang, Kun Zhang, Robi D. Mitra, and
George M. Church. Accurate Multiplex Polony Sequencing of an Evolved Bacte-
rial Genome. Science, 309(5741):1728–1732, 2005.

Morris Swertz, K Joeri Velde, Bruno Tesson, Richard Scheltema, Danny Arends,
Gonzalo Vera, Rudi Alberts, Martijn Dijkstra, Paul Schofield, Klaus Schughart,
John Hancock, Damian Smedley, Katy Wolstencroft, Carole Goble, Engbert de
Brock, Andrew Jones, and Helen ... Parkinson. Xgap: a uniform and extensible da-
ta model and software platform for genotype and phenotype experiments. Genome
Biology, 11(3):R27, 2010.

J M Trent, M Bittner, J Zhang, R Wiltshire, M Ray, Y Su, E Gracia, P Meltzer, J De
Risi, L Penland, and P Brown. Use of microgenomic technology for analysis of al-
terations in dna copy number and gene expression in malignant melanoma. Clin.
Exp. Immunol., 107 Suppl 1:33–40, Jan 1997.

Jintao Wang, Robert W Williams, and Kenneth F Manly. Webqtl: web-based complex
trait analysis. Neuroinformatics, 1(4):299–308, 2003.

W3C Consortium. Soap version 1.2 part 1: Messaging framework (second edition), a.
W3C Consortium. Web services description language (wsdl), b.

Adam Warski. Envers: Easy entity auditing. URL http://jboss.org/envers/. 37

Michael Widenius, David Axmark, and A. B. Mysql. MySQL Reference Manual.
O’Reilly Media, Inc., 1st edition, 2002.

Technical diagrams have been created using the “Architecture by Hand” stencil set by

Jonathan Brown.

3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011

This volume is published and copyrighted by its editors.

