
A Classification of Self-Explanatory User Interfaces

Maximilian Kern, Marco Blumendorf, Sahin Albayrak

DAI-Labor

Technische Universität Berlin

Ernst-Reuter-Platz 7

10587 Berlin, Germany

forename.surname@dai-labor.de

ABSTRACT

In this paper a definition of Self-Explanatory User

Interfaces (SEUI) is proposed. Furthermore, existing

approaches on SEUIs are classified by identification of

their significant features. Derived from these features,

challenges and open issues are elaborated. Then,

advantages of a model-based approach for the development

of SEUIs are given. Finally, a conclusion is given with an

outlook on an ultimate SEUI from the author’s perspective.

Keywords

assistance, guidance, self-explanatory UI, adaptive UI, meta

UI, MDUI

INTRODUCTION

The term Supportive User Interface (SUI) has been

introduced recently and still needs to be defined clearly. In

our work, we understand the term supportive as the goal to

support the user while interacting with a user interface.

Support thus aims at the ability of a user interface to

provide optimal interaction capabilities and the necessary

configuration options therefore as well as help for the user

to understand the rationales of a user interface, provide a

context-sensitive help if the user is lost in navigation or

requests help explicitly. In this paper we focus on Self-

Explanatory User Interfaces as a subtype of SUIs that

especially emphasizes the help as explanatory features of

SUIs.

The earliest approaches for built-in support on an

interactive system emerged around 1966 with the HELP

system developed under the Genie project [12]. The HELP

system provides answers to questions about commands and

entities available on a UNIX based terminal window. While

such approaches were restricted to low computing

performance at this time, the ongoing technological

improvements enables recent assistants being capable of

understanding, interpreting and speaking human language,

capturing and considering context information and learn

from users by observing their interaction. In the following,

we propose a definition of SEUIs. Furthermore, we clarify

the term SEUI and classify existing approaches by

analyzing their features. Afterwards, challenges of the

development of SEUIs are discussed. Then, we discuss how

SEUIs can benefit from model-based development. Finally,

a conclusion on SEUIs is given with an outlook to an

ultimate SEUI.

A DEFINITION OF SEUI

Self-explanatory user interfaces in general are characterized

and thus, can be defined by the ability to reason on the

application state and generate additional explanations or

useful hints of higher value which support users in fulfilling

their desired task faster. Therefore, SEUIs introspectively

read out information hidden from the actual user interface

and evaluate them. By these hints, the user gains deeper

insight of the rationales in terms of purpose and structure of

the application [6]. Advanced SEUIs are generic by means

of that they adapt at runtime to the current context-of-use

and they are not bounded to a specific domain. In this

manner, their characteristics conform to those of meta UIs

and thus, can be comprehended as a kind of meta UI. By

taking the idea of an SEUI being able of accessing and

reasoning on artifacts of other applications or domains,

SEUIs can be thought of to be an ever-present agent or

companion who intermediates between the user and the

applications. Depending on its mightiness, it is not only

giving hints generated out of the underlying application but

is also able to interact on behalf of the user. The agent

could make use of natural language processing (NLP) and

understanding (NLU) and the user can establish a dialog

with him. Users could then accomplish their task by

cooperatively talking to the agent. For instance, in [13] an

information-seeking chat bot is presented. This chat bot

supports a tourist resided in Potsdam to find sight-seeing

places and gain background information related to those

places such as architects, historical persons, entrance fees

and public transports. It integrates an ontology with topic

maps applied as the discourse of the dialogue with the user.

Furthermore, this approach utilizes templates for generating

natural utterances which wrap the requested information.

FEATURES OF SEUIs

Existing approaches on self-explanatory user interfaces

differentiate mainly in the way, how they appear to the user

(Appearance) and how they are activated (Trigger).

Furthermore, they can be distinguished by the type of

knowledge base they are using and their scope or

mightiness. Figure 1 gives an overview of the identified

features. These features are discussed in greater detail in the

following sections.

Figure 1. Overview of identified features of SEUIs

Appearance

The appearance of SEUIs is manifold. However, we can

distinguish 5 basic ways of interaction:

1. Multi-device: shows the assistant on another device.

2. Multi-modality: utilizes one modality for the UI (e.g.

graphics) and another one (e.g. voice) for assistance.

3. Multi-window: combines UI and assistance on one

device and modality e.g. by using multiple windows,

different voices or split screens.

4. Overlay: puts the assistance over the application which

makes it easier to directly refer to specific elements.

5. Integration: integrates the assistance as part of the

application so that the user perceives it as part of

the application.

An example for multi-window, more in detail a split screen

mode was applied in the DiamondHelp system introduced

in [11], where the user still remains able to manipulate the

underlying user interface directly. The user can choose

between a ’guided’ interaction in form of a chat with the

system or ’unguided’ interaction by interacting with

classical user interface elements such as buttons, labels,

etc.. Overlay mode is emphasizing the character of meta UI

by overlaying the guided user interface in order to reach the

user. This mode was applied to the MASP Guide [8] and is

illustrated in Figure 2.

Figure 2. MASP Guide in overlay mode

Triggers

SEUIs either propose hints to the user pro-actively (system

initiative) or the user is explicitly asking for help (user

initiative). A third mode is called mixed-initiative which is

a combination of both. A proactive SEUI, where the system

takes over initiative, needs to recognize when support is

actually required by the user. In order to be able to

recognize the need for guidance, one option is to observe

interaction history of a specific user and reason on the

collected information. In [1] for instance, task models are

used to connect sequences of observed user interactions to

abstract tasks. Based on this information, possible

interactions of users are predicted and could be proposed as

a solution to the user. In [7] an approach for initial help is

presented, which helps users using an application for the

first time, i.e. it initially gives hints on startup. An important

and reasonable issue for system initiative is to keep support

decent in the sense of that the user is not flooded with hints

and suggestions on what he is able to do next. In detail,

system-initiated, self-explanatory user interfaces subtly

appear in the moment, the user is lost in navigation or

explicitly requests help. For the case the user explicitly

requests help by asking for instance “Why does the menu

bar appear all the sudden on the right hand side?”, the SEUI

may find the reason by analyzing the adaptation history and

finds that the user is right-handed and switched using a

touchscreen and they should not cover the user interface

with her right arm. The crystal framework proposed in [9]

enables the user to ask a wide variety of why-questions, the

answer is generated by introspection of the current state of

the application.

Knowledge base

Another aspect is the source from where to retrieve

information for giving the user desirably useful hints. One

option is that the designer or developer of the SEUI is

manually identifying possible critical states of the user

interface at design time. Practically, due to the nature of

adaptive user interfaces, this is difficult since the designer

might not be able to foresee each state of the application

during runtime (Even if she could, she should prevent

critical situations at design time by revising the design of

the application.). Thus, it is preferable that the supportive

user interface is giving generic support during runtime. At

this time, the SEUI can retrieve information either from the

system description or from an external resource, e.g. the

Internet. The former option would require that the system

description offers more information than is held on the

surface of the user interface and this information is

available during runtime. By this way, hints are generated

out of hidden artifacts of the system description. The latter

option represents a bigger challenge since the information

on the Internet needs to be matched to a machine-

processible structure, i.e. a structure which is

comprehensible by the SEUI. For this purpose, the use of

some kind of ontology matching or well-formed source is

inevitable. In [4] a hybrid approach “The Companions” is

introduced, which is able to incorporate knowledge

retrieved from local resources, but also from a social

network or news site into a local rdf-based knowledge base

(KB). In order to give the user the impression of talking to a

human, the face of the avatar is displayed. The system was

designed to enrich photo albums with semantic information

about recognized people and places such as their relations

or detailed information.

Scope

The previously mentioned possibility of retrieving

information from an external resource yields to another

aspect of SEUIs - the scope of an SEUI. Generated hints

might be more useful to the user when the SEUI has

knowledge which goes beyond the intended domain of the

application, i.e. it has also knowledge of other applications

and their domains. For instance, for an interactive

application for preparing recipes, the SEUI gives reasons if

a step is not feasible due an electric device is missing,

which is controlled by another application for device

management. Mightiness of an SEUI is addressing the

potential of controlling the application itself or other

applications. For instance, if a user asks for a missing

device, the SEUI can implicate that the user wants to use

the device and activate the device in the device

management application. General assistance applies for

fully generic SEUI approaches. Such approaches require no

certain structure from the guided application.

CHALLENGES

Based on the identified features, we can identify various

challenges for the development of SEUIs. The major

general issue of giving support to the user is the

understanding of the user and their needs. Getting this right

is crucial so the user actually feels supported rather than

annoyed. The users are playing the key-role in HCI, so they

should not be displeased by the amount of hints and the

moment hints are communicated by the system.

This directly leads to the appearance of the SEUI. It should

please the user without disturbance and therefore needs to

be well designed and provide the necessary integration into

the application depending on the needs. Learning from

many bad examples of help systems, it seems advisable to

provide some kind of adaptation and personalization

capability, which allows the continuous adaptation, based

on the users behavior, and also requires the continuous

monitoring of adaptation results and the performance of the

help system in terms of user satisfaction.

Looking at the triggers to start the assistance, system-, user-

and mixed initiative also pose different challenges. A

system-initiative SEUI needs to be aware of situations,

where users are not certain of how to proceed, and then find

a reason (and a solution) in order to solve the users’

problem. For instance, Microsoft’s Paper Clip discourages

users due to the lack of information about the context-of-

use, i.e. it is not aware of the context. For user-initiative

SEUIs the major issue lays in the ambiguity of a user’s

utterance, the system has to rely on the terms of the current

domain, current task and the discourse of the user interface,

i.e. it needs to be aware of the system state.

The issue of ambiguity then also refers to the knowledge

base (KB) of an SEUI. As discussed earlier, the usage of an

ontology or presumption of certain structures of the KB is

inevitable. Then, the challenge is accounted to the quality

of the ontology matching algorithm and the way of

extracting and processing information. Furthermore, this

quality depends also on the fineness of the world

knowledge and common knowledge for SEUIs with

knowledge which goes beyond the intended domain of the

application.

Relating to the scope of SEUIs, there might not be one best

way for supportive UIs. It depends on the needs of the user,

the usage situation and the application if SEUIs are

integrated parts or separate applications. Being external

applications, this however also poses requirements on the

application in terms of traceability of the current state and

access to design information and semantic meaning of

elements. An application might need to conform to a

specific structure in order to integrate self-explainability.

This has direct impact on the effort for application

developers/designers, which should be ideally minimal.

Thus, the challenge is to develop an open or standardized

programming/controlling interface for applications in order

to ease integration of SEUIs and access application

knowledge.

A MODEL-BASED APPROACH TO SEUI DEVELOPMENT

From our point of view, model-based development comes

along with major advantages in order to cope with

previously mentioned challenges. Models provide explicit

information about the application state and the contextual

space instead of weaving information in unstructured

program code. For the sake of separation of concern,

information is held in several models each covering a

certain aspect (e.g. context model, interaction model,

abstract UI model, concrete UI model, final UI model, etc.).

An SEUI can access this information easily and needed

information can be retrieved from these models. For

inferring on semantics, the SEUI benefits from the self-

explanatory nature of models. The MASP has built-in

features for monitoring the application state and

interactions [2], which lower the development effort for

recognizing trigger situations of an SEUI. Another model-

based approach on Automated Usability Evaluation (AUE)

described in [10] is simulating a user model at run-time in

order to identify lacks in usability. This approach could also

be applied in order to identify problematic states of an

application during runtime and provide hints to the user (for

system-initiative SEUIs). Models have been proposed and

utilized as basis for adaptive systems [2][3][5]. Regarding

the appearance, an SEUI integrated into such systems needs

to be as adaptive as the surrounding environment.

CONCLUSION AND OUTLOOK

Self-explanatory user interfaces raise supportiveness of user

interfaces significantly. We have proposed a definition for

SEUIs, which is “the ability (of a user interface) to reason

on the application state and generate additional

explanations or useful hints of higher value which support

users in fulfilling their desired task faster.“. It was stated

that SEUIs mainly differentiate in their activation

mechanism (user-/system-/mixed-initiative, initially), their

appearance (multi-device, multi-modality, multi-window,

overlay, built-in), their knowledge base (manual, system

description, system analysis, external, hybrid) and their

scope (application specific, multi-application, general

assistance). We are conscious that our classification is not

completive but consider it as a first step towards a better

understanding of SEUI as a special kind of SUI. The

challenges and open issues on SEUI lay in the design and

the understanding of users and their needs. Furthermore, it

was elaborated, how development of SEUIs can benefit

from a model-based approach.

As a conclusion, the ultimate SEUI from our perspective is

a companion, which is ubiquitously accessible and provides

useful hints at any time. It would only take initiative if a

user needs help and would incorporate knowledge beyond

the current application’s domain. For retrieving external

information, it would apply approved algorithm for

matching terms against ontologies. In order not to allocate

space on the screen, the user could communicate entirely

via voice, but it remains optional for overlay mode.

Moreover, the SEUI would act in the same way as an expert

knowing your personal needs and observing any of your

interactions.

REFERENCES

1. Bezold, M. Describing user interactions in adaptive

interactive systems. In UMAP (2009), 150–161.

2. Blumendorf, M., Lehmann, G., and Albayrak, S.

Bridging models and systems at runtime to build

adaptive user interfaces. In EICS ’10: Proceedings of

the 2nd ACM SIGCHI symposium on Engineering

interactive computing systems, ACM (2010).

3. Clerckx, T., Luyten, K., and Coninx, K. Dynamo-aid: A

design process and a runtime architecture for dynamic

model-based user interface development. In EHCI/DS-

VIS (2004), 77–95.

4. Dingli, A., Wilks, Y., Catizone, R., and Cheng, W. The

companions: Hybrid-world approach. In International

Joint Conference on Artificial Intelligence

(IJCAI)(Pasadena, CA, 2009).

5. Duarte, C. Design and Evaluation of Adaptative

Multimodal Systems. PhD thesis, Department of

Informatics, University of Lisbon, March 2008.

DI/FCUL TR-08-9.

6. García Frey, A., Calvary, G., and Dupuy-Chesa, S.

Xplain: an editor for building self-explanatory user

interfaces by model-driven engineering. In Proceedings

of the 2nd ACM SIGCHI symposium on Engineering

interactive computing systems, EICS ’10, ACM (New

York, NY, USA, 2010), 41–46.

7. Kang, H., Plaisant, C., and Shneiderman, B. New

approaches to help users get started with visual

interfaces: multi-layered interfaces and integrated

initial guidance. In dg.o ’03: Proceedings of the 2003

annual national conference on Digital government

research, Digital Government Society of North America

(2003), 1–6.

8. Kern, M., Trollmann, F., Blumendorf, M., and

Albayrak, S. Adaptive user interface assistance in smart

environments. In Proceedings of the Workshop on

Meaning and Matching (AISB2010), De Montfort

University Leicester, SSAISB (2010).

9. Myers, B. A., Weitzman, D. A., Ko, A. J., and Chau, D.

H. Answering why and why not questions in user

interfaces. In CHI ’06: Proceedings of the SIGCHI

conference on Human Factors in computing systems,

ACM (New York, NY, USA, 2006), 397–406.

10. Quade, M., Blumendorf, M., and Albayrak, S. Towards

model-based runtime evaluation and adaptation of user

interfaces. In Proceedings of International Workshop on

User Modeling and Adaptation for Daily Routines

(UMADR2010): Providing Assistance to People with

Special and Specific Needs (2010).

11. Rich, C., and Sidner, C. DiamondHelp: A generic

collaborative task guidance system. AI Magazine 28, 2

(2007).

12. Roberts, R. Help: a question answering system. In

AFIPS ’70 (Fall): Proceedings of the November 17-19,

1970, fall joint computer conference, ACM (New York,

NY, USA, 1970), 547–554.

13. Stede, M., and Schlangen, D. Information-seeking chat:

Dialogue management by topic structure. In

Proceedings of the 8th Workshop on Semantics and

Pragmatics of Dialogue, CATALOG 04, Barcelona,

2004 (2004).Autonomous Systems (ICAS 2008)

