
PetriFlow: A Petri Net Based Framework
for Modelling and Control of Workflow Processes

Martin Riesz, Martin Sečkár, and Gabriel Juhás

Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology,

Ilkovičova 3, 812 19 Bratislava, Slovak Republic
{martin.riesz,xseckar,gabriel.juhas}@stuba.sk

Abstract. The paper presents an architecture of a Petri net based
framework for modelling and control of workflow processes. It focuses on
the PNEditor module and briefly discusses workflow engine based on the
models designed using the PNEditor. Then the paper describes method
of synthesis Separating feasible places and an algorithm for reducing the
number of places in the resulting Petri net.

Key words: PetriFlow, PNEditor, workflow management, synthesis

1 Introduction

There are many different Petri net tools and Petri net based tools for modelling
workflow processes, such as CPN ([1]), Viptool ([2], [3]), Yasper ([4]) or ProM
([5]), to mention just some of them. The question arises why to implement an-
other one. Most of them are determined to create models and some of them to
analyze the models. However, models are only the first step in a business pro-
cess management systems (BPMS). The main advantage of BPMS is that the
models can be used to control the workflow process according to the designed
model using a workflow engine.

The problem of the most existing editors (let us just mention Viptool as a
prominent example), is that they were implemented with different aims, mostly
to analyze the model, but they do not provide all the information needed for the
generation of a deployable application, such as resource management.

Another problem is with the case generation. Usually, a model obtained via
a Petri net modelling tool can be understood as a general definition of a model
of a process, while the single cases can be understood as instances of the process.
Using an analogy with object-oriented programming, a model can be understood
as a class, while single cases can be understood as objects of that class. In Petri
net based modelling tools, the realization of cases is often done using coloured
Petri nets ([6]). But in such tools, colours are used both for distinguishing cases
from each other as well as for modelling the data of the cases.

Another important feature for a successful application of models is a hierar-
chy, which enables not only to model on different level of abstraction but also to

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 191–205.

deploy reusable components. This is important for a practical use, as the busi-
ness consultants, which design the models often do not offer them of sufficient
level of details. Many tools offer different kinds of hierarchical nets, but because
they also mostly implement a semantical framework with aim to preserve some
properties, they are mostly too complex and/or too restrictive to generate a
deployable code.

2 PetriFlow: A Brief Introduction

For the above mentioned reason, we develop a new framework for modelling and
control of workflow processes based on Petri nets. Presently, it consists of two
modules, PNEditor and PNEngine.

PNEditor enables to design a model, which is basically a place/transition nets
enriched with the feature for distinguishing between static and dynamic places
([7]), where the static places correspond to static variables (they exists once for
a process), while the dynamic places are constructed for each case. Moreover
PNEditor enables modelling with subnets, where the subnets represents only
a visual tool for designer, i.e. on semantical level, PNEditor works with a flat
place/transition nets. Another important feature of PNEditor is that it provides
a resource management on a very simple and intuitive way. It enables to create
roles, where a role is basically a subset of the set of transitions, determining which
transitions (which tasks) can be performed by users having the role. Further is
PNEditor able to synthesize Petri nets from process logs.

The development version of the PetriFlow PNEditor can be downloaded via:
http://pneditor.matmas.net/

PNEngine is a light version of a workflow engine based on the models provided
by PNEditor. User registered in PNEngine is able to upload processes and thus
becoming their owner. The owner of the process can then assign other users
to roles defined in the process. Only user assigned to a given role is able to
fire transitions contained in the role. Further, PNEngine enables to create new
cases for a given process and to control the cases processing according to the
business logic given by the Petri net modelling the process. The business logic
layer is implemented in J2EE, the connection with the database and persistence
of the cases is realized using Hibernate. The user interface is realized via Java
Server Pages. The PNEngine is running on a Tomcat server. It enables the users
to perform an activity from the task list for actually processed cases, i.e. to fire
enabled transitions of the correspondent copy of the net, via a web browser. After
a user performs an activity from the task list for a given case, the corresponding
transition is fired, the new marking is computed and the task list is updated.
Different cases of the same process are able to communicate over static places.

3 PetriFlow PNEditor

PNEditor offers usual features of a graphical editor for designing place/transition
nets. It enables to draw place/transition nets, i.e. labeled places, transitions,

192 Petri Nets & Concurrency Riesz, Seckár, and Juhás

weighted arcs and markings with multiple tokens per place. The further func-
tionality is saving the net to a file, the definition of roles, subnets (nested nets),
saving of predefined subnets to files and their reuse as reusable components, re-
placement of subnets, definition of static places, which exists once per process,
and other standard features, such as unlimited undo-redo actions.

Fig. 1. Illustration of the key features of the PetriFlow PNEditor.

For a better illustration, Fig. 1 gives an overview of the functionality of the
PetriFlow PNEditor module:

1. Drawing tool selection: from left: object selection tool, inserting places, in-
serting transitions, arc drawing, adding/removing tokens/transition firing

2. Square with double border represents a subnet
3. Place with shadow represents a static place
4. Panel with roles: buttons from left: add a role, edit role properties, delete a

role.

– role A contains set of transitions: begin, task A, finish (total of 3)
– role B contains set of transitions: begin and all nested transitions in

subnet task B (total of 6)

5. Buttons for adding or removing transitions from the currently selected roles
6. Both roles are selected so the information icons are displayed on top of the

transitions in the diagram: black person icon on the transition describes the
situation in which all the selected roles contain this transition

7. White person icon on the transition describes the situation in which only
some selected roles contain this transition

PetriFlow Petri Nets & Concurrency – 193

4 Subnets in PetriFlow PNEditor

Usually, business modeller models a task as atomic transitions. On a more de-
tailed level, typically a task can be started, finished, paused, continued or can-
celled. Each of such tasks can be illustrated with a part of Petri net given in
Fig. 2, which can be understood as a subnet on a more detailed level and should
be used as a reusable component.

not started started finished

paused

start

cancel

finish

pause

continue

Fig. 2.

The place “not started” in Fig. 2 describes a state, in which the task has
not yet been started and “finished” describes the state reached after the task is
finished.

It would be very practical to model workflow processes using such reusable
components and in general to give modeller an option to design and use his own
reusable components possibly without any semantical restriction.

Another situation in which reusable components represents a desirable fea-
ture is in case of complex processes assembled from a relatively independent
units with exactly defined inputs and outputs. The PNEditor supports subnets
allowing each subnet to have more nested subnets so that the whole hierarchy
can be build up in a place/transition net.

In case the user creates a workflow model where the tasks will be repre-
sented by transitions, PNEditor gives a choice of replacing a transition with a
subnet. The subnets can be replaced by existing stored subnets. In this way,
individual transitions can be converted to custom subnets representing reusable
components.

In order to explain the concept of subnets, we have to recall some ba-
sic definitions of place/transition nets (for more details see e.g. [8]). Given a
place/transition net N = (P, T, F,W), where P is a finite set of places, T is a
finite number of transitions, F ⊆ (P ×T)∪(T ×P) is the set of arcs (i.e. the flow
relation) and W : F → N0 is the weight function (N0 denoting nonnegative inte-
gers). We say that a subnet of N is any net N ′ = (P ′, T ′, F ′,W ′) where P ′ ⊆ P ,
T ⊆ T , the flow relation F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)) and W ′ = W |F ′.
Moreover, we consider only proper subnets, i.e. subnets satisfying the following
condition for each p ∈ P and each t ∈ T ′: ((p, t) ∈ F ∨ (t, p) ∈ F) ⇒ p ∈ P ′.
For clarity of the text let us define the interface of a proper subnet as the set of
places p ∈ P ′ which are connected with a transition which does not belong to

194 Petri Nets & Concurrency Riesz, Seckár, and Juhás

T ′. In the PNEditor, the interface places are graphically expressed using dashed
places. On one abstraction level, a subnet is visualized via interface places con-
nected with a square with double border via reference edges. These edges can
have one of two appearances:

1. dotted edge - the interface place is not connected with any transition in the
subnet.

2. dashed edge - the interface place is connected in the subnet with one or more
transitions

In case the interface place is connected in the subnet with exactly one transition,
the reference edge takes the direction of the arc. Otherwise the reference edge is
undirected, i.e. it is displayed without an arrow.

Neighbourhood of a place p ∈ P w.r.t. the net N is a subnet Np = ({p}, Tp,
Fp,Wp) of N with the set of places formed by the place itself and the set of
transitions Tp = {t ∈ T |(t, p) ∈ F ∨ (p, t) ∈ F} formed by the the union of the
preset and the postset of the place p in the net N , i.e. by surrounding transitions
of p in net N .

Recall that two place/transition nets are isomorphic, when there exists a
bijective mapping between the sets of places and a bijective mapping between
the sets of transitions, which preserves arcs and their weights. We say that a
place p in a place/transition net is said unique place of the net, if there is no
place p′ in the net with the isomorphic neighbourhood.

In the PNEditor, identities of the interface places are not saved when storing
a subnet to make it a reusable component, i.e. a subnet is stored just as an
ordinary net with an additional information which places form its interface.
When replacing one subnet by another stored subnet, the interface places of the
replaced subnet are identified with the interface places of the stored replacing
net according to the following rules:

2

21

33

Fig. 3. Interface places labelled with the same number have isomorphic neighbourhood.
Only the interface place labelled with number 1 is unique.

1. In the first place, only unique interface places are identified: A unique in-
terface place p of the replaced subnet is considered to be equal to a unique

PetriFlow Petri Nets & Concurrency – 195

interface place p′ of the stored replacing subnet, if the neighbourhood of p
w.r.t. the replaced subnet is isomorphic to the neighbourhood of p′ w.r.t. the
replacing stored net.

2. In the second step, if there exists exactly one unique interface place of the
replaced subnet and exactly one unique interface place of the replacing stored
net satisfying that their neighbourhoods w.r.t. the respective subnets are
not isomorphic, then these interface places are considered to be equal. This
correspond to a predicate, that if it is unambiguously possible, then the
interface places should be identified.

3. Remaining interface places of replacing subnet replacing stored net are chan-
ged to ordinary places and remaining interface places of replaced net become
interface places of the replacing net. It means that it is left to the user to
identify manually by further editing which remaining interface places of the
replaced subnet equal to the remaining interface places of the replacing net.

An example of the use of the subnet concept in the PNEditor is illustrated in
Fig. 4:

1. The transition is created and converted to subnet
2. Visualization of the inside of the subnet
3. The subnet is modified and saved to a file
4. New subnet is created, selected command for replacing subnet
5. The result of 2 identical subnets

Thus, behind the visualization of a hierarchical process model in the PNEd-
itor using the subnet concept is a single flat place/transition net.

5 Synthesis in PetriFlow PNEditor

We could design process models manually – which can be tedious and error-
prone. There is also the possibility to collect logs from real-time processes and
let an algorithm do the work for us. Workflow management systems such as the
PNEngine can also be used to collect the logs. We just need simple p/t net with
all transitions always enabled that will represent expecting activities.

There are multiple methods of Petri net synthesis already invented [9]. In the
PNEditor we implemented a region based method Separating feasible places as
described in [10].

5.1 Preliminaries

As usual we use the following notations. For details see [10].
An alphabet is a finite set A. The set of all strings (words) over an alphabet

A is denoted by A∗. The empty word is denoted by λ. A subset L ⊆ A∗ is called
language over A. For a word w ∈ A∗, |w| denotes the length of w and |w|a
denotes the number of occurrences of a ∈ A in w. Given two words v, w, we

196 Petri Nets & Concurrency Riesz, Seckár, and Juhás

Fig. 4. Illustration of the subnet concept in PetriFlow PNEditor

PetriFlow Petri Nets & Concurrency – 197

call v prefix of w if there exists a word u such that vu = w. A language L is
prefix-closed, if for every w ∈ L each prefix of w also belongs to L.

Let T be a finite set of activities and C be a finite set of cases. And event is
an element of T × C. And event log is an element of (T × C)∗.

Given a case c ∈ C we define the function pc : T × C → T by pc(t, c
′) = t if

c = c′ and pc(t, c
′) = λ else. Given an event log σ = e1 . . . en ∈ (T×C)∗ we define

the process language L(σ) of σ by L(σ) = {pc(e1) . . . pc(ei)|i ≤ n, c ∈ C} ⊆ T ∗.
A net is a triple N = (P, T, F), where P is a set of places, T is a finite set of

transitions satisfying P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) is a flow relation.
Let x ∈ P ∪ T be an element. The preset •x is the set {y ∈ P ∪ T |(y, x) ∈ F},
and the post-set x• is the set {t ∈ P ∪ T |(x, y) ∈ F}.

A marking of a p/t net N = (P, T, F,W) is a function m : P → N0 assigning
m(p) tokens to a place p ∈ P . A marked p/t net is a pair (N,m0), where N is a
p/t net, and m0 is a marking of N , called initial marking.

A transition t ∈ T is enabled to occur in a marking m of a p/t net N
if m(p) ≥ W (p, t) for every place p ∈ •t. If transition t is enabled to occur
in a marking m, then its occurrence leads to the new marking m′ defined by
m′(p) = m(p)−W (p, t) +W (t, p) for every place p ∈ P . That means t consumes

W (p, t) tokens from p and produces W (t, p) tokens in p. We write m
t−→ m′ to

denote that t is enabled to occur in m and that its occurrence leads to m′. A
finite sequence of transitions w = t1 . . . tn, n ∈ N is called an occurrence sequence
enabled in m and leading to mn if there exists a sequence of markings m1, . . . ,mn

such that m
t1−→ m1

t2−→ . . .
tn−→ mn. The set of all occurrence sequences enabled

in the initial marking m0 of a marked p/t net (N,m0) forms a language over T
and is denoted by L(N,m0).

Let (N,mp), N = ({p}, T, Fp,Wp) be a marked p/t net with only one place
p (Fp, Wp, mp are defined according to the definition of p). The place p is called
feasible (w.r.t. L(σ)), if L(σ) ⊆ L(N,mp), otherwise non-feasible.

Denoting T = {t1, . . . , tn}, a region of L(σ) is a tuple r = (r0, . . . , r2n) ∈
N2n+1 satisfying for every ct ∈ L(σ) (c ∈ L(σ), t ∈ T):

r0 +
n∑

i=1

(|c|ti · ri − |ct|ti · rn+i) ≥ 0. (1)

Every region r of L(σ) defines a place pr via m0(pr) := r0, W (ti, pr) := ri
and W (pr, ti) := rn+i for 1 6 i 6 n. The place pr is called corresponding place
to r.

Given language L over T , WC(L) = {w ∈ L, t ∈ T : wt /∈ L} is called a set
of wrong continuations of L over T .

Let r be a region of L(σ) and let WC ⊆WC(L(σ)) is a set of wrong contin-
uations. The region r is a separating region (w.r.t. WC) if for every wt ∈WC:

r0 +

n∑

i=1

(|w|ti · ri − |wt|ti · rn+i) < 0. (2)

198 Petri Nets & Concurrency Riesz, Seckár, and Juhás

A separating region r w.r.t. a set of wrong continuations WC ⊆ WC(L(σ))
can be calculated (if it exists) as a non-negative integer solution of a homoge-
neous linear inequation system with integer coefficients of the form

AL(σ) · r ≥ 0

BWC · r < 0.

The matrix AL(σ) consists of rows act = (act,0, . . . , act,2n) for all ct ∈ L(σ),
satisfying act · r ≥ 0⇔ (1). This is achieved by setting for each ct ∈ L(σ):

act,i =

1 for i = 0,
|c|ti for i = 1, . . . , n,
−|ct|ti−n for i = n+ 1, . . . , 2n.

The matrix BWC consists of rows bwt = (bwt,0, . . . , bwt,2n) for all wt ∈WC,
satisfying bwt · r < 0⇔ (2). This is achieved by setting for each wt ∈WC:

bwt,i =

1 for i = 0,
|w|ti for i = 1, . . . , n,
−|wt|ti−n for i = n+ 1, . . . , 2n.

The linear inequation system mentioned can be solved using linear program-
ming ([11]) with linear objective function to minimize the resulting separating
region, i.e. to generate minimal arc weights and a minimal initial marking.

5.2 Method of Separating Feasible Places

Given an event log σ with set of activities T we search for a preferably small finite
marked p/t net (N,m0) such that L(σ) ⊆ L(N,m0) and L(N,m0)\L(σ) is small.
According to the method of Separating feasible places we first create a p/t net
with all transitions T but no arcs or places. This way, any occurrence sequence is
enabled. Then we keep adding feasible places, until each wrong continuation of
WC(L(σ)) is prohibited. Each feasible place is created according to one wrong
continuation wt ∈ WC(L(σ)). We only calculate separating region w.r.t. {wt}
if wt is not already prohibited by already added places, because one place can
prohibit multiple wrong continuations. For details see Algorithm 1.

5.3 Algorithm for Reducing the Number of Places

In some cases (see Fig. 5) we observed more than necessary number of places in
the resulting net, so we created an algorithm for reducing the number of places
in the resulting net. This algorithm is also implemented in the PNEditor.

Given a finite set A, the symbol |A| denotes cardinality of A.
Our solution to this problem was to first identify which wrong continuations

are prohibited by which places. Each place can prohibit multiple wrong contin-
uations. This information is easy to get: we temporarily remove places P ′ ⊆ P
from the marked p/t net (N,m0), N = (P, T, F,W) and if the net permits given

PetriFlow Petri Nets & Concurrency – 199

input : An event log σ
output: (N,m0), N = (P, T, F,W) such that L(σ) ⊆ L(N,m0)

L(σ)← process language of σ;
A← empty matrix;
(P, T, F,W,m0)← (∅, activities of σ, ∅, ∅, ∅);
foreach w ∈ L(σ) do

add row aw to matrix A;
end
foreach w ∈WC(L(σ)) do

if w ∈ L(N,m0) then
r← integer solution of A · r ≥ 0,bw · r < 0, r ≥ 0 such that r is minimal;
if such solution r exist then

p← corresponding place to r;
P ← P ∪ {p};

end

end

end

coveredWrongContinuations← {w ∈WC(L(N,m0))};
foreach p ∈ P do

P ← P \ {p};
undo← False;
foreach w ∈ coveredWrongContinuations do

if w ∈ L(N,m0) then
undo← True;
break;

end

end
if undo then

P ← P ∪ {p};
end

end
Algorithm 1: The method of Separating feasible places: We add places that
permit all correct continuations and prohibit at least one wrong continuation.
In case a given wrong continuation is already prohibited by an already added
place we do not need to create new one for the wrong continuation – it would
be unnecessary. We slightly modified the existing algorithm – we moved the
cleaning of unnecessary places after computing initial marked p/t net. See the
original algorithm in [10]. If all wrong continuations are prohibited without
given place then the place is unnecessary.

200 Petri Nets & Concurrency Riesz, Seckár, and Juhás

d

c

b

aa

c

b

d

Fig. 5. On the left is a synthesized net using method of Separating feasible places and
on the right is what we think an optimal solution.

wrong continuation w ∈WC(L(N,m0)) then we can say w is prohibited by the
places P ′.

The original method of Separating feasible places constructed each place from
exactly one wrong continuation and all correct continuations. We will be con-
structing new places in the same way except we will be using one or more wrong
continuations simultaneously.

First, we pick two places p1, p2 ∈ P . We determine which wrong continuations
WCp1,p2 ⊆ WC are prohibited by these places. Then we construct a new place
p3 from WCp1,p2 using the original method.

Now we compare what is “better”: the two places p1, p2 or the one place
p3. We need to define what “better” actually is. We assumed that if the net
has overall fewer places, fewer arcs then it is better. We decided to measure the
complexity of the net N = (P, T, F,W) as:

complexity(N) = |P |+
∑

p∈P,t∈T
W (p, t) +W (t, p).

If the net has lower complexity without p1, p2 and with p3, we replace p1, p2
with p3, else we pick another pair of p1, p2 and repeat the cycle until we tried
every combination.

When we make a replace, we run the algorithm again until no replace is
made. The algorithm terminates because we have finite number of places.

We decided to test just two places at a time because we sought a fast algo-
rithm. Testing every possible subset of the places would not be practical as it
would have exponential time complexity according to the number of places.

Let N∗ be a set of all possible p/t nets. Let neighbour be a function N∗ ×
P × P → {0, 1}. For a given p/t net N = (P, T, F,W) and p1, p2 ∈ P is
neighbour(N, p1, p2) = 1 when ∃t ∈ T : p1 ∈ •t ∧ p2 ∈ •t ∨ p1 ∈ t • ∧p2 ∈ t•,
otherwise neighbour(N, p1, p2) = 0.

PetriFlow Petri Nets & Concurrency – 201

Further we observed that each combination of places p1, p2 ∈ P , that were
later merged to one place p3, were in the same preset or post-set of some tran-
sition, i.e. neighbour(N, p1, p2) = 1. We used this observation to improve av-
erage case performance of the algorithm. Instead of testing each possible pair
p1, p2 ∈ P , for each p1 ∈ P we pick p2 ∈ P such that neighbour(N, p1, p2) = 1.
For details see Algorithm 2.

Experimental results were positive (see Fig. 6 and Fig. 7).

a

b

c

d

b

d

c c

a

b

b

a

b c

a a

c

d

c

d

a

b

d
d

Fig. 6. Multiple steps of the algorithm for reducing complexity. On the left is input
net and on the right is the output.

2

2

2

2

2

2

2

2

2

2

2

2

2

ba

c

d

e

eb

d

c

a

Fig. 7. On the left is synthesized net (N ′,m′
0) using method of Separating feasible

places only. On the right is output (N,m0) of our algorithm where input is the net on
the left. Both nets have the same set of all occurrence sequences enabled in the initial
marking, i. e. L(N,m0) = L(N ′,m′

0).

202 Petri Nets & Concurrency Riesz, Seckár, and Juhás

input : Marked p/t net (N ′,m′
0), N ′ = (P ′, T ′, F ′,W ′)

output: Marked p/t net (N,m0), N = (P, T, F,W) such that
L(N,m0) = L(N ′), |P | ≤ |P ′| and complexity(N) ≤ complexity(N ′)

(P, T, F,W,m0)← (P ′, T ′, F ′,W ′,m′
0);

A← empty matrix;
foreach w ∈ L(N,m0) do

add row aw to matrix A;
end
oldNumPlaces← |P |;
while True do

foreach p1, p2 ∈ P : p1 6= p2 ∧ neighbour(N, p1, p2) do
coveredWC ← ∅;
foreach p ∈ {p1, p2} do

P ← P \ {p};
foreach w ∈WC(L(N,m0)) do

if w ∈ L(N,m0) then
coveredWC ← coveredWC ∪ {w};

end

end
P ← P ∪ {p};

end
B ← empty matrix;
foreach w ∈ coveredWC do

add row bw to matrix B;
end
r← integer solution of A · r ≥ 0,B · r < 0, r ≥ 0 such that r is minimal;
if such solution r exist then

oldComplexity ← complexity(N);
p3 ← corresponding place to r;
P ← P \ {p1, p2} ∪ {p3};
newComplexity ← complexity(N);
P ← P ∪ {p1, p2} \ {p3};
if newComplexity < oldComplexity then

P ← P \ {p1, p2};
if

∑
t∈T (W (p3, t) +W (t, p3)) > 0 then
P ← P ∪ {p3};

end
break;

end

end

end
if |P | = oldNumPlaces then

break;
end
oldNumPlaces← |P |;

end
Algorithm 2: Algorithm for reducing complexity.

PetriFlow Petri Nets & Concurrency – 203

6 Conclusion

Although there are many methods for synthesis of Petri nets from logs (se-
quences, languages, partial languages, etc.), the main drawback when used in
practice remains: the obtained nets are still too complicated in comparison with
human made models. There are different reasons. Remember, that a net without
places enables all sequences of transitions, and each place restricts behaviour by
removing some sequences. Often, one reason for getting compicated models is
that not each valid sequence is presented in the logs and therefore synthetised
net obtain too much places restricting too much behaviour. Obviously, such cases
cannot be solved by optimizing algorithms as presented in this paper. However,
in the case that the logs are complete, optimization is a crucial step for accep-
tance of process mining in practice. The presented algorithm provides a simple
step towards this direction. However, much of the work still has to be done in
this area to nd the right mixture between accuracy of the resulting nets and
their readability.

References

1. M. Beaudouin-Lafon, W. E. Mackay, M. Jensen, P. Andersen, P. Janecek, M. Lassen,
K. Lund, K. Mortensen, S. Munck, A. Ratzer, K. Ravn, S. Christensen, K. Jensen:
CPN/Tools: A Tool for Editing and Simulating Coloured Petri Nets ETAPS Tool
Demonstration Related to TACAS In: Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 2031, pp. 574–577, Springer-Verlag, 2001.

2. R. Bergenthum, J. Desel, G. Juhs, R. Lorenz: Can I Execute my Scenario in Your
Net? VipTool tells you! In Application and Theory of Petri Nets and Other Models
of Concurrency. LNCS 4024, pp. 381–390, Springer-Verlag, 2006.

3. J. Desel, G. Juhs, R. Lorenz and C. Neumair: Modelling and Validation with Vip-
Tool. In: Business Process Management 2003, LNCS 2678, pp. 380–389, Springer-
Verlag, 2003.

4. K.M. van Hee, J. Keiren, R. Post, N. Sidorova, J.M. van der Werf: Designing case
handling systems. In Transactions on Petri Nets and Other Models of Concurrency
I, LNCS 5100, pp. 119–133, Springer, Berlin. 2008.

5. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

6. C.W. Gunther, W.M.P. van der Aalst: Modeling the Case Handling Principles with
Colored Petri Nets. Proceedings of the Sixth Workshop and Tutorial on Practical Use
of Coloured Petri Nets and the CPN Tools, October 2005, Department of Computer
Science, University of Aarhus, PB-576, 211–230.

7. K. van Hee, N. Sidorova, M. Voorhoeve: Resource-Constrained Workow Nets. Fun-
damenta Informaticae, 2006.

8. W. Reisig: Petri nets: An introduction. Springer, 1985.
9. R. Bergenthum, J. Desel, S. Mauser: Comparison of Different Algorithms to Synthe-

size a Petri Net from a Partial Language. In: Lecture Notes in Computer Science:
Transactions on Petri Nets and Other Models of Concurrency, pp. 216–243, 2009.

204 Petri Nets & Concurrency Riesz, Seckár, and Juhás

10. R. Bergenthum, J. Desel, R. Lorenz, S. Mauser: Process Mining Based on Regions of
Languages. In: Lecture Notes in Computer Science: Business Process Management,
pp. 375–383, 2007.

11. R. J. Vanderbei: Linear Programming: Foundations and Extensions. Kluwer Aca-
demic Publishers, 1996.

PetriFlow Petri Nets & Concurrency – 205

