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Abstract. This paper is concerned with the control problem of biolog-
ical systems modeled with Timed Continuous Petri Nets under infinite
server semantics. This work introduces two main contributions. The first
one is a bottom-up modeling methodology that uses TC PN to represent
cell metabolism.

The second contribution is the control wich solves the Regulation Control
Problem (RCP) (to reach a required state and maintain it). The control
is based on a Lyapunov criterion that ensures reaching the required state.
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1 Introduction

Petri nets PN [1], [2], [3] are a formal paradigm for modelling and analysis of sys-
tems that can be seen as discrete dynamical systems. Unfortunately, due to state
explosion problem, most of the analysis techniques cannot be applied in heavy
marked Petri nets. In order to overcome this problem, the Petri net community
developed the Timed Continuous Petri Nets (TTCPN) [4], [5], a relaxation of
the Petri Nets where the marking becomes continuous and the state equation is
represented by a positive, bounded set of linear differential equations.

The main TC PN characteristics such as the nice pictorially representation,
the mathematical background, the synchronization of several products to start
an activity and the representation of causal relationship make TC PN amenable
to represent biochemical reactions and cell metabolism. In fact TC PN mark-
ing captures the concentration of molecular species while differential equations
together with the firing vectors represent the reaction velocity and the graph cap-
tures the metabolic pathways. The entire TC' PN captures the cell metabolome.

Several works model [6], [7], analyse [8], [9] and control [10], [11] metabolic
pathways. Most of them deal with pseudo-steady states of the biochemical reac-
tion dynamic. Nowadays, the scientific community is exploring the use of PN and
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their extensions [12], [13] to model biological systems since the former are able
to capture the compounds flow, the reaction velocity, the enabling/inhibiting
reactions and both the transitory and steady states of reaction dynamic into a
single formalism.

This work is concerned on how to model the entire metabolome with TCPN.
It proposes a bottom-up modeling methodology where biochemical reactions are
modeled through elementary modules, and shows how these modules are merged
to form metabolic pathways, and at the end the cell metabolism. The resulting
model captures both, the transitory and steady state metabolome dynamics. It
is worth noticing that the derived TC' PN model condenses several particular be-
haviors represented by the set of differential equations generated by the TC PN
itself. For instance, a single transition with four input places (a reaction needing
four substrates) generates a set of four possible differential equations while two
transitions with four input places each will generate a set of sixteen possible
differential equations. Therefore highly complex behaviors emerging from few
compounds interacting can be captured by TCPN.

This work also presents the control problem of reaching a required state
(marking) representing a certain metabolite concentration. In order to solve this
problem, an error equation is stated and stabilized using a Lyapunov approach.
The solution is the reaction rate vector which is greater or equal to zero and
lower or equal to the maximum settled by the kinetics of Michaelis-Menten for
the current enzyme concentration. Thus, if a solution exists, it could be imple-
mented in vivo by directed genetic mutation, knock-in (or knock-out) strategies
or pharmacological effects.

Present paper is organized as follows. Section 2 gives TC'PN basic defini-
tions, controllability and cell metabolic concepts. Next section introduces the
proposed metabolome modeling methodology. Section 4 presents the problem
of reaching a required state and synthesizes Lyapunov like transition flow for
solving this problem. Following section presents an illustrative example to show
the performance of the computed control law. In the last section the conclusions
and future work are presented.

2 Basic Definitions

This section presents briefly the basic concepts related with PN, Continuous
PN and TCPN. An interested reader can review [3], [14], [15] and [16] for further
information. At the end of this section a useful form of the state equation for
TCPN under infinite server semantics is presented.

2.1 Petri Net concepts

Definition 1. A Continuous Petri Net (ContPN) system is a pair (N, mg),
where N = (P, T, Pre, Post) is a Petri net structure (PN ) and mqy € {RT U0}
is the initial marking. P = {p1,....,pn} and T = {t1,...,tx} are finite sets of
elements named places and transitions, respectively. Pre, Post € {NU O}lP\XlT‘
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are the Pre and Post incidence matrices, respectively, where Preli, j|, Postl[i, j]
represent the weights of the arcs from p; to t; and from t; to p;, respectively.
The Incidence matriz denoted by C is defined by C = Post — Pre.

Each place p; has a marking denoted by m; € {R™ U0}. The set *t; =
{p; | Pre[j,t] > 0}, (t? = {p; | Post[j,i] > 0}) is the preset (postset) of ¢;. Sim-
ilarly the set *p; = {t; | Post[i,j] > 0}, (p? = {t; | Post[i, j] > 0}) is the preset
(postset) of p;.

A transition t; € T is enabled at marking m iff Vp; € °t; , m; > 0. Its
enabling degree is:

(1)

and it is said that m, constraints the firing of t;. Equation (1) denotes the
maximum amount that ¢; can be fired at marking m; indeed ¢; can fire in any
real amount «, where 0 < a < enab(t;,m) leading to a new marking m/ =
m + aCle, j]. If m is reachable from mg through a finite sequence o of enabled
transitions, then m can be computed with the equation:

b(t;,m) = min —2
ena .m) = min ———
7 pi€*t; Preli, ]

m=mg+ Co (2)

named the ContPN state equation, where o € {R* U 0}|T| is the firing count
vector, i.e., 0; is the cumulative amount of firing of ¢; in the sequence o. The
set of all reachable markings from myq is called the reachability space and it is
denoted by RS (N, mg). In the case of a ContPN system, RS (N, mg) is a convex
set [17].

Definition 2. A contPN is bounded when every place is bounded (Vp € P,3b, €
R with m[p] < b, at every reachable marking m). It is live when every transi-
tion is live (it can ultimately occur from every reachable marking). Liveness is
extended to lim-live when infinitely long sequence can be fired. A transition t is
non lim-live iff a sequence of successively reachable markings exists which con-
verge to a marking such that none of its successors enables a transition t.

2.2 Timed continuous Petri nets

Definition 3. A timed ContPN is the 3-tuple TCPN = (N, \,mq), where N
is a ContPN, X : T — {RtUT| s a function that associates a mazimum firing
rate to each transition, and mq is the initial marking of the net N.

The state equation of a TCPN is

m(r) = Cf(7) 3)
where f(7) = 6(7)

And under the infinite server semantics, the flow of transition ¢; is given by

fi(m) = Ajenab(t;, m(r)) (4)



90 PETRI NETS & CONCURRENCY Ross-Leon et al.

where A; represents the maximum firing rate of transition ¢;. Notice that TC PN
under infinite server semantics is a piecewise linear system (a class of hybrid
systems) due to the minimum operator that appears in the enabling function
of the flow definition.

Definition 4. A configuration of a TCPN at m is a set of (p,t) arcs describing
the effective flow of all transitions.

1 y N . .
i q Prefirj] i training t;
17 — Preli,j] prz 18 cons j .
g { 0 otherwise (5)
Definition 5. The mazimum firing rate matriz is denoted by
A:d’l(lg ()\177)\|T|) (6)

According to previous notation, the state equation and the flow vector are
described by:
m = CAII (m) -m (7)
f=AIl(m)-m
The only action that can be applied to a TC'PN system is to slow down the
firing flow. The forced flow of a controlled transition ¢; becomes f; — u; where
fi is the flow of the unforced system (i.e. without control) and w is the control
action, with 0 < u; < f;. The controlled state equation is:

m = C[AII (m) - m — u] (8)
0 < wu; < [AII (m) - m), 9)

In order to obtain a simplified version of the state equation, the input vector
w is rewritten as u = I, AIl (m) - m, where I,, = diag (Iul, e ’I“\T\) and 0 <

I,, < 1. Then the matrix I. = I — I, is constructed and the controlled state
equation can be rewritten as:

m = CIAII (m) - m (10)
Notice that 0 < I, < 1.

2.3 Controllability

The classical linear systems definition of controllability cannot be applied to
TCPN systems because the required hypothesis are not fulfilled, that is, the
input should be unbounded and the state space should be RI”!. The next defin-
itions are taken from [18].

Definition 6. Let N be net of a TCPN. The structural admissible states set is
defined as SASS (N) = {RT U {O}}lpl (all inital markings that can be imposed
to a net). Let B be the base of the left annuller of the incidence matriz C.
The equivalence relation 3 : SASS (N) — SASS (N) is defined as miBms iff
BTmy = BTmy, Vmy,my € SASS(N). The system admissible states set is the
equivalent class of the initial marking Class (mg) under (.
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In the sequel, let us denote by int (Class (myg)) the set of relative interior of
Class (my).

Definition 7. Let (N,\,mqg) be a TCPN system. It is fully controllable with
bounded input (BIFC) if there is an input such that for any two markings
my,ma € Class(myg), it is possible to transfer the marking from my to mg
in finite or infinite time, and the input fulfills (9) along the trajectory, and is
controllable with bounded input (BIC) over S C Class (myg) if there is an input
such that for any two markings my, ms € S, it is possible to transfer the mark-
ing from my to ma in finite or infinite time, and the input fulfills (9) along the
trajectory.

Definition 8. Let (N, \,mg) be a TCPN system. Let m, € RS (N,mgp) and
0< I, [i,i] <1. Then (my,I..) is an equilibrium point if m, = CI. AII (m,) -
m = 0. Then, the steady state flow for (m,,I..) is fes (Mmy, I,) = I AIT (m,.) -
M.

An equilibrium point represents a state in which the system can be main-
tained using the defined control action. Given an initial marking mg and a re-
quired marking m,., one control problem is to reach m, and then keep it. For
a further information about equilibrium points an interested reader can review

[19].

2.4 Cell Metabolism

For the wellbeing of an given organism, each cell of that organism must transform
the substances available in its surroundings to useful molecules. Such transforma-
tions take place as chemical reactions catalyzed by enzymes. In these reactions,
a substrate tightly binds non-covalently to its enzyme active site to build an
enzyme-substrate complex. At that moment, the enzyme chemically changes the
substrate into one or more products and then releases it. The enzyme did not
suffer any irreversible alterations in the process, and now is free to accept a new
substrate [20].

There is no limit to the number of possible reactions occurring in nature.
Nonetheless, after exhaustive analysis certain general patterns had emerged that
became useful to describe several characteristics of biochemical reactions. In the
case where a sole substrate becomes a single product, the reaction process is
represented by the scheme:

E4+S=ES—EQ=E+Q (11)

where F is the enzyme, S is the substrate, £S and EQ are the bound complexes
and () is the product.

Typically, the rate of these reactions is settled by the kinetics of Michaelis-
Menten [21]. Under this kinetic model, the enzyme and substrate react rapidly
to form an enzyme-substrate complex while [S] and [ES] are considered to be at
concentration equilibrium (the same applies to [EQ)] and [Q)]), that is, the rate
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at which ES dissociates into F + S is much faster than the rate at which ES
brakes down to EQ.

Throughout the present work, we will consider a physiological cellular state
where [S] >> [E], which means that [S] = [ES] equilibrium will always tend to
complex formation. Therefore, F.S dissociation rate is irrelevant and Scheme 11
can be abbreviated as follows:

E+S—E+Q (12)

where the association-dissociation is implicit.

In reactions with more than one substrate, binding can occur in different
sequences; for instance, the following scheme represents an enzyme system with
two substrates and all the possible sequences:

EST + 55
11
E+S8 +8 ={ ESS - E+Q1+..+Q, (13)

11
ES, + 5

Frequently the product of an enzyme is the substrate of another reaction
and so on, to build a chain of reactions called metabolic pathways represented
by MP? = T{I'J .- I'J where I} is a reaction (12) or (13) of a pathway j and I’}
uses one or more products of I}”. Notice that j and m may represent different
pathways.

Then a (Cell) Metabolome is CM = {MPi ‘MPi is a metabolic pathway},
and the purpose of C'M is to produce a particular set of metabolites in certain

concentrations, essential to that cell.

3 Modelling the Metabolome

In order to model the metabolome using TC' PN it is necessary to identify how
the elements involved in it will be represented. The next table relates the meaning
of each element of the TC PN with respect to metabolic reactions.

TCPN term|Molecular interpretation

Place Molecular Species
Marking Concentration
Transition Reaction

Firing Rate |Rate of Reaction
Arc Weights |Stoichiometric Coefficients

The bottom-up approach herein proposed to model the metabolome consists
of: a) representing reactions, the results of this stage are the elementary modules;
b) merging elementary modules, where places of elementary modules represent-
ing the same molecular species on the same physical space in the cell will merge
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t2
t1

p1 P2 P2 P4
P3 PS5

(a) (b)

E1

E2

3 t4
P4 P1 P5 P3
(c) (d)

E3 E4

Fig. 1. Four elementary modules representing four diferent reactions.

into a single place. The results of this stage are pathway modules; and ¢) merg-
ing pathways modules, where places of pathways modules representing the same
molecular species on the same cellular space will merge into a single place; the
result of this stage is the metabolome model. For stages b and c, any specie being
protein-mediated transported into a different organelle shall be modeled through
the same elementary module, representing instead of substrate and product the
same molecule in different spaces.
Next section describes these stages.

3.1 Representing Reactions

In order to represent each reaction I; with TCPN elementary modules repre-
senting the Scheme (12) or (13) are constructed. There exists one place p; for
each molecular species at the same physical space ms; and one transition ¢; to
represent the reaction I';. There exists one arc (ps, t;) if ps represents a substrate.
There exists one arc (t;, pq) if pq represents a product. Finally, there exists a self-
loop around p. and t; if p. represents an enzyme. The initial marking my [p;] is
the concentration of the molecular species ms; at time 7 = 0.
Associated to transition t; is A\; representing the rate of reaction.

FEzxample 1. Let P1+ E1 — P2+ E1 be the I reaction. There is one place for
each molecular species (P1, P2 and E1), and one transition ¢; representing I7.
Finally, arcs are fixed in the way depicted in Figure 1la.

Assuming that the substrate concentration will remain higher than the en-
zyme concentration (this is an expected behavior of the system), the conflict
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P1 t2

P2 P4
O O O
P3 P5

El

E2

Fig. 2. Example of a Pathway Module.

between substrate and enzyme can be ignored. Hence, if a system has 2™ config-
urations originated by the n number of enzymes in conflict with substrates, all
those configurations are eliminated because min ([E], [S]) = [E] for all 7 > 0.

3.2 Merging Elementary Modules

Let N' and N? be two elementary modules, then the merging N is such that
N = (P, T, Pre, Post) where P = P1UP? T = T'UT?, Pre = Pre! U Pre?
and Post = Post! U Post?. Notice that places representing the same molecular
species in the same physical space are merged into a single place.

After a merging of elementary modules is made, pathway modules are ob-
tained.

Example 2. Let N = (Pl,Tl,Prel, Postl) and N2 = (PQ,T2,PT62, PostQ) be
two elementary modules showed in Figure la and Figure 1b respectively. Then,
the merging is N = (P, T, Pre, Post) where P = P'UP? = {P1,..., P5, F1, E2},
T =T'UT? = {t1,t2} and arcs are fixed in the way depicted in Figure 2, where
the merging is showed.

3.3 Merging Pathway Modules

Let N! be a pathway module and N? be a pathway or an elementary module,
then the merging N is such that N = (P, T, Pre, Post) where P = P' U P2
T =T'UT?, Pre = Pre' UPre? and Post = Post! U Post?. Notice that places
representing the same molecular species are merged into a single place.

After a merging of pathway modules is made, a metabolic model is obtained.

Ezample 3. Let N' = (P!, T, Pre!, Post') be the pathway module showed in
Figure 2. Let N2 = (PQ,TQ,PreQ,PostQ) and N3 = (P3,T3,Pre3,Post3) be
two elementary modules showed in Figure 1c and Figure 1d respectively. Then
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E3

P1

E1

Fig. 3. Metabolic Model.

the merging is N = (P, T, Pre, Post), where P = UP’ = {P1, ..., P5 Ey, ..., E4},
T = UT? = {t1,ta,t3,t4} for i = 1,...,4. Arcs are fixed in Figure 3, where the
merging is showed.

Although obtained metabolic models could be not live, the addition of a
virtual transition and arcs going from the last place representing final products to
the virtual transition and from virtual transition to the places representing initial
products with an appropriate virtual reaction velocity will make the metabolic
model live. For instance, consider the net of Figure la, it is a non-live net,
but if we add a virtual input transition ¢, to the place S and a virtual output
transition t, to the place @) the system will gain liveness, see Figure 4. Notice
that ¢, must to be the same transition added to the inital and final metabolites,
this is because it is necessary to maintain the conservativeness of the matter of
the system. This notion is based assuming that each module belongs to a bigger
system, therefore, although the real input and output transitions could be not
the same, they must have the same firing ratio.

4 Control Law

An important control problem in the metabolic engineering area is to reach
a certain metabolome state such that the production of selected metabolites is
regulated or particular processes are limited or favored. This problem is captured
in TCPN as the reachability problem, i.e. to reach a required state m, from an
initial state mg by means of an appropriate control action. This is formalized as
follows.

Definition 9. Let TCPN be a metabolic model. Then the Regulation Control
Problemin (m,,I..) (RCP(m,, L., ))deals with the computation of a control law
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t1 I
tv 3 tv

E1l

El

Fig. 4. Module forced to be live with the addition of a virtual transition ¢, (in gray).

I.(1), 0 < 7 < 7y feasible in the TCPN such that m(rss) = m, and I,(Tss) =
I, VTes 2 T5.

In order to solve this problem, some extra places are added to the TCPN
metabolic model to detect the material passing through transitions. The follow-
ing definition shows how these places are added to the TCPN.

Definition 10. Let (N, mg, A) be a metabolic model TC PN, where N = (P, T, F).
Its extension is defined by tTCPN = (N,,mo,,\), where N, = (PUP,,T,FU

T
Fo), |P.] = |T|, mo, = [moOyr)]" , Fu = {(ti,pa,) |Vt; € T and Vpa, € Py} .
Then the incidence matriz of tT'CPN is C, = [C Iy ]T

Since II,; (m,) = [H (m) 0|T|><\T|] , then the state equation of xT’'CPN is:

. m CI.AII (m) - m
M = [ﬁla - [ I.AII (m) -m } (14)
m(0) = mg, ma(0) =0 (15)

Remark 1. Notice that the extension has the same dynamic over the metabolic
model places and the extra places can only increase its marking. In fact, due
to the TC PN is live, then by construction the T'C PN is also live. Then there
exists at least one enabled transition. Hence II (m) - m > 0 (or equivalently

Mg > 0, the zero could be forced by an appropriate control law I..).

Ezample 4. An example of an extended net is presented in Figure 5.

4.1 Solution to the RCP (m,,I.,)

Theorem 1. Let (N, mg,\) be a metabolic model TCPN and let 2ZTCPN =
(Ng,mg,, ) be its extension. If (N, mg, A) is BIC overint (Class (mg)) (notice
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o &

Fig. 5. Example of an extended net. The gray places are the set of added places P,
and the intermittent arrows are the set of added arcs F,.

that neither the initial marking nor the required marking could be zero compo-
nents) and (I.,,m,) is an arbitrary equilibrium point, then there exists I.(T),
0 < 7 < 7y feasible in the TCPN such that m(tes) = my, I(7s) = I,
VTss > Ty

Proof. If the system is BIC over int (Class (myp)), then there exists a positive
solution o.(7) feasible such that

m, = mg + Co, (16)

This result was taken from [18]. Thus there exists f(7) such that:

/0 f(r)dr = /0 I.AIT (m) - mdr = o, (17)
From (14):
ma(7ys) = 0y (18)
Now, let
ex(1) = |e(T) ea(T)}T,OngTf 19
[e(r) ea()]” = [me —m(r) 0 —ma(r)]" 19)
and
V(ey) = el Pre, (20)
where
00
= [0 I|T|] @)

and Ijp| is an identity matrix of order |T| x |T'|. We claim that V (e;) is a
Lyapunov function, i.e it is positive definite and its derivative is negative definite.
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Since Equation (20) is clearly non-negative definite, then we assume that (22) is
positive semidefinite, then there exists e, (7') # 0 such that:

00 e

Ny — [T T _

V(ex(7') = [eT el'] {OIT} [ea} =0 (22)
From (22), it is clear that e,(7') = 0, then from (19) m,(7’") = o,. Thus, from
(14) and (17) and letting 75 = 7'

/OTf m(r)dr = Co, (23)
m(t¢) —m(0) = Co,

Thus, from Equation 16 m(7¢) = m,, then e, = 0, a contradiction. Hence V (e;)
is positive definite.

Now , we prove that V (e,) is negative definite. The differentiate of V' (e;) is:

V(en) = 26780 = 20, —ma] 1t (24)

Then, choosing I. such that:

[ 1litmg[i] < or[i]
Lei = {O otherwhise (25)

we obtain:
[or —ma] I, >0 (26)
and
[0y —ma]" I, = 0iff [0, —mga]" =0
thus V' (e;) < 0 and V (0) = 0.

Since m,(0) = 0 and it only increase its value, then I, is feasible leading
from mq(0) = 0 to me(7¢) = o, i.e. from mg to m,. Moreover, assuming m, €
int (Class (mg)) it is reached in finite time because myg [i] = m (min (*t;)) e
and m (min (°t)) # 0 V7. At 7 the control law must be switched from I.(7) to
I.(7ss) = I, and the regulation control problem is solved.

The solution to the RCP (m,,I..) include both, the transitory and steady
state control of metabolic systems. It is an improvement to current control
solutions, where the biologist and metabolic engineers use stoichiometric non-
dynamical approaches such as FBA (Flux Balance Analysis) [22], [23], [24] for
the control of metabolic systems. Those are based on a pseudo-stationary state
model, represented by the equation:

Sv=0 (27)

where S is the matrix of stoichiometry coefficients and the solution v gives the
balance of mass for a single equilibrium point at that state (v is the reaction
rates vector in a steady state).
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110- P

Marking

DO e o e o — — = s . !
0 1 2 3 4 5
Time (seconds)

Fig. 6. Marking evolution of the net of Figure 3 applying RCP (m,,I.,) .

5 Illustrative Controlling Metabolic System Example

In order to illustrate the RCP (m,, I.,) applied to a metabolic system, suppose
the pathway module of Figure 2 together with modules ¢ and d of Figure 1 com-
prise a cell metabolome. The initial marking used for this example is an arbitrary
but physiologically possible initial state for the alleged metabolic model.

Ezample 5. Let the metabolome model of the Figure 3 be the system TCPN =
(N, A\, mp) with A = diag (2,3,4,1) and mo = [100 80100507053 2 4}T. Let
my = [95 70 60 65 1105 3 2 4}T be a required marking. We make the extended
system like the procedure showed in the Figure 5. We need the solution of o,
from m, = mgo + Co,.. Notice that there are a lot of solutions for ¢, but we only
focus on the smallest solution of ;.. For this example the solution is:

o, =[3040250]"

Solving the RCP (m,,I., ) and applying the control (25) to the TCPN =
(N, \,mp), the metabolite concentrations are depicted in Figure 6. The reac-
tion velocities (transition flux) is depicted in Figure 7. Notice that from 7 = 0
to 7 = 7y ~ 4.5 occurs the transitory dynamics, and for 7 > 7 the steady state
is reached.

Ezample 6. In Figure 8 the evolution of marking m, is depicted. When occurs
mgli] = o,[i] the control I, = 0 makes f; = 0 and m,[i] is maintained until
T =7s (Mg = 0,). Then I, switches to I., for the steady state control.
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Fig. 7. Reaction velocities (transition flows) of the controlled metabolic model of the
Example 5. Notice that I. () is applied for 0 < 7 < 74 and I, (1) for 7 > 7.
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20
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30 2.
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Fig. 8. Marking m, of the Example 5.
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6 Conclusions

This work presented a model methodology to capture the metabolome behav-
ior. It uses a bottom-up approach where each individual biochemical reaction
is modeled by elementary TC' PN modules and, afterwards, all the modules are
merged into a single one to capture the whole metabolome behavior. Such char-
acteristic of the methodology makes it simple and easy to use while the complex
cell metabolic behavior is captured. This work also presented the problem of
reaching a required metabolome state. The solution to this problem are the
instantaneous reaction velocities that are realizable in biological system.

Present results are being applied to optimize metabolome fermentation in
the production of tequila and to biofuels generation.

Future perspective involves introduction of stochastic modelling and merging
the metabolome with the signaling and genetic networks.
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