OntoBuilder: Fully Automatic Extraction and Consolidation of

Ontologies from Web Sources

Avigdor Gal

Technion - Israel Institute of Technology

Giovanni Modica
Mississippi State University

Hasan Jamil
Wayne State University

1 Introduction

Ontologies, formal specifications of domains, have
evolved in recent years as a leading tool in represent-
ing and interpreting Web data. The inherent hetero-
geneity of Web resources, the vast amount of informa-
tion on the Web, and its non-specific nature requires
a semantically rich tool for extracting the essence
of Web sources’ content. The OntoBuilder project
[10, 5] supports the extraction of ontologies from
Web search interfaces, ranging from simple Search
Engine forms to multiple-pages, complex reservation
systems. Ontologies from similar domains are then
consolidated into an ever improving single ontology
with which a domain can be queried, either automat-
ically or semi-automatically.

As an example, consider Figure 1. The figure
presents partial screen shots of two forms in the do-
main of matchmaking. The forms require similar in-
formation to be gathered by the system, yet may use
different formats to gather the information. For ex-
ample, while one form asks explicitly for the “Level
of Education,” another form may ask for it implic-
itly, using a label “You are a.” The similarity of the
two fields can be observed only when considering the
possible values to be filled. To be able to automat-
ically match heterogeneous forms, a system must be
equipped with semantic understanding of the domain,
available through such ontological constructs as com-
position.

Given a sample form, filled by the user, and given a
new form, from another Web site, OntoBuilder finds
the best mapping between the two forms. This, in
turn, can serve a system in automatically filling the
fields (a sort of a query rewriting), according to the
mapping suggested by OntoBuilder.

Unlike systems such as Protégé [4] and Lixto [2],

OntoBuilder enables fully-automatic ontology match-
ing, and therefore fall within the same category as
Cupid [7] and GLUE [3]. The use of ontologies,
as opposed to relational schema or XML, as an un-
derlying data model allows a flexible representation
of metadata, that can be tailored to many different
types of applications. OntoBuilder contains several
unique matching algorithms, that can match con-
cepts (terms) by their data types, constraints on value
assignment, and above all, the ordering of concepts
within forms (termed precedence).

2 Overview of OntoBuilder

OntoBuilder was developed using Java, which makes
it portable to various platforms and operating sys-
tem environments. OntoBuilder also provides an ap-
plet version with the same features as the standalone
version and the added functionality that allows users
to access and use it within a Web client. The tool
also runs under the Java Web Start technology. On-
toBuilder generates dictionary of terms by extracting
labels and field names from Web forms, and then it
recognizes unique relationships among terms, and uti-
lize them in its matching algorithms. The two types
of relationships OntoBuilder is specifically equipped
to deal with are composition and precedence, to be
discussed in Section 2.2.

OntoBuilder is a generic tool and serves as a mod-
ule for several projects, both at the Technion and
at MSU. For example, we have designed a framework
for evaluating automatic schema matching algorithms
[1, 6], and we use OntoBuilder both for evaluation
and for improving our methodology. This framework
provides a sufficient condition (we term monotonic-
ity) for a matching algorithm to generate “good”

Figure 1: Heterogeneous forms example

ontologies. Our empirical results with OntoBuilder
show that its algorithms satisfy one of the forms of
monotonicity we present in [6]. OntoBuilder is also
envisioned to serve as an information integration tool
in the EthoSource [8] public data repository. Finally,
algorithms from OntoBuilder are being employed in
an agent negotiation protocol for trading information
goods.

The rest of this section presents the main features
and highlights of OntoBuilder. The detailed descrip-
tion can be found in [10, 5, 9]. The process of ontology
extraction and matching is divided into four phases,
as depicted in Figure 2. The input to the system is an
HTML page representing a Web site main page (e.g.,
http://www.avis.com). In phase 1, the HTML page
is parsed using a library for HTML /XML documents.
All form elements and their labels are identified in
phase 2. In phase 3, the system produces an initial
version of global (target) ontology and local (candi-
date) ontologies. Later, in phase 4, the ontologies are
matched in an iterative manner to produce a refined
global ontology. We next focus on the extraction and
matching processes.

2.1 Ontology extraction

Ontology extraction begins with accessing each Web
source by the system browser and parsing each page
into an ordered tree, called DOM tree (short for Doc-
ument Object Model), which identifies page elements.
This W3C standard can be used in a fairly straight-
forward manner to identify form elements, labels,
input elements, etc. OntoBuilder performs suitable
“cleaning” and filtering, e.g., elimination of super-
fluous tags and removal of formatting and scripting
tags, to overcome incorrect specification of the source
HTML code.

The diversity of layout techniques and principles
in Web design complicates the label identification
process for input elements even in a well-structured
DOM tree. In order to overcome this diversity we
have created a set of extraction rules, learned from
a representative set of HTML documents in different
domains, to recognize an HTML page layout. The
extendable set depicts all table and non-table input
layouts we have encountered. Examples of input lay-
out include text and image labels for input elements

Form
Rendering

F

Label
Identification

DOM Tree

HThL
Elements

Target/
Candidaie
Ontology

Target Candidate
Ontology Ontology

Figure 2: Ontology creation and matching process in OntoBuilder

(or forms), and table type and row type label and
input field forms. The extraction process end result
is an XML document containing the extracted termi-
nology of the Web source (a dictionary).

The label identification algorithm employed in On-
toBuilder is able to identify a high percentage of el-
ements and their associated labels. Our experiments
(reported in [9]) show that on average, the label iden-
tification algorithm achieves more than 90% effective-
ness. These results do not include hidden fields, but-
tons, and images. Although these elements are used
in the ontology extraction, they usually do not have
an associated label (e.g., hidden fields are not even
shown to the user). With the release of the W3C
standard for XHTML (basically well-formed HTML),
Web application developers can have a solid foun-
dation to make HTML pages easier to parse, assist-
ing further in the task of ontology extraction. We
plan on extending OntoBuilder capabilities to sup-
port XHTML as well.

Once terms are extracted, OntoBuilder analyzes
the relationships among them to identify ontologi-
cal structures of composition and precedence. Com-
position in Web forms is constructed through three
techniques, namely multiple term association, name
similarity, and domain normalization. Multiple term
association involves the association of multiple terms
with the same label, in which case all terms are
named and grouped under that label. As an ex-
ample, consider the American Airlines Web site pre-
sented in Figure 3, where the label Departure Date:
relates to three different fields of month, day, and
time. Name similarity groups entry labels that share
identical prefix. Domain normalization involves the
splitting of a term into subterms through recognition
of known domains (such as day and time). There-
fore, a time domain will be split into subterms, rep-

resenting hours, minutes and AM/PM information.
Precedence determines the order of terms in the
application according to their relative order within
a page and among pages. For example, car rental
forms will present pickup information before return
information. Also, airline reservation systems will in-
troduce departure information before return informa-
tion. It is our conjecture (supported by experiments)
that precedence reflects time constraints of the appli-
cation business rules and thus can be used to match
better heterogeneous ontologies. For a concrete ex-
ample, see Section 2.2.

2.2 Ontology matching

Ontology matching aims at refining domain informa-
tion by mapping various ontologies within the same
domain. OntoBuilder supports an array of match-
ing and filtering algorithms. There are four main
algorithms that form the core of OntoBuilder match-
ing process, namely word similarity, string matching,
value normalization, and value matching. Additional
algorithms can be implemented and added to the tool
as plug-ins. All algorithms are extensions of an ab-
stract algorithm interface. The interface describes
the signature (methods and functions) that match-
ing algorithms must implement in order to be used
in the tool. Algorithm parameters (such as weights)
are specified using an XML configuration file which
can be edited using a user-friendly interface.
Ontology matching is based on term and value
matching, the former compares labels and field names
using string matching, while the latter provides a
measure of similarity among domains, as reflected by
constrained data fields, such as drop-down lists and
radio buttons. OntoBuilder provides several prepro-
cessing techniques, based on Information Retrieval

=3 Delta Air, Lines - Trawvel, Airfare and Airline T... [:”Elgl
&

3>

File: Edit wiew Fawvorites Tools Help

@Back - O - |£| |EL| _.l\] /.j\’Search

Address |ﬂj http: fivee, delta, comfhomefindex. isp

leD

<3 AA.com - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qe - @ - ¥ B € O seach

Round-trip Reservations

-~
geptime 1o, 2
D ey g Tesenvations

Leaving fram Departure date Time

[| &0 [sep v|[o7 | E [10am]
Gaing to Return date Time

[|@l [sep v[[14 ~|E [10am ~|
FPassengers Freferred cabin

|1 v| |Ec:0n0my,-"CDac:h v| (im
Fricing - leave uncheded to find lowest fares

[Unrestricted

L

< >

&) & Internet I|

Make a Reservation

Address @ http: v, aa.com)

& Round Trip { Oneifay Multi Ciby

From: City or Airport Code Departure Date:

| | |Aug | [31 ~] [moming

To: City or Airport Code Return Date:

| | |Sep ~| [7 »][Moming
Humber of Adu“s Search © Fare

Passengers: by: (% Schedule m
C“"d’e"‘ i~ AAdvantage A s -
< >
& & Internet

Figure 3: AA versus Delta

well-known algorithms such as stoplists and dehy-
phenation. It also supports automatic domain recog-
nition and normalization to enhance the matching.

OntoBuilder employs unique algorithms for iden-
tifying structure similarity using composition and
precedence constructs. Structure similarity is de-
termined based on structure partitioning into subon-
tologies, using terms as pivots, and comparison of
subontologies. For example, using the precedence
construct and two terms in two ontologies as piv-
ots within their own ontology, OntoBuilder computes
the similarity of subontologies that contain all terms
that precede the pivots and also the subontologies
that contain all terms that succeed the pivots (recall
that Web forms enforce complete ordering of fields).
A higher similarity among subontologies increases the
similarity of the pivot terms themselves. This simple,
yet powerful algorithm, has proven to be successful in
a series of experiments performed with OntoBuilder
on variety of Web sites. For example, consider Fig-
ure 3. The form of Delta airline reservation system
contains two time fields, one for departure and the
other for return. Due to bad design (or designer’s er-
ror), the departure time entry is named dept_time_1
while return time is named dept_time 2. Both
terms carry an identical label, Time, since the con-
text can be easily determined (by a human observer
of course) from the positioning of the time entry
with respect to the date entry. For American Air-
lines reservation system (see Figure 3 on the right),
the two time fields of the latter were not labeled
at all (relying on the proximity matching capabili-
ties of an intelligent human observer), and therefore
were assigned, using composition by association, with

the label Departure Date and Return Date. The
fields were assigned the names departureTime and
returnTime. Term matching would prefer matching
both Time(dept_time_1) and Time (dept_time_2) of
Delta with Return Date(returnTime) of Ameri-
can Airlines (note that ‘dept’ and ‘departure’ do
not match, neither as words nor as substrings).
Value matching cannot differentiate the four possi-
ble combinations. Using precedence matching, Onto-
Builder was able to correctly map the two time en-
tries, since the subontologies of the predecessors of
Time (dept_time_2) and Return Date(returnTime)
match better than subontologies of other combina-
tions.

2.3 Additional features

OntoBuilder supports the use of wizards, easy-to-use
scripts. The Ontology Creation Wizard assists the
user in extracting ontologies from HTML pages. The
Ontology Merging Wizard supports the matching and
merging of ontologies.

OntoBuilder provides an easy to use environment
for ontology authoring. Therefore, it can be used to
build ontologies from scratch or refine extracted on-
tologies. It also provides conversion capabilities to
a variety of ontology formats, including the BizTalk
schema format from Microsoft. In order to provide
an intuitive interface to the user, the system imple-
ments common visualization techniques such as graph
representations and hyperbolic views for ontologies,
Web site maps, and document structures. Figure 4
provides a snapshot of OntoBuilder’s user interface.

= OntoBuilder

File Edit Ontology Tool

D EH & N & 4 2@ - P nuuress:|@hnps:ﬂwww.

avis.com/Avisvwehrhome/AvisHome

Structures Pan

il -main Panel

HTML View

[argwac tigy. DOMDocumentTypelmpl@eed 264
@ <> him!
@ <> head
@ <> syle
BASE HREF="hitp s avis.com:44 3,
<> title
@ <> title
am Avis - Renta Car
<> meta
P <> pody
A please add keywords helow
&= <> script
e <> tahle

<> pr

BEGIN FOOTER AREA
o<y
o <> table

<> br

<> pr

BN, —

Properlles Panel——————————————————

¥= Properties |

Attribute Value

Match Information
The wiza s su
Targ=i Onkzlogy. A
Ganzigate Ont gy B
kG 4 GOHPNAT BYTGTIG THO ZaUNIS (G Hakh 4102 it~

=c=32F. lly m=t -ed <he =nto agiz=. He = is e infzrmat on =nt-e mstc -

Statistics

ETT Wl

Cusuiipl un

¥~ met ¢ ThesZurus 5-=ph Slgo- Thm

G = ph 2iga T

v et ¢ Thessuius
[i]

[

0%

<Each

Statistics

|[01:27:a9 PM

Figure 4: The OntoBuilder user interface

3 System demonstration

We will demonstrate OntoBuilder using an easy-to-
follow example of matching Car rental ontologies.
The system will create ontologies of car rental Web
sites on-the-fly, and combine them into a global ontol-
ogy. The benefits of OntoBuilder in resolving, in an
automatic manner, semantic heterogeneity, including
synonyms and designer errors, will be highlighted.
OntoBuilder available at
http://www.cs.msstate.edu/ gmodica/Education/OntoBuilder.

is

References

[1] A. Anaby-Tavor, A. Gal, and A. Trombetta.
Evaluating matching algorithms: the mono-
tonicity principle. In S. Kambhampati and
Craig A. Knoblock, editors, Proceedings of the
IJCAI-03 Workshop on Information Integration
on the Web, pages 47-52, Acapulco, Mexico, Au-
gust 2003.

[2] R. Baumgartner, S. Flesca, and G. Gottlob. Su-

pervised wrapper generation with lixto. In Pro-

ceedings of the International conference on very

Large Data Bases (VLDB), pages 715-716, 2001.

[3] A. Doan, J. Madhavan, P. Domingos, and
A. Halevy. Learning to map between ontolo-
gies on the semantic web. In Proceedings of
the eleventh international conference on World
Wide Web, pages 662 673. ACM Press, 2002.

[4] N. Fridman Noy and M.A. Musen. PROMPT:

Algorithm and tool for automated ontology

merging and alignment. In Proceedings of

the Seventeenth National Conference on Artifi-

cial Intelligence (AAAI-2000), pages 450455,

Austin, TX, 2000.

A. Gal, G. Modica, and H.M. Jamil. Improv-
ing web search with automatic ontology match-
ing. Submitted for publication. Available upon
request from avigal@ie.technion.ac.il, 2003.

[5]

[6] A. Gal, A. Trombetta, A. Anaby-Tavor, and
D. Montesi. A model for schema integration in
heterogeneous databases. In Proceedings of the
7th International Database Engineering and Ap-
ggggtion Symposium, Hong Kong, China, July

J. Madhavan, P.A. Bernstein, and E. Rahm.
Generic schema matching with cupid. In Pro-
ceedings of the International conference on very
Large Data Bases (VLDB), pages 49-58, Rome,
Italy, September 2001.

8]

[9]

[10]

Emilia Martins and Hasan J amil

Ethosource. Internet Add
http://sunflower.bio.indiana.edu/~bbleakle /

G. Modica. A framework for automatic ontol-
ogy generation from autonomous web applica-
tions. Master’s thesis, Mississippi State Univer-
sity, July 2002.

G. Modica, A. Gal, and H. Jamil. The use of
machine-generated ontologies in dynamic infor-
mation seeking. In C. Batini, F. Giunchiglia,
P. Giorgini, and M. Mecella, editors, Cooperative
Information Systems, 9th International Confer-
ence, CooplS 2001, Trento, Italy, September 5-7,
2001, Proceedings, volume 2172 of Lecture Notes
in Computer Science, pages 433—448. Springer,
2001.

