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Abstract Modelling complex behaviour of steelmaking processes, affected by the dynamic environ-
ment and subjective actions of human interaction is a challenging task. Using modelling techniques, 
based on first principle, to describe the dynamics of the process, comes with inherent limitations 
when trying to fit experience into equations. The UK based branch of TataSteel RD&T has success-
fully developed an application of Case Based Reasoning technology for predictive modelling in the 
steel industry. The model predicts final chemical composition and advises on safe tapping operations. 
This paper describes the approach and structure of the model and share experience gained during 
model development and exploitation. The model evaluation is based on 10 years of continuous moni-
toring and shows consistent accuracy of 80%-90% under changing manufacturing conditions and ma-
terial quality. The benefits of using recent experience for effective tracking of changes in manufactur-
ing practices, material quality and qualitative fluctuations are discussed.  
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1 Introduction 

Basic Oxygen Steelmaking (BOS), also known as Linz-Donawitz-Verfahren steelmaking or the 
oxygen converter process is a method of primary steelmaking in which carbon-rich molten pig iron is 
made into steel. The process is a batch process and begins with charging the steelmaking converter with 
scrap metal, lime based fluxes and hot metal from the blast furnace. The total charge weight for a batch is 
180 – 350t depending on the converter size. Then water cooled oxygen lance blows 99% pure oxygen 
with supersonic speed onto the steel and iron, igniting the carbon, dissolved in the steel and burning it to 
form carbon monoxide and carbon dioxide, causing the temperature to rise to about 1700°C. This melts 
the scrap, lowers the carbon content of the molten iron and helps remove unwanted chemical elements. 
Near the end of the blowing cycle, which takes about 20 minutes, the temperature is measured and sam-
ples are taken. The samples are tested and a computer analysis of the steel given within six minutes. The 
BOS converter is then tilted and the steel is poured into a giant ladle. This process is called tapping the 
steel. One of the objectives of the BOS batch process is to tap steel with required chemistry. The model 
presented here predicts the final chemistry of the steel and advises on successful tap i.e. within the target 
composition. This allows the control operators to save up to six minutes per batch by tapping the steel 
before the computer analysis arrives. This operation is known as quick tap and it is very important prac-
tice within the steel industry when the objective is to maximize the production volume. Without a model, 
the practice relies on the experience and intuition of the operators. 

This paper describes the architecture and operational capabilities of the model, applied to assist the 
Quick Tapping practice. Analysis of the model results has revealed excellent robustness and consistent 
level of accuracy over long period. 

Beginning with Section two, there is a brief overview of some AI techniques, commonly used for 
modeling steelmaking processes and outline of the challenges in modern predictive modeling. Section 



three describes the case based approach to Quick Tap modeling and gives details of the model's architec-
ture. Section four presents the evaluation and results of model exploitation. The final Section five closes 
the paper with conclusions and directions for future work. 

2  Predictive modelling and challenges 

In early 1998 there was a need in the company to build a robust model that estimates the final 
chemical composition from a complex reactor and advises on hitting the target levels. The model was to 
produce a prediction at all times and respond adequately on changes.  

Existing research on application of AI techniques for predictive modelling in steelmaking at the time 
has been focused particularly on using Artificial Neural Networks (ANN). In addition, the use of modern 
regression and optimisation techniques has been reported [1]. One problem that was not addressed with 
the latter was the issue of the inherent uncertainty in the data and the effect of non-measured changes in 
the working environment, human behaviour or raw materials quality. It was the special features of learn-
ing and generalisation that made ANN one of the most accurate predictive methods. However, a difficult 
problem with learning in many applications was that the predicted elements may depend on some hidden 
context, not given explicitly in the form of predictive features [2]. Often the cause of change is hidden, 
not known in advance, making the learning task more complicated. Changes occur over time. For exam-
ple, changes in raw materials quality can have a big effect on the quality of the final product. Often the 
old experience can become irrelevant to the current time and thus the learned knowledge can be out of 
date. Changes in the hidden context can induce changes in the target concept, phenomena generally 
known as ‘concept-drift’ [2]. An effective learner should be able to track these changes and adapt quickly 
to them. Even if the target concept remains the same but the data distribution changes, a model rebuild 
may be necessary as the model error may no longer be acceptable.  

The most common concept-drift handling technique was based on instance selection and involved gen-
eralizing from a window that moves over recently seen examples. It used the learnt concepts for predic-
tion only in the immediate future. A version of this technique was employed in the model. 

3 CBR approach 

Data analysis from two year historical examples revealed that clusters of batches with similar behav-
iour before tap were closely related to clusters of batches with similar deviation from the aim tap analysis 
after tap. In other words, it was possible to map experience before with experience after tap [3]. This led 
to the idea of experimenting with CBR model. 

CBR technology was chosen after fast prototyping feasibility study. The study involved ANN, Fuzzy 
rule-based technology and CBR and concluded that a hybrid model with CBR as a core technology was 
the best suited modelling technique for this particular application. Table 1 shows the accuracies achieved 
with each technique on unseen data from the same time period as the training data. These accuracies are 
defined as the percent correct predictions for a binary ‘yes’ / ‘no’ on target advice. 

Table 1. Model accuracies for experimented techniques 

Technique Percent accuracy 
First principle 86% 
Rule based 87% 
ANN 96% 
CBR 90% 

 
The similarities between CBR and ANN in their generalisation capabilities were used to achieve 

the required accuracy. The attributes of the CBR system allowed flexibility and assured low maintenance 
of the model. Finally, continuously learning from the constantly changing environment, accounted for any 
variations of material quality, production practices and unknown factors. 



The approach was to use the in-house developed Nearest Neighbour tool [8] for retrieval and a rule 
based module for adaption of the proposed solution. The Nearest Neighbour tool consisted of two mod-
ules: Query Agent – a tabular editor (see Fig.1) user interface and Rolling Neighbour – a modified ver-
sion of the k-Nearest Neighbour algorithm using a ‘rolling’ casebase. Fig.2 shows one of the output dis-
plays in manual mode of the tool. 

 

 
 

Fig. 1. Query Agent editor  Fig. 2. Rolling Neighbour output display 

 
Each batch was a case, representing experience before tap (case description) and actual tap analysis 

(solution). Using the actual chemical analysis of the retrieved batches, the target case chemistry was esti-
mated and the probability of success to be within the acceptable limits was produced.  

The model functionality is shown on Fig.3. When a description of a new case (batch) is passed to 
the model, a search for similar cases in the case base begins. The most similar ‘k’ cases, matching the 
current description are retrieved. Case "Retrieval" is the first stage of the CBR cycle and is crucial for the 
successful operation of any CBR system. The retrieved cases present several possible solutions within 
certain range, therefore the "Reuse" strategy involves adaptation procedures using statistical estimation of 
the tap analysis and calculation of probability for successful quick tap, corrected with rules from a 
knowledge base.  

 

 
 

Fig. 3. CBR cycle applied to the Quick Tap Predictions task [4] 

Subsequent stages include verification of the proposed solution (i.e. review how close the actual 
value was to the proposed prediction and the correctness of the advice) and "Retention" of the new expe-
rience for future reuse. The "Review" stage of the model assures continuous performance monitoring and 
adaptation. The “Retain” stage guaranteed continuous learning from experience.   
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3.1  Case representation 

The case is a collection of experience, represented as description of a situation and solution. Ap-
plied to the Quick Tap model domain the case represented the batch history as a collection of information 
and measured parameters and had the structure, shown in Fig.4. 
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Fig. 4. Quick Tap case representation 

The problem space was divided between six groups, describing batch behaviour from a different 
perspective. Grouping was done in the way a domain expert will look into the problem in order to explain 
a particular situation. Each group was split into subgroups. This grouping of inputs was important, when 
the solution space expanded to include four elements, because it allowed task decomposition and enabled 
retrieval of each sub-group separately. The main advantage of this approach was that it enabled the CBR 
system to use different parts of cases in the case base to solve different subtasks (groups of the solution 
space) for the new problem. The model allowed each batch to have different number of parameters, de-
scribing the problem state, depending on how many parameters were available at the triggering point. 
Prediction was triggered twice during the process at two different time intervals before the end of the 
process (see Fig.3). The first (early) run of the model reliably predicts 20% to 25% of the batches for 
successful quick tap and gives early warning for corrective action, i.e. the model at this point was very 
conservative. The second run of the model produces predictions before the final composition analysis is 
available. At this stage 90% of the batches have the correct advice. The wrong advice (False Positives) is 
around 5% and missed opportunities (False Negatives) around 5%.  

The accuracy of model predictions can be seen on Fig.7 for the 10 year period 2001-2011. The ‘simi-
larity measure’ represents the percentage of correct predictions. 

3.2  Feature selection 

The features for each case were identified initially using the whole history of the batch from the 
beginning to the end of the batch. This resulted in a large number of features and the danger that some of 
them may distort the results. Therefore feature selection was necessary to reduce the dimensionality of the 



feature space. Information Gain (IG) and Sensitivity Analysis (SA) were used to select the most predic-
tive features. The cross validation experiments, varying between fifty-two and four features across nine 
data sets, indicated that the optimal number of features is plant specific and varies between eight and 
fifteen aiming for minimum accuracy of 80% correct predictions. Use of a minimum number of features 
without sacrificing the quality of the final result also reinforced the robustness of the model. 

3.3  Case retrieval 

In the Quick Tap model a pre-defined indexing was used, that acted as a filter, enabling the CBR 
system to locate the relevant subset of cases. The most similar ‘k’ cases to the current problem were then 
identified from this subset by applying k Nearest Neighbour Algorithm (k-NN). 

A modified version of the k-NN similarity retrieval algorithm was used for greater flexibility and 
computational efficiency. Depending on information available at the time of prediction, the target case 
can have different set of features used to find a match. To represent the minimum set of features required 
to produce a reliable result the attribute ‘mandatory set of features' was introduced. The 'maximum devia-
tion' model parameter allowed setting the threshold after which the cases are not considered similar. Simi-
larity was calculated for each feature individually as a deviation from the target case. The case similarity 
was a weighted sum of individual feature similarities, where the weight reflected the importance of the 
feature and relevancy of the case. In this context the similarity measure reflected the deviation from the 
target case, therefore the case with the smallest value for similarity (deviation) was considered as the best 
match.  

Probabilistic theory, combined with pre-defined rules from a Knowledge Base (KB) was used to 
generate the summarisation of the final solution in a form of an advice: "Wait for sample", "OK to tap" or 
"Caution ". The KB was initially created with several basic rules that an expert will use in order to make a 
decision on successful Quick Tap. Gradually with the exploitation of the model the KB was expanded. 
The extra rules added were plant specific.  

3.4  Fine tuning 

A serious problem for the Quick Tap prediction model was the occurrence of False Positives (FP), 
where the predicted value was incorrectly classified as within the target range for quick tapping. A FP is 
significantly more serious than False Negative (FN), where the predicted value is incorrectly classified as 
outside the target range. The occurrence of FP was unacceptable and due to this fact, the model had to be 
fine tuned to the optimal number of retrieved cases. To maximise the accuracy of the retrieval algorithm it 
was acknowledged that when two values are compared sometimes the effect is different when the first 
value is bigger or smaller than the second value. For example, to compare the value of 0.6% hot metal 
Silicon with 0.55% and 0.65%, in terms of final Phosphorus. The value of 0.65% is 'closer' to 0.6% than 
0.55%. This is determined by the behaviour of the cast with hot metal Silicon above and below the target 
value i.e. the pair of casts with hot metal Silicon levels 0.6% and 0.65% will behave more similarly in 
terms of final Phosphorus level than the pair with 0.6% and 0.55% Silicon. To make this distinction, dif-
ferent weights were set, depending on the sign of the difference between target and compared value. This 
method was used to fine tune the model and optimise the FPs and FNs. 

3.5  Case-base Management 

When the final tap analysis for a case was available, all known information for this case was as-
sessed for completeness and added to the case base as a new case. The oldest case is removed from the 
case base when a new case is added. If the new case had FP or FN prediction, the retrieved cases used for 
this prediction are assessed and the case with the biggest contribution for this misclassification is marked 
as unsuitable neighbour for the new case. If the same case is identified as 'unsuitable neighbour' on five 
occasions, then this case is deleted from the case base as ‘noise’. The 'noise' casts are kept in a log file for 
further off-line investigations. 

During the development stage a trial exercise was completed to compare a ‘rolling’ case base with 

(a) ‘growing’ case base that contained every new example; 



(b) ‘interesting’ case base that assessed every new case and assign it to a cluster of cases in the case 
base. If the case belonged to a big cluster and was very similar to a case already in the case base 
(and with the same outcome), it was not considered as ‘interesting’ and therefore not added to the 
case base. 

The comparison showed that the ‘rolling’ case base gave consistently better results. 
 

4 Evaluation 

The key objective of this evaluation is to observe the performance level over a long period of time 
and to assess how the model handles data uncertainty, missing data and concept drift.  

The evaluation data presented here, are selected from ten year period of predicting Phosphorus lev-
el only (the model was originally developed for predicting Phosphorus). The predictions are from the 
second trigger (see section 3.1) of the model. To observe the model performance parts of datasets from 
2001 to 2011 are shown.  Dataset1 is a collection of data from January 2002 to December 2002 and repre-
sents stable performance of the model two years after implementation, when there were no major disturb-
ances within the process. Dataset 2, 3 and 4 are a selection of data from May 2004 to May 2011. This 
represents a period of time of several of changes, concerning mainly distributions of inputs and material 
quality. It is interesting to see how the model handles these changes and gradually learns from collected 
new examples. The case base at any point of time contains cases from one year backwards. 

For a quick visual assessment of the model performance the plot of cumulative frequencies of the 
error in chemistry estimation (see Fig.5) was used, but this only accounts for part of the solution.  
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Fig. 5. Cumulative frequency of Phosphorus estimation error 

In order to assess the correctness of the advice a complex measure of similarity between actual and 
predicted solution was used. 

Consider the examples in Table 2, listing the difference between actual and model solutions for 
Phosphorus only. 

Table 2. Comparing model and actual solutions 

Aim %P Actual %P Predicted%P Advice Probability 
To hit target 

Verdict 

0.02 0.017 0.0182 OK to Tap 100% Correct(TP) 
0.012 0.011 0.0141 Wait sample 25% Missed(FN) 
0.012 0.013 0.0137 Wait sample 30% Correct(TN) 
0.02 0.023 0.0173 OK to Tap 85% Wrong(FP) 

 



The first case has actual Phosphorus level below the aim and the model advice is correct for safe 
quick tap (True Positive /TP classification). The second case could have been successfully quick tapped, 
but the advice was against it. This represents the missed opportunities or FN classification. The third case 
was correctly advised against quick tap i.e. True Negative (TN). The last case was wrongly advised to 
quick tap i.e. FP classification. The objective of the fine-tuning of the model was to minimise the FP and 
FN, but specific attention was paid on minimising the FP as they are unacceptable practice. 

Many CBR developers use the overlap similarity metric (Sim) as a measure of the system accura-
cy. Here Sim is the number of batches, correctly advised, divided by the total number of batches: 

 Sim = (TP + TN) / (TP + TN + FP + FN) (1) 

Figure 7 shows the level of similarity measure over ten year period. It is in the region of 0.8–0.9 
and with a couple of exceptions hardly drops below this level. This demonstrates the stability of the mod-
el over the given time period. 

From production effectiveness point of view the aim is to reduce the TNs and FPs. Therefore, if the 
plant is operating effectively the TNs and the FPs will be negligible in comparison to TPs. With this in 
mind traditional Information Retrieval (IR) measures to report performance [6] were employed.  

 Precision (P) is the proportion of proposed batches for quick tap that are actually correct 

 P = (TP) / (TP +FP) (2) 

And 
 
 Recall (R) is the proportion of actual target hits that are correctly advised for quick tap 

 R = (TP) / (TP +FN) (3) 

Generally high Precision is desirable because lower FP and higher TP is important production 
quality indicator. The combined effect of these two measures is commonly known as the F-measure (F) 
calculated as their harmonic mean 

 F = 2PR / (P +R) (4) 

By applying this measure, far more realistic comparison between actual and predicted solution was 
achieved. The graph in Fig.6 illustrates the ability of the model to handle small (Dataset1) and large (Da-
taset2) unseen disturbances to the problem (input) space. Dataset1 represents a stable period of opera-
tions, during which not many disturbances were recorded. In the case of Dataset2, in the second half of 
2004 a series of changes were introduced e.g. new equipment, production practices, and product changes 
and is evident that the performance indicators of the model deteriorated (increase of FP) for a while until 
the model learned from the new experience and restored the stable performance. It has to be noted that 
after the stable period of 2002 there was no external intervention to the model, i.e. the model operated 
completely autonomously. Dataset3 represents period of stable operation, again with levels of accuracy 
similar to Dataset 1. Dataset 4 is interesting, because it represents a period of time where there was no 
regular feedback, i.e. no regular update of the casebase. This affected the accurate representation of recent 
experience and therefore affected the accuracy of the model prediction (increase of FP). During this peri-
od the model predictions are not based on recent experience and when compared with Dataset3 the bene-
fit of using it is obvious. It is also interesting to see that the level of Recall and respectively the number of 
FN have not been affected greatly by disturbances in the input space. 
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Fig. 6. Model accuracy 2001-2010 
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Fig. 7. Similarity measure for a period of Sep 2001 – Nov 2010 

 
 



5 Conclusions 

Ten years exploitation of the Quick Tap model has proved that the CBR technology can be suc-
cessfully applied in predictive modelling. The experience in using this technology is summarised below: 

•  Short development cycle: there was no need to understand fully the problem, only to collect 
examples, which avoided the common bottleneck of knowledge elicitation. This was true during the in-
itial development. For the fine tuning of the model, good case representation and knowledge of the 
problem space was crucial.  

•  It was very important to include the misclassifications of the model in the learning process in order to 
keep consistent accuracy level;  

• Small number of mandatory inputs gave better robustness; 
• The concept of learning from experience was easy to understand; 
• Decision, based on experience can account even for factors that can't be measured; 
• Model, requiring low maintenance (virtually no maintenance) and delivering high level of accuracy 

very quickly earned the respect of the users; 
• The model gained the biggest approval during times of changes; 
• It was very difficult to quantify the impact of the model, but the level of production quality has in-

creased since implementation. Another way of evaluating the model impact was to analyse the con-
sistency of the operations and the confidence of the users. 

After successful first implementation in one plant, three more plants from the company had their 
own version of the model. Further development included three-point prediction update, full chemical 
analysis and temperature prediction, dynamic probability plots.  
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