Supporting Healthcare Processes with
YAWL4Healthcare

Ronny S. Mans'3, Nick C. Russell?, Wil M.P. van der Aalst', Arnold J.
Moleman?, Piet J.M. Bakker?

! Department of Information Systems, Eindhoven University of Technology, P.O. Box
513, NL-5600 MB, Eindhoven, The Netherlands.
{r.s.mans,w.m.p.v.d.aalst}@tue.nl
2 Carba-Tec Pty Ltd, 128 Ingleston Rd, Wakerley QLD 4154, Australia.
nrussell@carbatec.com.au
3 Department of Quality Assurance and Process Innovation, Academic Medical
Center, University of Amsterdam, P.O. Box 2260, NL-1100 DD, Amsterdam, The
Netherlands. {a.j.moleman,p.j.bakker }@amc.uva.nl

Abstract. In healthcare, processes concerning the diagnosis and treat-
ment of patients can be best characterized as weakly-connected inter-
acting light-weight workflows where tasks reside at different levels of
granularity. Moreover, in hospitals many workitems are linked with ap-
pointments. To date, Workflow Management Systems (WfMSs) fall short
in supporting healthcare processes as no scheduling support and inter-
workflow support is offered. To address these problems, we present the
YAWL4Healthcare WEMS which supports the seamless integration of
unscheduled (flow) and scheduled (schedule) tasks and which allows for
dividing complex entangled processes into simple autonomous fragments
that may cope with different levels of granularity. Note that our system
has been realized by adding significant extensions to the open-source
YAWL W{MS.

1 Introduction

In healthcare organizations, many complex are undertaken. Here, Workflow Man-
agement Systems (WfMSs) are interesting as, based on process definitions, they
are able to manage the flow of work such that individual workitems are done at
the right time by the proper person.

However, in order to identify the limitations for applying workflow technol-
ogy in the healthcare domain we have performed a large case study in which
a representative healthcare process of the AMC hospital in Amsterdam, The
Netherlands, has been implemented in multiple WEMSs [6]. This exercise re-
vealed two important shortcomings:

First, contemporary WfMSs offer workitems to users via specific worklists.
Users select the workitems they will perform without having a schedule in mind.
However, in hospitals, many workitems are linked to appointments. Moreover,
for these appointments enough time needs to be reserved in which they can be

performed in order to prevent the need for rescheduling. Unfortunately, current
Wi{MSs do not provide support for the calendar-based scheduling of workitems
such that they are performed by one or more resources and at a specified time.

Second, the process of diagnosing or treating a patient typically consists of the
execution of a number of smaller workflow fragments that run in conjunction with
each other. Although these fragments execute independently from each other, a
certain “magnetic force” exists between them, i.e. these fragments interact with
each other. Additionally, these fragments need to cope with different levels of
granularity. For example, a doctor may decide during a first visit of a patient that
a lab test is needed, the patient needs to be discussed during a multidisciplinary
meeting, and that the results of the latter two need to be available for the second
visit of the patient. To date, contemporary WfMSs only support monolithic
processes and do not offer support for weakly-connected interacting lightweight
workflows which can cope with different levels of granularity.

In order to deal with the two above mentioned shortcomings, we have focused
on the general problem of how W{fMSs can be extended with facilities for both
scheduling support and inter-workflow support [5,6]. In order to demonstrate our
ideas we have developed a concrete prototype implementation of a WfMS which
allows for providing improved support for healthcare processes. This system,
called YAWL4Healthcare, has been realized by adding significant extensions to
the open-source YAWL WIMS [4] and will be the focus of this paper.

2 The YAWL4Healthcare System

In this section, the YAWL4Healthcare system will be discussed in detail. First,
we focus on the provided scheduling and inter-workflow support. Next, we focus
on the architecture of the system.

2.1 Scheduling Support

The main scheduling support features will be illustrated using a small scenario
for which the corresponding process definition is shown in the YAWL process
editor in Figure la. As for the “physical examination” and “consultation” tasks
a concrete appointment is needed they are annotated with a calendar icon. More-
over, they are called schedule tasks. The tasks annotated with a person icon are
called flow tasks and workitems for them are offered via an ordinary work-list.
Moreover, with regard to the scheduling of appointments, for each task its du-
ration is indicated and the “roles” attribute defines the role for each resource
that is required to perform the task. For schedule tasks it can also be indicated
whether the patient is required to be present.

Assume that an instance of the process has been started and that it has been
indicated that the availability of patient “John” needs to be taken into account.
As aresult, as can be seen in Figure 1, an appointment is booked for the “physical
examination” task which appears in the calendars of patient “John”, assistant
“Jane”, and nurse “Sue” and an appointment is booked for the “consultation”

register check
patient patient data

physical
examination

make_documents give_information_and_brochures -
a) Defining a model in the YAWL editor. For tasks annotated with a calendar icon an appointment is needed whereas for
tasks annotated with a single person icon this is not needed. Moreover, the ‘physical examination’ task needs to be done by
both an assistant and a nurse whereas the ‘consultation’ task only needs to be done by a ‘doctor’.
0 2011

Nick Marc John

09 May 03 fay 09 May

Calendar

09 May

09 oo H2E Not available
10 00 fl 22 deros4:physical_examination ¥ demo:S4:physical_examination_4
£ (location) £ (location)
F SOF meeting HE meeting |
0 demo:S4:consultation_& # demo:54:consulkation_& {location)
F % (location)

b) State of the calendars after scheduling. The calendars of patient ‘John’, assistant ‘Fred’, assistant ‘Jane’, doctor ‘Marc’,
and doctor ‘Nick’ are shown respectively. When scheduling the availability of resources is taken into account.

Fig. 1. Scheduling of appointments within the YAWL4Healthcare system.

task which appears in the calendar of patient “John” and doctor “Nick”. Note
that the system ensures that the final scheduling of tasks occurs in the same
order as the sequence of schedule tasks in the accompanying process definition
for the case. Moreover, sufficient time is reserved between two scheduled tasks. In
case it is found out that too little time is left for performing preceding work-items
for a scheduled schedule task, the corresponding appointment is automatically
rescheduled. Also, a user can trigger the rescheduling of a task.

2.2 Inter-Workflow Support

Our extensions for augmenting YAWL with inter-workflow support are based on
the Proclets framework [3]. First, we briefly introduce the Proclets framework.
Proclets provide a framework for modeling and executing lightweight workflows
that may reside at different levels of aggregation and interact with each other
[3]. A Proclet class specifies which tasks need to be executed and in which order.
Here, the process definition of a Proclet class is based on the YAWL language.

Proclet instances interact via channels. A channel can be used to send a
performative (a specific kind of message) to one Proclet instance or a group
of Proclet instances. Proclet classes are connected to channels via ports. Each
outgoing port is connected with exactly one incoming port called an external
interaction. Furthermore, every port is connected to one interaction point rep-
resenting a specific point in a Proclet class at which interactions with other
Proclet classes may take place. Furthermore, for an interaction point having
only incoming ports, it may be desired that the receipt of an individual perfor-
mative is followed by the subsequent sending of a performative at a later point
in the execution of that Proclet instance. In that case, two interaction points are
connected via an internal interaction.

lab

0.* 0.*

internal follows preceding
performative interaction 1.1 1.1
0.* follows 0.*
0.* preceding 0.*| MDM

visit

([send |\

‘ report '

0.* 0..*
preceding follows

b) class diagram containing the three Proclet classes

output port with cardinality * (zero or more
recipients) and multiplicity 1 (precisely one
occurrence during the lifetime of the
Proclet)

output port with cardinality 1 (precisely one
recipient) and multiplicity + (at least one
occurrence during the lifetime of the
Proclet)

interaction
point

input port with cardinality 1 and multiplicity
2 (at most one occurrence during the
lifetime of the Proclet)

a) visit, lab, and MDM Proclet classes c) examples of port attributes

prepar
ations

Fig. 2. Three Proclet classes: visit, lab, and MDM.

Figure 2 shows three Proclet classes. The “visit” Proclet class describes a
visit of a patient to the hospital, the “lab” Proclet class a single lab test that is
performed, and the “MDM” Proclet class a multidisciplinary meeting in which
multiple patients are discussed.

In our system, the process definition of a Proclet class is defined in the YAWL
editor (top of Figure 3a). For tasks and input conditions for which interactions
with other Proclet classes are necessary, a so-called interaction point (visualized
by a black dot) is defined via the Interaction Definition Editor. Via ports (visu-
alized by a white dot), interaction points are connected with interaction points
of other Proclet classes.

E:ivisit
- = il lab-62 createCondition
Cple—lo s @ |-
e M lvpr T U
initial freceive /declde brochures | 8q decide visit-63 createCondition
pr\eparations !) ~]

| I
, |
}
P

/ \\ n1anesth_V\S|t_|n 1,

mdo_meeting 70, register

b) Interactions that are defined during
visit vistC_out1,? - execution of the ‘decide’ task of the ‘visit’
fragment. For example, a new instance
of the ‘visit’ fragment needs to be created
and an interaction with the ‘register’ task
of the ‘mdo_meeting’ fragment is desired.
a) Defining a Proclet model in the YAWL editor and the Interaction Definition Editor. Via
dotted arcs, tasks and interaction points are linked with each other. Moreover,
interactions points are indicated by black dots whereas ports are indicated by white dots.

~

INBOX:create Condition INBOX:TECEIVE § ¢p-dacide mdo vistc out! 7

visit_visitC_in:1,? lab_visit_in1,? lab_visitC_out1,?

Fig. 3. Definition and selection of interactions between workflow fragments.

At run-time, for a certain entity (e.g. a patient or a lab test), interaction
points allow for easily nominating interactions with existing and future Proclet

instances. That is, for a task instance which is linked with an interaction point
which has only outgoing arcs, it is automatically identified which potential in-
teractions with existing and future Proclet instances are possible. Afterwards,
the desired interactions can be nominated. For each entity these interactions are
saved in an interaction graph (Figure 3b). For example, assume that for patient
“Sue” it is decided during the “decide” task of the first visit, that a next visit
is necessary, a lab test is required, and that she needs to be discussed during a
multidisciplinary meeting. Finally, the result of the lab test and the multidisci-
plinary meeting need to be available for the second visit. The first part of this
scenario is defined in the interaction graph of Figure 3. The “decide” task is
represented by the “visit,69,decide” node, the creation of the second instance of
the “visit” fragment by the “visit,-63,createCondition” node, the creation of the
lab fragment by the “lab,-62,createCondition” node, and the registration for the
multidisciplinary meeting by the “mdo_meeting,70,register” node. Note that for
the “visit,69,decide” node it is automatically calculated that the aforementioned
interactions are possible.

2.3 Architecture

In Figure 4 the architecture of our system is shown. The main components are
the following.

— The Workflow Engine is the 'core’ of the system and takes care of the routing
of cases. The engine is realized by using the YAWL W{MS.

— For a task that becomes available for execution, the corresponding work
item is communicated to users via the Workflow Client Application. This
component is realized using Outlook 2003 clients.

— The Scheduling Service is responsible for providing scheduling facilities to
the WIMS. This service has been realized as a Java service which commu-
nicates with the Workflow Engine and the Calendars component via SOAP
messages.

— The Calendar component is responsible for providing a view on the calendars
of users and for manipulating their contents. Here we selected Microsoft
Exchange Server 2007 as the system for storing the calendars of users.

— The Inter-Workflow Service adds the desired inter-workflow support. Here,
the Interaction Service is responsible for managing interactions between Pro-
clet instances at runtime and has been set-up as a YAWL Custom Service.
The Interaction Definition Editor offers tools that allow for defining the
remaining aspects of Proclet classes on top of process definitions that are
defined in the YAWL editor (e.g. interaction points, ports). Additionally,
tools are offered such that at instance level human actors can define nec-
essary interactions between Proclet instances. This subcomponent has been
implemented as a Java application.

The YAWL4Healthcare WfMS has been developed as a research prototype. So
far, we tested the entire system with a number of processes. However, regarding

Inter-Workflow Service Workflow Engine

1 .
]

I Java YAWL V YAWL ‘ i| AxiS2 service :Scshed_ulmg
I | applica O custom | | .L ! ervice
I tion service | | LN N AR
| Interaction Interaction ! !
! Definition Service I adaptor ===t
| Editor 0 ______ (A2 service) [avaintertace |} S22

1

o
|

Workflow | Outlook | [Outiook || Microsoft ||
Client ! 2003 2003 | Exchange Ic
L alendars
Application | client client |i Server 2007 |
Lo —— = — o

Fig. 4. Architecture of the YAWL4Healthcare system.

the scheduling support related components of the system, an approach has been
applied in which the “Workflow Engine” and the “Scheduling service” have been
systematically tested [7]. For the future, we plan to evaluate the operation of
our resultant system in a real-life scenario at the AMC hospital.

3 Links

For the YAWL4Healthcare system an environment to test and play with the
system is provided via SHARE [1]. The environment includes the system itself,
a tutorial, two screencasts, and several input models. Furthermore, additional
information can be found on [2].

References

1.
2.
3.

SHARE Website. http://is.tm.tue.nl/staff/pvgorp/share/.
YAWL4Healthcare Website. http://www.processmining.org/yawl4healthcare/start.
W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443-482, 2001.

. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N.C. Russell, edi-

tors. Modern Business Process Automation: YAWL and its Support Environment.
Springer-Verlag, 2010.

R.S. Mans. Workflow Support for the Healthcare Domain. PhD thesis, Eindhoven
University of Technology, June 2011. See http://www.processmining.org/blogs/
pub2011/workflow_support_for_the_healthcare_domain.

R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J. Bakker, A.J. Moleman, K.B.
Lassen, and J.B. Jgrgensen. From Requirements via Colored Workflow Nets to
an Implementation in Several Workflow Systems. Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC) III, 5800:25-49, 2009.

R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker, and A.J. Moleman.
Model-based Development and Testing of Process-Aware Information Systems. In
Proceedings of The First International Conference on Advances in System Testing
and Validation Lifecycle, pages 129-134. IEEE Computer Society Press, 2009.

