
BPModelMasher: Manage Your Process Variants
Effectively

Sherif Sakr1, Emilian Pascalau2, Ahmed Awad2, Mathias Weske2

1 NICTA and University of New South Wales, Australia
ssakr@cse.unsw.edu.au

2 Hasso-Plattner-Institute, University of Potsdam, Germany
{emilian.pascalau, ahmed.awad, mathias.weske}@hpi.uni-potsdam.de

Abstract. Nowadays, modern organizations build large repositories of process
models to describe and document their daily business operations. One reason
for the large number of process models is the need to adapt with differnt busi-
ness contexts, i.e. process variants. Automated maintenance of the consistency
between process variants is an important goal that saves the time and efforts of
process modelers. We present a query-based approach to maintain consistency
among process variants called BPModelMasher. In particular, we maintain the
link between the variant process models by process model views. These views are
defined using, BPMN-Q, a visual query language for process models. Dynamic
evaluation for the defined queries of the process views guarantee that the process
modeler is able to get up-to-date and consistent status of the process model. In
addition, our view-based approach allows building multiple configurations for a
holistic view of related variants of the same process model. The conceptual re-
sults are illustrated with a real-world sample process on customer service from
eBay.

1 Introduction

Business process models play an effective role in providing a better understanding of the
business and facilitating communication between business analysts and IT experts. The
intensive use of business process models has its flip side. In practice, business processes
do not exist only under a single version which covers all the issues of the whole market.
Instead, many variants of a process may exist within the same enterprise in order to deal
with different business situations such as: targeting different customer types, relying on
particular IT systems or complying with specific national regulations. Therefore, we
can establish an analogy between process variants on the one hand and object oriented
inheritance on the other hand. A process variant is like a child class which extends
or overrides the behavior of the parent process. Usually, these variants are maintained
manually. A direct result of this manual maintenance is the risk of inconsistency. This
inconsistency appears when a parent process’s behavior is updated without updating the
child’s behavior accordingly [7,8]. Nevertheless, multinational companies, e.g, eBay,
have to keep many variants of business processes in order to deal with the previously
mentioned different business situations. Currently, a Save-as approach is followed to
create such variants which leads to losing the link between related models and makes it
possible to have many redundant models and inconsistent situations.



The goal of this demonstration is to present a novel framework for simplifying de-
signing and managing business process model variants called BPModelMasher. The
framework takes advantage of process model repositories during the design time in
order to facilitate the reuse of process model fragments. By means of partial process
models, the user can model new variant processes efficiently. Each partial process model
is basically using two sets of notations: 1) Common process modeling constructs (e.g.,
tasks, control routing, control flow edges) which are used to imperatively describe the
new functionality provided by the process model. Elements of a partial process model
created using this notation are called the concrete parts of the model. 2) A set of nota-
tion which is used to create views on the inherited behavior from the parent process. To
create these views, we use BPMN-Q [1], a visual language to query business process
models. Query elements of the partial process model are called the variable parts. Us-
ing partial process models, we replace the manual save-as style of processes to create
variants with an approach that keeps the link between child and parent processes by
means of defining process views (queries).

Our framework is built on top of the open modeling platform and repository Oryx [5],
and the BPMN-Q query language [1,10] as a means to access and retrieve process
components from the process model repository. In particular, we summarize the main
strengths of our demonstrated system as follows: 1) It reduces the time and effort of the
business process modeling task [10]. 2) The enabled reuse and view-definition facilities
on the process fragment level improve the quality and maturity of the newly devel-
oped variant process models and relaxes the learning curve, particularly for novices in
a business domain [2]. 3) It facilitates the integration of different process views for a set
of underlying low-level process models and automatically maintains the consistency
among them [7]. This can be seen as supporting multiple inheritance among process
variants.

2 Real-World Use Case of View-Based Management for Process
Variants

Currently, there are a number of graph-based business process modeling languages
(e.g., BPMN and EPC). Despite their variance in expressiveness and modeling nota-
tion, they all share the common concepts of tasks, events, gateways (or routing nodes),
artifacts, and resources, as well as relations between them, such as control flow. To de-
fine views over parent processes, we use the BPMN-Q notation [1,10]. The language
supports, by means of visual notations, querying all the control and artifact concepts of
business process models. Moreover, it introduces a set of new abstraction concepts that
are useful for different querying scenarios. The structural matching of a query against
a process results in a process subgraph (process fragment). In case that the subgraph is
empty, we know that there is no match. Otherwise, the subgraph represents the matching
part of the process to the query. Figure 1(a) illustrates a sample process model defini-
tion using the BPMN notations, Figure 1(b) illustrates a sample definition of a process
model view using the BPMN-Q notations and that nodes and edges highlighted in grey
in Figure 1(a) illustrate the matching part of the process model.

With more than 90 million active users globally, eBay is the world’s largest online
marketplace. eBay connects individual buyers and sellers, as well as small businesses



B

C

D

EA

(a) Sample business process model

A D//

(b) A BPMN-Q query

Fig. 1. Example matching process between a sample process model and a BPMN-Q query

take call

route to 

intercept 

queue create case 

manually in 

iPop

ask for 

authentication 

data
add 

customer 

to case

authentify 

manually via 

CSI

end and 

track call

ask for item ID 

and assign to 

case

Help or refer to 

hotline, end and 

track call

ask for 

issue

take call
create 

case

ask for 

authentication 

data
add 

customer 

to case

authentify 

manually via 

CSI

end and 

track call

ask for 

issue

Parent process

Child process

(a) An Example of Parent Process Model vs. Child Process Model

Route to 

intercept queue
take call

create case 

manually in iPop

ask for 

authentication 

data

//

ask for issue
//

Help or refer to 

hotline, end and 

track call

ask for item ID 

and assign to 

case

Q1

Q2

(b) A Partial Process Model to Express Inheritance Among Process Variants

Fig. 2. View-based management of process variants

in 38 markets using 16 languages 3. Therefore, eBay has huge repositories of business
processes. However, many of these processes are variants of other processes. The vari-
ability is imposed on a vertical axis (represented by different departments within the or-
ganization) and on a horizontal axis (emphasized by different business elements and/or
business aspects, i.e., regulations, IT infrastructure, customer types, countries, payment
methods). In principle, the number of possible process variations is determined by the
degree of freedom the system has, i.e., the number of possible arrangements of different
business contexts. A business process that is influenced by 6 business context elements
{b1, . . . , b6}, e.g., country, region, etc, that respectively have the following number of
subtypes {8, 2, 5, 5, 3, 7}, will end up having more than 8000 variants. The immense
management effort that is required to ensure the consistency of the process models in
such a context is a very difficult and complex undertaking.

Figure 2(a) illustrates two variants of an eBay process model in the context of cus-
tomer support. As the labels in the figure state that one of the models is called a Parent
process and the other is called a Child process. A child process can reuse either
parts of or the entire parent process. The terminology of child and parent is related to the
inheritance concept, as the child (sub) process reuses behavior from the parent (super)
process, similarly to how subclasses reuse (inherit) functionality from the super-classes.
Any arbitrary process can be used as a parent process. Currently, a child process is de-

3 http://www.ebayinc.com/who; June 6th 2010

http://www.ebayinc.com/who


rived by making a copy of the parent process and editing that copy, e.g., adding new
activities or arbitrary control flow elements. Hence, there is no connectivity between
the parent and the child processes. That is, a parent process could be edited by an-
other modeler who might add new functionality without it being reflected on the child
process, thus causing inconsistency between the child and parent processes. Manual
maintenance of process models consistency is quite exhaustive and inefficient.

The notion of partial process model has been designed to address the above men-
tioned challenges [2,7]. It describes a desired process model through a combination
of process model concrete elements and process views (queries). Figure 2(b) shows a
partial process model that models how the Child process of Figure 2(a) can be
obtained and maintained from the Parent process, depicted in the same figure. In
Figure 2(b), the parts with grey background represent new activities that are introduced
on the child process. To keep the relationship with inherited behavior, queries are used.
Q1 keeps the link with activity "take call" from the parent process model. Also,
Q2 keeps the relationship with the behavior of the parent process between activity "ask
for authentication data" on the one hand and a termination possibility and
activity "ask for issue" on the other hand. Thus, if the parent process behavior
is changed by any means of, e.g., adding extra activities between the two activities, this
is updated on the child process by reevaluating the queries against the parent process.

Once a partial process model is defined, it can be stored in the repository as a sepa-
rate artifact that can be invoked in future. Indeed, there are two ways to invoke partial
models. The first invocation is to view it. In this case, all queries in the partial model
are matched to the respective parent processes. Matching parts are merged with con-
crete parts and the modeler is given an up-to-date view on how the child process looks
like. In the view mode, the modeler might make changes to the process. In this case,
if the change concerns overriding the behavior from the parent process, the modeler
is warned and switched to the editing mode. The other invocation is to edit the partial
process model. In that case, the modeler is allowed to arbitrarily edit query components
or concrete components of the child process.

3 System Architecture

The architecture of the BPModelMasher framework is illustrated in Figure 3 and con-
sists of the following main components.

– Process Modeling, Querying, and Composition Environment provides the pro-
cess designer with a user-friendly modeling interface [5]. Users express their in-
tention by means of a partial process model. The query interface extracts the set of
process model queries from the partial process model, and passes them on to the
query processor.

– Process Model Repository. Our framework can be connected to several, disparate,
repositories to query process models that are stored remotely [10].

– Uniform Language Interface translates process models of specific languages to a
common representation that is suitable to process model querying [10]. This allows
to query a larger set of process models and can further be used to unify the query
interface and processor toward different process definition languages [9].

– Query Processor & Process Model Indexes. The query processor evaluates the
queries received from the query interface [10]. It provides support for the relax-



Server

Internal Storage

H
T

T
P

H
T

T
P

Repository1 Repository2 Repositoryn

Uniform Language Interface

Process 

Model 

Indexer

Process Model
Index

Query 

Processor

Client

Model DesignerQuery Interface

R

R R

RR R

R

current model

q
u

e
ry

 r
e

s
u

lt
s

q
u

e
ry

 r
e

s
u

lt
s Model Composer

R

R

Fig. 3. Framework Architecture

ation and refinement of user queries. In case the queries do not return a sufficient
results, the query processor is able to relax the query according to some similar-
ity notions [3,6]. Similarly, if a query returns too many results, the user needs to
be provided with the possibility of refining and improving their request. In order to
further improve the searching, process models could be indexed upfront to expedite
query evaluations.
The model designer component of our framework is the Oryx editor [5,10], an on-

line extensible process modeling platform for research. The query interface and query
processor for BPMN-Q [1] components have been implemented as a plugin to the Oryx
editor and are able to run process model queries against the Oryx online process model
repository. The model composer component is implemented as another plugin to the
Oryx editor that uses the BPMN-Q query processor to evaluate the results of each query
in the partial process model and then returns the composed process view to the end-user.

4 Demonstration

The demo will show that the business process modeling task can be very interactive
and efficient using the proposed framework. In particular, we will demonstrate that the
framework can improve the quality and the maturity of the process modeling task by
reusing different process model components which are previously developed by busi-
ness experts. Moreover, we will show how process designers can build different pro-
cess views over the underlying process models and how the framework can maintain
the consistency among these process variants automatically. The framework will be
demonstrated using three different datasets: 1) The process model repository of eBay
that has a set of innovative and special characteristics. 2) The dataset collected from
the online business process modeling repository, ORYX. . 3) The dataset of the SAP
reference model [4]. These datasets covers many application domains. Sample partial
process models and process views will be ready to run, but users can visually edit and



Query

Fig. 4. Screenshot of BPModelMasher design editor.

design their own ad-hoc views (see Figure 4 for a snapshot). The end users will also be
able to view and validate the resulting process models for their ad-hoc definitions2.

Besides the framework demonstration, we will discuss about the design choices
that we have made on defining the granularity of process model components, similarity
matching scores of process model components and the ranking process of the composed
process models. In addition, the results of a user-study evaluation on the precision of the
ranking of the composed process models over comprehensive datasets will be exhibited.

References
1. A. Awad. BPMN-Q: A Language to Query Business Processes. In EMISA, 2007.
2. A. Awad, M. Kunze, S. Sakr, and M. Weske. Design By Selection: A Reuse-based Approach

for Business Process Modeling. In ER, 2011.
3. A. Awad, A. Polyvyanyy, and M. Weske. Semantic Querying of Business Process Models.

In EDOC, pages 85–94, 2008.
4. T. Curran and G.Keller. SAP R/3 Business Blueprint - Business Engineering mit den R/3-

Referenzprozessen. Addison-Wesley, 1999.
5. G. Decker, H. Overdick, and M. Weske. Oryx - sharing conceptual models on the web. In

ER, pages 536–537, 2008.
6. R. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos. Graph Matching Algorithms for Business

Process Model Similarity Search. In BPM, pages 48–63, 2009.
7. E. Pascalau, A. Awad, S. Sakr, and M. Weske. On Maintaining Consistency of Process Model

Variants. In BPM Workshops, 2010.
8. E. Pascalau, A. Awad, S. Sakr, and M. Weske. Partial Process Models to Manage Business

Process Variants. In IJBPIM, 2011.
9. M. La Rosa, H. Reijers, W. Aalst, R. Dijkman, J. Mendling, M. Dumas, and L. Garcia-

Banuelos. Apromore: An advanced process model repository. Expert Syst. Appl.,
38(6):7029–7040, 2011.

10. S. Sakr and A. Awad. A Framework for Querying Graph-Based Business Process Models.
In WWW, pages 1297–1300, 2010.

2 Online demo and screen casts: http://bpmnq.sourceforge.net/BPModelMasher.html


	BPModelMasher: Manage Your Process Variants Effectively
	Sherif Sakr, Emilian Pascalau, Ahmed Awad, Mathias Weske

