
Making YAWL and SmartPM Interoperate:
Managing Highly Dynamic Processes by

Exploiting Automatic Adaptation Features

Andrea Marrella1, Massimo Mecella1, Alessandro Russo1

Arthur H.M. ter Hofstede2,3, and Sebastian Sardina4

1 Sapienza Università di Roma, Italy
{marrella|mecella|arusso}@dis.uniroma1.it

2 Queensland University of Technology, Australia
3 Eindhoven University of Technology, the Netherlands

a.terhofstede@qut.edu.au
4 RMIT University, Australia

sebastian.sardina@rmit.edu.au

Abstract. In the last years, the trade-off between flexibility and sup-
port has become a leading issue in workflow technology. In this paper
we show how an imperative modeling approach used to define stable
and well-understood processes can be complemented by a modeling ap-
proach that enables automatic process adaptation and exploits planning
techniques to deal with environmental changes and exceptions that may
occur during process execution. To this end, we designed and imple-
mented a Custom Service that allows the Yawl execution environment
to delegate the execution of subprocesses and activities to the SmartPM
execution environment, which is able to automatically adapt a process
to deal with emerging changes and exceptions. We demonstrate the fea-
sibility and validity of the approach by showing the design and execution
of an emergency management process defined for train derailments.

1 Introduction

Process Management Systems (PMSs, a.k.a. Workflow Management Systems)
are applied to support and automate the enactment of processes with the aim to
increase their efficiency and effectiveness. Classical PMSs offer adequate process
support as long as the processes are structured and do not require much flexi-
bility. In the last years, the trade-off between flexibility and support has become
a leading issue in workflow technology [9]. An important aspect of flexibility is
the ability to react to exceptions that may occur during runtime by dynamically
adapting the process.

A PMS that supports automatic adaptivity is able to automatically change
the schema of affected instances in such a way that they can still be completed,
according to the exceptions that have been raised. Process schemas are designed
in order to cope with potential exceptions, i.e., for each kind of exception that
is envisaged to occur, a specific contingency process (a.k.a. exception handler



2 A. Marrella et al.

or compensation flow) is defined, with the challenge that in many cases such a
compensation cannot be performed by simply undoing and then redoing certain
actions. Such an exception handler can be compared to the try-catch approach
used in some programming languages such as Java; the catch is the definition
of the possible exception and the specification, defined at design-time by the
process engineer, of how to deal with it. An interesting example is provided
by the exception handling capabilities of the Yawl system [8], that is among
the most well-known PMSs coming from academia. For each exception that can
be anticipated, it is possible to define an exception handling process, referred
to as an exlet, which includes a number of exception handling primitives (for
removing, suspending, continuing, completing, failing and restarting a workitem)
and one or more compensatory processes in the form of further Yawl processes
or in the form of worklets (i.e., self-contained Yawl specifications executed as a
replacement for a workitem or as compensatory processes).

Taken Yawl’s exception handling framework as a starting point, the inno-
vation of this work is the automatic construction of exception handlers at run
time, i.e. the automatic synthesis of the catch blocks. Currently, exception han-
dlers for exceptions that have not occurred before and have not been anticipated
beforehand have to be defined by a process administrator and this is a manual
activity. The proposed demo shows how an imperative modeling approach used
to define stable and well-understood processes (we will illustrate this by extend-
ing the Yawl environment as it provides strong support for plugging in external
tools and services) can be complemented by a modeling approach that enables
automatic process adaptation and exploits planning techniques to deal with envi-
ronmental changes and exceptions that may occur during process execution. To
this end, we designed and implemented a Custom Service that allows the Yawl
execution environment to delegate the execution of subprocesses and activities
to the SmartPM execution environment [5, 4], which is able to automatically
adapt a process to deal with emerging changes and exceptions. We demonstrate
the feasibility and validity of the approach by showing the design and execution
of an emergency management process defined for train derailments. The high
dynamism of the operating environment requires some activities to be executed
by the SmartPM subsystem and we show how it is able to automatically build
and execute recovery plans in response to environmental changes and external
events.

2 The SmartPM Execution Environment

SmartPM (Smart Process Management) [5, 4] is a model and a proof-of-concept
PMS featuring a set of techniques providing support for automatic adaptation
of processes. Such techniques are able to automatically adapt processes with-
out explicitly defining handlers/policies to recover from exogenous events and
without the intervention of domain experts. SmartPM adopts a service-based
approach to process management, that is, tasks are executed by services (that
could be software applications, human actors, robots). The environment, services



Making YAWL and SmartPM Interoperate 3

and tasks are grounded in domain theories described in Situation Calculus [6].
Situation Calculus is specifically designed for representing dynamically changing
worlds in which all changes are the result of the tasks’ execution. Each task is
described in terms of its preconditions and effects, and can be considered as
a single step that consumes input data and produces output data. Data are
represented through process variables whose definition depends strictly on the
domain of interest of the process involved. The model allows to define logical
constraints based on process variables that can be used to constrain task as-
signment (through task preconditions), to assess the outcome of a task (through
task effects) and as guards in expressions at decision points (e.g., for cycles
or conditional statements). Processes are represented as IndiGolog programs.
IndiGolog [2] allows for the definition of programs with cycles, concurrency,
conditional branching and interrupts that rely on program steps that are actions
of some domain theory expressed in Situation Calculus. More details about the
SmartPM general framework and the formalization of processes can be found
in [4].

SmartPM provides mechanisms for adapting process schemas that require
no pre-defined handlers. To this end, we use a specialized version of the con-
cept of adaptation from the field of agent-oriented programming [3]. Specifically,
adaptation in SmartPM can be seen as reducing the gap between the expected
reality, the (idealized) model of reality that is used by the PMS to reason, and
the physical reality, the real world with the actual values of conditions and out-
comes. Exogenous events and tasks’ termination may lead to a deviation of the
physical reality from the expected reality. An execution monitor is responsible
for detecting whether the gap between the expected and physical realities is such
that the original process δ0 cannot progress its execution. In that case, the PMS
has to find a recovery process δh that repairs δ0 and removes the gap between the
two kinds of reality. Currently, the adaptation algorithm deployed in SmartPM
synthesizes a linear process δh (i.e., a process consisting of a sequence of tasks)
and inserts it at a given point of the original process - specifically, that point of
the process where the deviation was first noted. To provide more details, let us
assume that the current process is δ0 = (δ1; δ2) in which δ1 is the part of the
process already executed and δ2 is the part of the process which remains to be
executed when a deviation is identified. The adapted process is δ′0 = (δ1; δh; δ2).
However, whenever a process needs to be adapted, every running task is inter-
rupted, since the “repair” sequence of tasks δh = [t1, . . . , tn] is placed before
them. Thus, active branches can only resume their execution after the repair
sequence has been executed. This last requirement is fundamental to avoid the
risk of introducing data inconsistencies during a repair.

3 The SmartPM Service

The service-oriented approach that characterizes the architecture of Yawl makes
the system easily extendable and provides direct support for implementing the
Flexibility as a Service approach [7]. In Yawl the engine manages running cases,



4 A. Marrella et al.

but is not directly responsible for task executions. Resources, entities and sys-
tems able to execute tasks are abstracted as services that interact with the Yawl
engine via a set of interfaces. Specifically, the interaction between the engine and
the Custom Services mainly occurs through Interface B, which provides an API
defining endpoints for services to establish a session with the engine, launch pro-
cess instances, check work items in and out of the engine, and retrieve process
data and state information. At design-time each atomic task in a Yawl speci-
fication can be associated with a so-called Custom Service [8] (e.g., the Default
Worklist Handler/Resource Service, the Worklet Service [1], the Declare Ser-
vice [9], etc.) that at run-time is responsible for task execution according to its
internal logic.

A complete integration between Yawl and SmartPM has thus been
achieved by designing and implementing a Yawl Custom Service, named
SmartPM Service, that enables the interaction between the two environments.
The SmartPM Service enables the decomposition of Yawl tasks into processes
to be executed by SmartPM. At design-time, the process designer is thus able
to associate atomic tasks in the Yawl specification with the SmartPM Service.
The service requires as input variable a process to be performed by SmartPM,
defined according to the formalism introduced in the previous section. If the
SmartPM process is already available at design-time, it can be directly associ-
ated with the input variable required by the service. However, a process to be
delegated to SmartPM can also be built starting from an available template,
which is configured and finalized by exploiting data produced as output by other
tasks in the main Yawl process. In this case, the executable SmartPM process
has to be produced as output by a Yawl task that precedes the task asso-
ciated with the SmartPM Service. The domain-dependent configuration of a
SmartPM template can be done either manually by a process designer or auto-
matically by a dedicated service. As any other Custom Service, the SmartPM
service implements the service-side of Interface B and is thus able to receive
notifications from the Yawl engine when a new work-item is created and del-
egated to the service for execution. Invoking the specific methods provided by
the engine-side of Interface B, the SmartPM Service is then able to check-out
a work-item (i.e., notify the engine that the work-item is going to be executed)
and execute the corresponding SmartPM input process. Once the execution of
the subprocess has been completed, the service can check-in the work-item (i.e.,
notify the engine of execution completion), again via Interface B, along with the
corresponding output. Specifically, the SmartPM Service produces as output,
among other possible values, a boolean one that indicates whether the input
subprocess was successfully completed or not. Control is then passed back to the
Yawl environment, which can continue to carry out the main process.

4 A Demonstration Scenario

As an application scenario, we consider an emergency management process de-
fined for train derailments and inspired by a real process used by the main



Making YAWL and SmartPM Interoperate 5

Italian Railway Company (that is “Reti Ferroviarie Italiane”). The correspond-
ing Yawl process to be executed is shown in Figure 1. The process starts when
the railway traffic control center receives an accident notification from the train
driver and collects some information about the derailment, including the train
ID code, the GPS location and the number of wagons and passengers. Then it
could be required to cut off the power in the area and to interrupt the railway
traffic near the derailment scene. In parallel, after having collected additional
information about the train (e.g., security equipment) and about emergency
services available in the area, an emergency response team can be sent to the
derailment scene. The information collected so far are then used for defining
and configuring an incident response plan, which is defined by the set of ac-
tivities to be executed directly on the field by first responders. Such activities
can instruct first responders to act on location for evacuating people from train
wagons, to take pictures and to assess the gravity of the accident. The high dy-
namism of the operating environment requires that such activities are executed
by the SmartPM subsystem. We assume that operators are equipped with mo-
bile devices and coordinate themselves through the SmartPM process execution
environment. Here, context-awareness and managing frequent exogenous events
(e.g., bad connections between devices and operators) is crucial. Let us suppose,
for example, that a fire breaks out in one of the wagons. From the SmartPM
point of view, it means that an exogenous event changes asynchronously the
value of the current physical reality, by turning the variable that represents the
status of the fired wagon from “safe” to “fired”. Since in the expected reality it is
forecast that every wagon is safe after passengers evacuation, the SmartPM ex-
ecution monitor senses that the discrepancy between the two realities is relevant
and starts reasoning on the basis of the available tasks and of the capabilities
provided by first responders. The target is to find a recovery process that re-
duce the above gap. In this case, SmartPM automatically builds a recovery
process that concerns reaching the location of the fired wagon and starting ex-
tinguishing fire. Such a couple of tasks is assigned to that first responder that
provides all the capabilities needed to execute them. When every wagon is evac-
uated and the situation is turned to the normality, the process control comes
back again to Yawl, that can execute the last task about the restoring of the
railway infrastructure. A screen-cast of the proposed demonstration is available
at http://www.dis.uniroma1.it/~marrella/public/DemoBPM2011.zip.

5 Conclusions

In this demonstration paper we outlined how an imperative modeling approach
used to define stable and well-understood processes can be complemented by
a modeling approach that enables automatic process adaptation. To this end,
we designed and implemented a Custom Service that allows the Yawl execu-
tion environment to delegate the execution of subprocesses and activities to
the SmartPM execution environment, which is able to automatically adapt a
process to deal with emerging changes and exceptions. We demonstrated the



6 A. Marrella et al.

Fig. 1. The Yawl process defined for a train derailment scenario.

feasibility and validity of the approach by showing the design and execution of
an emergency management process defined for train derailments.

Acknowledgments. The work of Andrea Marrella, Massimo Mecella and
Alessandro Russo has been partly supported by the projects TESTMED, FARI
2010, SmartVortex and Greener Buildings.

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Proc. of
the 14th Int. Conf. on Cooperative Information Systems (CoopIS), 291–308 (2006)

2. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-
Level Programming Language for Embedded Reasoning Agents. In: Multi-Agent
Programming: Languages, Platforms and Applications, 31–72. Springer (2009)

3. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution Monitoring of High-Level
Robot Programs. In: Proc. of the 6th International Conference on Principles of
Knowledge Representation and Reasoning (KR), 453-465 (1998)

4. de Leoni, M., Marrella, A., Mecella, M., Sardina, S.: SmartPM – Featur-
ing Automatic Adaptation to Unplanned Exceptions, SAPIENZA Università di
Roma, DIS Technical Report 04-2011. http://ojs.uniroma1.it/index.php/DIS_
TechnicalReports/article/download/9221/9141 (2011)

5. de Leoni, M., Mecella, M., De Giacomo, G.: Highly Dynamic Adaptation in Process
Management Systems Through Execution Monitoring. In: Proc. of the 5th Interna-
tional Conference of Business Process Management (BPM), 182–197 (2007)

6. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

7. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg,
H.: Flexibility as a Service. In: Proc. of Database Systems for Advanced Applications
(DASFAA) International Workshops (2009)

8. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and
Implementation of the YAWL System. In: Proc. of the 16th International Conference
on Advanced Information Systems Engineering (CAiSE), 142–159 (2004)

9. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between Flexibility and Support. In: Computer Science - R&D, 23, 99–113 (2009)


