
From UML 2.0 Sequence Diagrams to PROMELA code by Graph
Transformation Using AToM3

Mouna Ait_Oubelli, Nadia Younsi, Abdelkrim Amirat, and Ahcene Menasria

University Centre Mohamed Chérif Messaadia, Souk-Ahras, Algeria
{ aitoubelli.mouna@hotmail.com, nadia_younsi@hotmail.fr, amirat_karim@yahoo.fr, ahcene_menasria@yahoo.fr}

Abstract

 A main challenge in software development
process is to bring error detection to first phases of
the software life cycle. The Verification and
Validation (V&V) of UML diagrams is of interest in
a number of applications such as detecting flaws at
the design phase for software security, where it is
crucial to detect security flaws before they can be
exploited. In this paper, we propose an approach
using a transformation tool to create a PROMELA
code based model from UML interactions expressed
in sequence diagram to use in SPIN model checker to
simulate the execution and to verify properties
written in Linear Temporal Logic (LTL). Graph
transformation is used as an approach of model
transformation to propose a graph grammar for the
translation using AToM3 tool.

Key words

UML2.0, Sequence diagram, Graph transformation,
AToM3, PROMELA.

1. Introduction

If the software error is detected at the design
phase before of the implementation, the software
quality will acceptably be increased. For this target,
the Verification and Validation (V&V) of UML [1]
diagrams play a very important role in detecting
flaws at the design phase. Verification is the process
of determining that a simulation implementation
accurately represents the developer’s conceptual
description and specifications. Verification answers
the question: “Are we developing the simulation right
to our specifications?”. Validation is the process of
determining the degree to which the relevant aspects
of a simulation effectively represent the real world
from the perspective of the intended uses of the
simulation. Validation answers the question: “Are we
developing the ‘right’ simulation for the purposes we
have determined?”.

The Unified Modeling Language is one of the
well know and widely used standard describing
software modeling in general and communication
behavior in particular. The UML is a complete
language that is used to design, visualize, construct
and document systems. It is largely based on the

object-oriented paradigm and is an essential tool for
developing robust and maintainable software
systems. The extended vision UML 2.0 introduces
significant changes to interactions. In this study, we
focus on formal V&V of one type of UML diagrams:
“sequence diagrams”.

The Sequence diagram describes messages
exchanged between objects to accomplish tasks.
Many techniques have been proposed for V&V of
UML diagrams, for example static analysis, theorem
proving and model checker. The Model checker is
the most successful approach that's emerged for
verifying requirements. Another important
contribution is the definition of the PROMELA
(Protocol Meta Language) structure that provides a
precise semantics of most of the newly UML 2.0
introduced combined fragments, allowing the
execution of complex interactions. PROMELA is a
verification modeling language that allows the
dynamic creation of concurrent process to model, for
example, distributed systems. PROMELA models
can be analyzed with SPIN model checker, to verify
that the modeled system produces the desired
behavior. We use graph transformation to approach
the problem of transforming from sequence diagrams
to PROMELA model. Graph transformation is
increasingly popular as a meta-language to specify
and implement visual modeling techniques, such as
the UML. In this work, we use AToM3 [2] (A Tool
for Multi-formalism and Meta-Modeling) a tool
which implements the idea presented above. AToM3
has a meta-modeling layer in which formalisms are
modeled graphically and concrete syntax.

This article aims to propose an approach that
allows the generation a model code PROMELA for
UML interactions expressed in a sequence diagrams
using SPIN model checker to simulate the execution
and to verify properties written in Linear Temporal
Logic (LTL).

2. Related work

Various works intending to verify UML
diagrams. In [3], a framework is proposed for V&V
of some UML diagrams (Class diagram, State
Machine, Activity diagram and Sequence diagram).
In [10], a description of the translation of Message
Sequence Charts (MSCs) into PROMELA. Since of
MSCs is an interaction diagram from the SDL

(Specification and Description Language) family
very similar to UML's sequence diagram. Yet, the
proposed approach trait only with the basic
components but its PROMELA representation of
MSCs does not cover the combined fragments.

In [15], a metamodel-based transformation
framework is proposed to implement the mapping
from UML activity diagram to PROMELA. In [4, 5],
the translation into PROMELA and V&V using
SPIN is presented for activity diagram and in [6, 7,
8], the translation into PROMELA code from state
machine diagram. Hermann [9] uses algebraic graph
transformation, restricted to abstract syntax, to
specify transformation rules for sequence diagrams.
In [13], the translation into PROMELA from
sequence diagrams by plug in Eclipse tool. In [14],
the translation From UML 2 Sequence Diagrams to
State Machines by Graph Transformation with AGG
tool.

However, the proposed approach, present the
trace semantics of the most popular combined
fragments and their respective PROMELA code that
correctly simulates the execution traces we use a
Graph transformation tool AToM3.

3. Graph transformation with AToM3

tool

Graph transformations is the approach
that emerges from a natural and intuitive way among
the model transformation approaches, this is due to
the nature of the two concepts. The graph
transformation is a process of graph rewriting based
on graph grammars. A graph grammar is simply
a result of well-formed rule, by analogy
to Chomsky grammars where words are replaced by
graphs and term rewriting is replaced by the bonding
graph. Graph grammars are composed of production
rules each having graphs in their left and right hand
sides (LHS and RHS). The host graph is an input
graph which compared with the rules. A rewriting
system iteratively applies matching rules in the
grammar to the host graph and replaces the
sub_graph by the RHS until no more rules are
applicable.

AToM3 is a Meta-Modeling tool. As it has been
implemented in Python, it is able to run (without any
change) on all platforms for which an interpreter for
Python is available: Linux, Windows and Mac OS.
The main idea of the tool is: “everything is a model”.
During its implementation, the AToM3 kernel has
been bootstrapped from a small initial kernel.
Models were defined for boots trapped parts of it,
code was generated and then later incorporated into
it. Also, for AToM3 users, it is possible to modify
some of these model defined components, such as the
meta-formalisms and the user interface. The main
component of AToM3 is the Kernel, responsible for
loading, saving, creating and manipulating models
(at any meta-level, with the Graph Rewriting
Processor and graph grammar models), as well as for

generating code for customized tools. This code
(meta-models and meta-meta-models) can be loaded
into AToM3.

4. Translation of UML 2.0 combined

fragments into PROMELA

In this section, we present the trace semantics of
some combined fragments and their respective
PROMELA code that correctly simulates the
execution traces as illustrated in Figure 1.

Figure 1. Overview of our approach.

4.1. Basic elements

Many techniques have been proposed for V&V
of UML diagrams. The work presented in [10]
specifies how to translate basic elements of MSCs
into PROMELA [4] and [3] shows that this schema
can be reused for basic elements of sequence
diagrams. The translation rules for basic elements
presented here are based on the work proposed in
those approaches, and they will be the basis for the
next (and more complex) interaction elements.

Figure 2 provides the representation of the basic
elements of a sequence diagram with combined
fragment (CF) which are translate to PROMELA
with the key words: proctype: for declaring new
process behavior, mtype: it defines symbolic names
of numeric constants that are used as messages in the
communicating process, chan: it declares and
initializes communication channels. Finally, symbols
!/? Operators: for sending/receiving messages
to/from channels, respectively as shown in Table 1.

Figure 2. Elements of sequence diagram.

INTERACTION

Interaction

Guard

Operand

Execution S Message

Operator

Combind_Fragment

LineLife

LineLife

Connect

Source Model
« Sequence
Diagram »

Graph
transformation
tool [AToM3]

Target Model
« PROMELA

code »

Property
LTL

Model Checker
[SPIN]

True

False

Table 1.Mapping of basic UML sequence
diagrams into PROMELA [14]

4.2. Meta-model sequence diagram

The meta-models in ATOM3 are a UML class
diagrams and the constraints are expressed in Python
language. W proposed the meta model sequence
diagrams containing five classes such as class
interaction is a global model containing the
remaining elements, class Linelife: define the line
of life itself as participating in individual interaction,
class ExecutionSpecification which refers to the
period of activity, class CombinedFragement this is
where we introduce the important and distinctive
interactions in UML 2.0, Operand this class defines
the content of a combined fragment, the relation
CFContain and IOContain allow the combination or
overlapping fragments combined so to define
relationships (father / child), Connect represent the
relation between periods of activity and the life line
or between two active period as shown in Figure 3.

Figure 3. Sequence diagram meta-model.

5. Transformation rules

In this section we present the transformation
rules, and we show how the rules gradually
transform from a sequence diagram into PROMELA
code. We use the example of Figure 5 to demonstrate
our approach.

5.1. Messages and channels declaration rule

Figure 4 represent the input model of the

transformation rule for declaration of messages and
channels in PROMELA. We use the keyword
“mtype” for messages and “chan” for channels.

LHS RHS

Figure 4. Translation rule for message and
channels to PROMELA code.

For the example of Figure 5 we get PROMELA

code indicated by Listing 1.

Figure 5. Simple interaction fragment.

Listing 1

5.2. Linelifes specification

To represent the linelifes we use the keyword
“Proctype” and the !/? Operator for
sending/receiving messages to/from channels,
respectively. For the example of Figure 5 we get
PROMELA code indicated by Listing 2.

Listing 2

5.3. Translation combined fragments rules

A combined fragment is used to group sets of
messages together to show conditional flow in a
sequence diagram. In other words, it is a piece of an
interaction [11]. Figure 6 represent the input model

Proctype a (){ab_Msg1!Msg1; ab_Msg2!Msg2;};

 Proctype b (){ab_Msg1?Msg1; ab_Msg2?Msg2;};

 mtype={Msg1,Msg2}

 chan ab_Msg1=[1] of {mtype}

 chan ab_Msg1=[1] of {mtype}

SD1
a A b B

Msg1

Msg2

UML
element

PROMELA
element

PROMELA
statement

Lifeline Process Proctype {….}

Message Message mtype ={m1,..,mn}

Connector

Communication

channel for each

message arrow

Chan chanName =

[1] of {mtype}

Send and

Receive

events

Send and

Receive

operations

Send->

ab_msg1!msg1,

Receive->

ab_msg1?msg1

of the transformation rule for deferent combined
fragment to PROMELA code.

LHS RHS

Figure 6. Translation rule for deferent combined

fragment to PROMELA code.

5.3.1. Weak sequencing combined fragments

In Figure 7 we provide the execution traces for
the weak sequencing operator which denoted by Seq
operator. On a lifeline, the occurrence specification
within an operand cannot execute until the OSs in the
previous operand complete.

Figure 7. Weak sequencing combined fragment.

For the example of Figure 7 we get PROMELA code
indicated by Listing 3.

Listing 3

5.3.2. Alternative combined fragments

Alternative combined fragments denoted by Alt
operator, it represent a choice of behavior in
sequence diagrams. It is one of the operands whose
interaction constraints evaluate to true is
nondeterministically chosen to execute. Each
operand must have an explicit or an implicit or an
else constraint. The chosen operand's constraint must
evaluate to true. An implicit constraint always
evaluates to true. The else constraint is the negation
of the disjunction of all other constraints in the
enclosing alternative combined fragment. The set of
traces that defines a choice is the union of the traces
of the operands [3,10].For the example of Figure 8
we get PROMELA code indicated by Listing 4.

Figure 8. Alternative combined fragment.

Listing 4

5.3.3. Parallel combined fragments

A parallel combined fragment, denoted by Par
operator. The operand specifies on a Lifeline within
different operands may be interleaved, but the
ordering imposed by each operand must be
maintained separately. Its set of traces describes all
the ways that events of the operands may be
interleaved without obstructing the order of the
events within the operand. For the example of Figure
9 we get PROMELA code indicated by Listing 5.

Figure 9. Parallel combined fragment.

Listing 5

Proctype a(){

 run sub_a()

 ab_Msg2!Msg2;

 aSubA?token;}

proctype b(){

 run sub_b()

 ab_Msg2!Msg2;

 bSuB?token;}

proctype sub_a(){

 atomic{ab_Msg1!Msg1; aSubA!token;};}

proctype sub_b(){

 atomic{ab_Msg1!Msg1; aSubA!token;};}

a A b B

Msg1

Msg2

SDPar

Par

Prototype a() {

 if

 ::(X>0) -> ab_msg2!msg2;

 :: else -> ab_msg1!msg1;

 fi;}

 prototype b() {

 if

 ::(X>0) -> ab_msg2?msg2;

 :: else -> ab_msg1?msg1;

 fi;}

 init {

 if

 :: (true) -> X>0=true;

 :: (true) -> X>0=false;

 fi;}

SDAlt

a A b B

Alt
Msg1 [X>0]

Msg2 [Else]

 Proctype a(){ ab_Msg1!Msg1; ab_Msg2!Msg2; }

 Proctype b(){ ab_Msg1?Msg1; ab_Msg2?Msg2; }

 init {atomic {run a();run b(); }}

a A b B

Msg1

Msg2

SDSeq

Seq

6. Example

We have applied our approach on the sequence
diagram of Figure 10.

Figure 10. Example of sequence diagram.

6.1. Graph grammar for the transformation
of UML sequence diagrams to PROMELA
code

We have proposed a graph grammar containing

13 rules. To generate PROMELA code from a UML
sequence diagram. For lack of space we only
describe in the following some rules.

6.1.1. Messages declaration rule

Listing 6 represent the code python of Messages
declaration rule’s condition which represented in
figure 4.

Listing 6

And the action of this rule is indicated by Listing 7.

Listing 7

6.1.2. Channels declaration rule

This rule used to declare channels which will be
marked as "Visited" for the first time. We use the
same condition and the graph grammar of messages
declaration rule and the action indicated by Listing 8.

Listing 8

6.1.3. Alternative combined fragments rule

Figure 6 represent the rule that translate the
combined fragment Alt which are represented as if
condition in PROMELA. The condition of the
alternative combined fragments rules is indicated by
Listing 9.

Listing 9

Due to space constraint the Python code

corresponding to the action of the alternative
combined fragments rules cannot be represented in
this paper.

6.2. PROMELA code result

After the application of the previous grammar we
have obtained the PROMELA code as indicated by
Listing 11 of the example represented in Figure 10.

tnode=self.getMatched(graphID,

self.LHS.nodeWithLabel(1))

return tnode.visited == 0

msg=self.getMatched(graphID,

self.LHS.nodeWithLabel(3))

l1=self.getMatched(graphID,

self.LHS.nodeWithLabel(1))

l2=self.getMatched(graphID,

self.LHS.nodeWithLabel(2))

msg.visited = 2

posx,posy=

10+125*(self.graphRewritingSystem.NButtons%3),

10+70*(self.graphRewritingSystem.NButtons/3)

self.graphRewritingSystem.NButtons=

self.graphRewritingSystem.NButtons + 1

file = self.graphRewritingSystem.file

nameMSg=msg.name.toString()

file.write("chan

"+l1.name.toString()+l2.name.toString()+"_"+nameMSg

+" =[1] of {mytype};\n")

msg=self.getMatched(graphID,self.LHS.nodeWithLabel(4)

)

msg.visited = 1

posx,posy=

10+125*(self.graphRewritingSystem.NButtons%3),

10+70*(self.graphRewritingSystem.NButtons/3)

self.graphRewritingSystem.NButtons =

self.graphRewritingSystem.NButtons + 1

file = self.graphRewritingSystem.file

nameMSg=msg.name.toString()

file.write(nameMSg+" ")

tnode=self.getMatched(graphID,

self.LHS.nodeWithLabel(4))

return tnode.visited == 0

Listing 11

7. Conclusion

We present in this paper a technique to translate
UML 2.0 sequence diagrams to PROMELA code.
We have shown how concrete syntax-based graph
transformation rules can be used to specify a
transformation implemented in the software tool
AToM3. This code-generating tool, developed in
Python, relies on graph grammars and meta-
modeling techniques. It is a great advantage that the
developer can specify rules in the well known
concrete syntax of sequence diagrams instead of the
complicated abstract syntax. Since it takes into
account the most popular UML combined fragments,
this approach allows the developer to detect flaws in
more completed complex sequence diagrams.

We have presented AToM3, a tool which
implements the concepts presented before, and
demonstrated its usefulness by generating a
PROMELA code for use in SPIN model checker to
simulate the execution and to verify properties. In a
future work, we plan to transform other combined
fragment to PROMELA code. We plan also to
perform some verification of properties using SPIN.

References

[1] OMG, Unified Modeling Language Specification
Version 1.5, 2003.

[2] J. de Lara and H. Vangheluwe, AToM3: A Tool for
Multi-Formalism and Meta-Modeling, Proceedings of
the 5th International Conference on Fundamental
Approaches to Software Engineering,Grenoble, France
(2002),pp. 174–188.

[3] L. Alawneh, M. Debbabi, F. Hassane, Y. Jarraya and
A. Soeanu, A unified approach for verification and
validation of systems and software engineering
models, in: Proc. of the 13th Annual IEEE
International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS’06),
2006, pp. 10.

[4] N. Guelfi and A. Mammar, A formal approach for the
verification of e-business processes with PROMELA,
Technical Report TR-SE2C-04-10, Software
Engineering Competence Center, University of
Luxembourg, Luxembourg (2004).

[5] N. Guelfi and A. Mammar, A formal semantics of
timed activity diagrams and its PROMELA translation,
apsec 0 (2005), pp. 283–290.

[6] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, I. Porres
and J. K. U. Linz, Model checking dynamic and
hierarchical UML state machines, in: Proceedings of
MoDeV 2 a (2006), pp.94–110.

[7] D. Latella, I. Majzik and M. Massink, Automatic
verification of a behavioural subset of UML statechart
diagrams using the SPIN model-checker, Formal
Aspects of Computing 11 (1999), pp. 637–664.

[8] I. Siveroni, A. Zisman and G. Spanoudakis, Property
specification and static verification of UML models,
2008, pp. 96-103.

[9] Frank Hermann. Typed Attributed Graph Grammar for
Syntax Directed Editing of UML Sequence Diagrams.
Diploma thesis, Master’s thesis, Technical University
of Berlin, Department for Computer Science, 2005.

[10] S. Leue and P. B. Ladkin, Implementing and verifying
MSC specifications using promela/xspin, in: Proc. of
of the DIMACS Workshop SPIN96, the 2nd
International Workshop on the SPIN Verification
System, 1997, pp. 65–89.

[11]Object Management Group, UML 2.0 Superstructure
Specification (2007).

[12]Ø. Haugen and K. Stølen, STAIRS - steps to analyze
interactions with refinement semantics,in: UML
2003 - The Unified Modeling Language. Model
Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003,
Proceedings, LNCS 2863 (2003), pp. 388–402.

[13]V. Lima, C. Talhi “Formal Verification and Validation
of UML 2.0 Sequence Diagrams using Source and
Destination of messages”, Elsevier 2009.

[14] R. Gronmo and B. Moller-Pedersen “From UML to
Sequence Diagram to State Machines by Graph
Transformation”, 2011.

[15] H. Cao, S. Ying and D. Du, Towards model-based
verification of BPEL with model checking, in: CIT
’06: Proceedings of the Sixth IEEE International
Conference on Computer and Information Technology
(2006), pp.190.

mytype={ Asking_postcard ,Asking Code, Asking Code,

Card verify SUM };

chan AutomateBilletClient_Asking_postcard =[1] of

{mytype};

chan ClientAutomateBillet_Card =[1] of {mytype};

chan ClientAutomateBillet_verify SUM=[1] of {mytype};

chan AutomateBilletClient_Asking Code=[1] of {mytype};

chan AutomateBilletClient_Asking Code=[1] of {mytype};

proctype Client(){

AutomateBilletClient_Asking_postcard?Asking_postcard;

ClientAutomateBillet_card!card;

AutomateBilletClient_Asking_code?Asking_postcode;

if

 ::(rightcode)-

>ClientAutomateBillet_verifySUM!verifySUM;

 ::Else-

>AutomateBilletClient_Asking_code?Asking_postcode;

fi;}

proctype AutomateBillet(){

AutomateBilletClient_Asking_postcard!Asking_postcard;

ClientAutomateBillet_card?card;

AutomateBilletClient_Asking_code!Asking_postcode;

if

 ::(rightcode)->

ClientAutomateBillet_verifySUM?verifySUM;

 ::Else-

>AutomateBilletClient_Asking_code!Asking_postcode;

fi;}

init{

 ::(true) -> guard=true;

 ::(false) -> guard=false;

}

