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Abstract. Large and distributed environments usually generate huge amounts of information. The 

easiest way to deal with this information in an uncoupled and asynchronous way is using event 

oriented approaches. These systems are usually implemented to react to the generated information. 

This paper presents a new track to add to these architectures a mechanism to discover behaviors 

combined with a reasoning method that predicts the next most probable event. Consequently, the 

work focuses in two fields: sequence pattern mining and case-based reasoning. The former aims to 

compress the original large amount of event data by discovering frequent behaviors in the form of 

sequence patterns. The latter  is used to recognize the behaviors and forecast future predictions based 

on the learnt patterns. The methodology has been tested using real data from a public bike hiring 

system.  

Keywords: case-based reasoning, sequence mining, event, hybrid system, knowledge acquisition, 

human learning, application. 

1   Introduction 

Technological advancements have contributed to improve quality of citizens live. For instance, thanks to 

sensors, an aging person can be monitored 24 hours 7 days a week at home, and when no activity is 

detected in the house for a long period of time, an alarm is activated in the system. Another example is 

the use of Radio Frequency IDentification (RFID) cards that allow us to use the public transport systems 

easily without worrying to bring cash with us all the time. 

This type of sensors and devices can detect state changes in systems and objects creating events 

capable to trigger appropriate services when needed. Event Driven Architectures (EDA) are being used to 

activate these services triggered by incoming events. These architectures have been designed to operate in 

domains where the entities that generate the events need total uncoupling and asynchronism. Complex 

Event Processing (CEP) is a particular case of EDAs, which defines a set of tools and techniques for 

analyzing and controlling complex series of interrelated events [1][2]. For example, when a user enters in 

a fully monitored kitchen, and opens the oven, then events “in cuisine” and “oven access” are registered. 

Those related events, which that take place in consecutive time stamps, are called complex events. 

Complex events can have actions associated to them; thus, when a complex event is triggered, the 

associated action is executed. In the example, after the “cuisine+oven” complex event is triggered, the 

action “caution service” can be executed. A follower event could be “burnt smell”, and the action 

associated whith the new, complex event, “cuisine+oven+burnt smell” could be “fire alarm service”. Of 

course, it could be nice to avoid the “fire alarm” situation, which could be achieved by predicting the 

“burnt smell” before it happens.  

However, defining by hand complex events is a time-consuming task that requires the knowledge from 

qualified personnel. Moreover, most of the times there is no previous knowledge or evidence available to 

build them. Therefore, knowledge discovery techniques are helpful in this scenario, in which huge 

volume of events are continually being generated. Machine learning methods can be used to discover 

frequent patterns in users’ behavior that can then become complex events. Moreover, pattern recognition 

techniques can then be used upon the learned patterns to predict the next event in a given sequence. 

To achieve this two stage process (knowledge discovering and pattern recognition) for complex event 

processing, we present in this paper a hybrid system that combines sequence pattern mining  and case-

based reasoning (CBR). Firstly, sequence pattern mining is used to process the raw data generated by an 

event-driven system, finding sequence patterns of events that could be considered as complex events. 



Then, case-based reasoning is used for recognizing the learnt patterns given the current event system 

information. This recognition is performed as the information is known, so that current events are 

expected to match the beginning of the recognized sequence patterns, and then event prediction can be 

performed thanks to the remaining information of the patterns.  

For demonstration purposes we use a public bike hiring system (like Vélib' in Paris, Bicing in 

Barcelona, BIXI in Montreal and Toronto or  Barclays Cycle Hire in London, etc.) as example, where 

users registered in the system can check out bicycles from specified depot stations distributed around the 

city and return them in another depot. In this domain, it may happen that users find that there are no 

bicycles available or free slots in the depot (they can't return theirs). This problem is usually solved 

scheduling a set of vans/truck which moves bikes between stations. With our system, we pretend to learn 

the most frequent user behaviors, predicting which will be their following stations can be done and 

consequently re-schedule more efficiently the bike transfer between depots, so the user always finds a 

bike or a free park place available for him. 

This work is organized as follows: Section 2 reviews similar and related works to the one presented 

here; Section 3 exposes the methodology of our work for discovering and predicting behaviors; Section 4, 

shows our experimentation process using a specific domain as example; and, finally, Section 5 presents 

our conclusions and future works. 

2   Related Work 

As mentioned before, this paper is related to Sequence Learning and Pattern Recognition. Firstly, the 

main objective of sequential learning methods is to discover sequential patterns from (very) large 

databases. Three Apriori-based algorithms, for mining frequent sequence of transactions performed by 

customers, are reported in [3]. A transaction is then interpreted as constrained sequences of events. The 

Apriori-based algorithms develop lattices of event sequences that represent the most frequent patterns and 

discards the remainder. Other algorithms have been developed for improving the efficiency. For example, 

[4] improved the candidate sequence pattern generation but still needed multiple passes over the data. Our 

approach is based in [5], on which sequence patterns are organized according to prefixes (ordered subsets 

of sequences). 

Secondly, regarding pattern recognition, this paper is closer to plan recognition and intrusion / 

detection problems. On the one hand, plan recognition problem [8] uses a sequence of actions performed 

by an actor and tries to organize them inferring the ultimate goal or goals. In our case we do not pursue to 

discover these goals but the sequence of events generated by a user, equivalent to sequence of actions or 

plans, since behaviors usually do not have a clear goal. The objective is to find the relative ordered set of 

actions that follows the actor in order to recognize its actual state and predict its next step. 

On the other hand, a pioneer work on intrusion detection is [9], which also deals with sequences but 

following an instance based learning approach. In this work, a complementary segmenting process is 

carried out to obtain sequences from event streams based on windows of a fixed length. Each new 

subsequence becomes an instance resulting in a significant increase in the number of instances. Therefore, 

reduction methods are further required to control the case growth. Conversely, we are taking advantage of 

existing sequence learning algorithms, so sequences are obtained with a given support and confidence, 

becoming generalized patterns of cases. 

There have been other previous synergies between sequence learning and CBR, as in [6], where the 

authors proposed learning methods to select sequences of repairs in a CBR system, when more than one 

repair exists. In our case, we are using sequence learning to build cases, so the case base is composed of 

patterns of sequences, and a new sequence metrics is defined to recover cases from memory to solve the 

prediction problem. In [14] a similar approach was used, but in addition of using a different sequence 

metrics than ours, they use a plain memory instead of the hierarchical organization we are proposing. 

Other approaches, as in [7], use CBR to deal with sequential information, but without hybridizing with 

sequence learning algorithms.  

 

 



3   Methodology 

Our goal is to learn complex events as sequence patterns, and use case-based reasoning for predicting 

next events (see Figure 1) by exploiting the recognized patterns as cases. Thus, our methodology consists 

in three main steps: sequence generation, pattern discovery and sequence recognition for next event 

prediction. Firstly, we generate sequences from a cloud of events acquired through an event-driven 

domain. Secondly, a pattern discovery algorithm is applied to find frequent episodes. Finally, duringthe 

exploitation phase and when monitoring the activity of the system, patterns are recognized and reused for 

prediction for current users according to their most recent activity (events) registered in the system thanks 

to case-based reasoning.  

3.1   Sequence Generation 

The goal of this step is to provide adequate pieces of information for data mining. Thus, given event 

streams gathered from an event-driven domain, event sequences are obtained. 

Definition 1. An event is an observable change in the system and it is usually represented by the 

action that caused the change.  

Events are identified by the timestamp (when the action or change in the system is observed) and they are 

assumed to be instantaneous. . 

Definition 2. An event stream S is an arbitrarily sorted array representing events generated by an 

event-oriented domain. 

S = < …, sk. sk+1, sk+2, … > 

Event streams can be classified according to their source, i.e., the actors who cause the event. Thus, we 

talk about event streams of actor a, S(a). 

Definition 3. Given an actor a, its associated event stream, S(a), is the subset of events in S who has 

been caused by a. 

The criteria to sort the events within a stream can be, for example, time and space. In this work we focus 

on time. Thus, older events are at the beginning of the stream, while the newest are at the end. 

To facilitate stream manipulation, streams can be segmented in finite length sequences according to a 

given criteria. For example, time-sorted event streams can be split according to time windows or space-

sorted event streams can be split by considering a maximum distance among events. Since this work 

focus on time, we define sequences based on time windows. 

Definition 4. A time event sequence Seq in S is a subset of events in S whose first and last events 

defines a time window w. 

Analogously, we can define a time event sequence for a given actor a, Seq(a).  For example, the time 

window used in this work correspond to a day interval since we consider that the information from two 

different days can be considered independent according to the domain problem we have dealt with. So a 

time event sequence Seq(a) would contain the events generated in an specific day by the actor a. 

Observe that event sequences can be directly used to build complex events. According to [10], a 

complex event is an abstraction of event relationships. The event relationships that can be abstracted into 

complex event are basically three: time relationship, when event A happens before event B; causal 

relationship, when event A happens because of B; and aggregation relationship, when events A1, A2, …, An 

means B. These abstract relationships are represented by the “:” symbol in Figure 1. 

Figure 1 Methodology overview. 



Thus, in the sequence generation step, we are given with a set of streams S, and we obtain a set of time 

event sequences, Seq1, …, Seqm according to a time window w. In case of being interested on a specific 

actor a, we can obtain also, the corresponding sequences particularized to this actor, Seq1(a), …, Seqm,(a). 

For the sake of simplicity, we assume from now sequences without any particularization to an actor, since 

the methodology does not change the results, as we show in Section 4. 

3.2   Pattern Discovery 

Pattern discovery can be seen as a step where we compress huge volume of data, and remove the useless 

information by mining the most common sequences. Given a set of time event sequences, this step find 

sequence patterns corresponding to a high number of similar sequences, which represents similar actor 

activities which are hidden inside all the information gathered in the initial streams. 

Definition 5. An event sequence pattern P is an arbitrarily sorted array of events pi supported by a 

high number of event sequences. 

P = < p1, p2, p3, ..., pn > 

Discovering these patterns can be done using several pattern sequence mining algorithms like the ones 

commented in Section 2. The main idea of all of them is to explore all the sequences and find the most 

repeated elements and their combination. In our case we have chosen to work with Prefixspan [5] because 

of two reasons: its simple basis and its inherent pattern tree structure. On the one hand, its simplicity 

allows us to easily implement and add modifications to the algorithm to map our requirements. On the 

other hand, the tree structure helps in the next step of the methodology. 

The basic idea of Prefixspan, from which our implementation derives, is building a search tree. Nodes 

represent possible patterns and they are annotated with their support; this is, the number of sequences in 

the database that supports the pattern. Figure 2 gives an example. The root of the tree contains the empty 

pattern sequence which is supported by all sequences. The next level of the tree adds a node for each 

possible event occurring in the system. In the Figure, the sequences that appear in the node as supporting 

them have been modified with underscores, meaning where the pattern is located (i.e., elements iterated in 

the sequence until the pattern has been found). This process is called “projection” of the node in the 

database. Be aware that a pattern AB fulfills both, ABC and AC” sequences, since it is not mandatory that 

the events occur in the same position as they are in the pattern but following the same order. This is why 

the information stored in nodes is called “prefixes”. Branches of the tree that do not have a minimum 

support τ (in the Figure τ =2/3) are pruned. The algorithm ends when no more projections are possible. 

Figure 2 uses the toy stream case base < ABBA, ABCA, CAAB > to illustrate this. The minimum support 

for the example is 2/3 and the final patterns are < A, AA, AB, ABA, B, BA, C, CA >. 

The original PrefixSpan algorithm (and their predecessors) used sets of items instead of events and 

forbade item repetition inside these sets. That means that event sequence patterns as AAC could not be 

represented as sets of items. For that purpose, we have studied the algorithm and concluded that feeding 

PrefixSpan adequately, the algorithm can work according to our target. The learnt event sequence patterns 

represent the expected registered activity of actors in the event-driven system. 

3.3   Sequence recognition and event prediction 

Given the actual state of the event-driven domain, in this stage we predict the most probable events to 

happen thanks to the discovered patterns. Actual state is provided by an input stream in which the most 

recent activity of the domain has been registered. Usually, prediction is actor-based, that is, we are 

interested in predicting the next activity of a given actor. 

We map this procedure using a Case-Based reasoning (CBR) strategy [11], where from a case-base of 

past experiences, a new solution is generated, by reusing solutions of past cases retrieved thanks to a 

specifically designed metric. In our approach, the case-base is composed by the event sequence patterns 

discovered. Then, a new distance method for retrieving and reusing cases has been designed to meet our 

prediction needs. 

 

Retrieving Patterns. This stage of a CBR compares the input stream with the patterns in the case-base, 

providing a ranked list of similar patterns. Our innovation for this step relies in the distance algorithm, the 

metric function used to assert if a stream contains a pattern. 



The algorithm has been designed with the purpose to return a weighted output depending on the 

following properties: 

 A complete match of a pattern within a sequence returns a lower value than a partial match. 

 A recent match (end of the sequence) returns a lower value than an old match (beginning of 

the sequence). 

 A match where the events are closer between them returns a lower value than a match 

between distant events. 

 The lowest value, the better. 

This algorithm sets distances close to zero for patterns that just happened “right now”. Consequently, 

retrieving the closest patterns can be considered equivalent to recognize the actual state. 

Our notation assumes that within sequences and patterns, events located at position 0 will be the last 

event recorded, the newest ones, and the ones located at |S|-1 or |P|-1 the oldest ones. Basically, the 

algorithm to estimate the distance is composed of two parts (see Table 1). The first one is the index 

function, which returns an integer indicating the position where the pattern event pj is located inside the 

stream sequence S. Given a current position i (where the previous pj-1 event was found), the search is 

started it. If pj cannot be found in stream S, it will be assigned the maximum value possible |S|. The 

second part is the distance algorithm itself, where, for each event pattern inside P, positions retrieved by 

function index are exponentially accumulated. If the last pattern event was not found, the index i remains 

the same and we continue looking from there. 

 

 

Algorithm  Calculate distance (S, P) 

1: Δ = 0 

2: i = 0 

3: for j = 0 until |P|-1 do 

4:    aux = index(S, pj, i) 

5: 

6: 

7: 

8: 

9: 

10: 

   Δ = Δ + 2
aux
 

   if aux ≠ |S| then 

      i = aux 

   end if 

end for 

return Δ 

     (      )   {
| |                         

      ({      })          
 

Table 1: Distance algorithm 

Reusing Patterns. Reuse uses the ranked list of cases generated at the retrieve stage in order to predict 

the next event in the system. For that purpose, the organization of cases in memory (tree structure 

generated by the sequence pattern mining algorithm) is used. 

Firstly, the pattern in the ranking with the lowest value (the closest one) is selected. In case of finding 

two or more patterns with the same value, the longest pattern is selected, since it represents the actual 

state with more information. Once the pattern has been selected, using the tree structure, its immediate 

descendant with the highest support is chosen as the candidate solution. This is, the candidate should 

contain an additional event in the sequence, the predicted event. In case of the pattern selected does not 

have any descendant (leaf pattern), the next pattern in the ranking is used, and so on, until a prediction is 

found.  

For example, using Figure 2 as the tree pattern, if AB is our closest pattern to the input stream, its 

immediate descendant would be ABA and therefore the final prediction A. 

4   Experimentation 

For the experimentations process, we have used real information from a public bike hiring system. The 

testing objective in this domain is to prove the effectiveness of our method while trying to predict which 

will be the following event in the system. This predictions represents the next station where a user will 

interact with the system, and they can be used in future works to move bikes between depots stations 

using optimization models that know where the bikes are going to be, not where they are. 



4.1   Data 

Data originally was a 30 days database bulk of a real public bike hiring system, specifically January 2008, 

where, for each user, there were all the bike's uses performed (source, destination and timing). This usage 

information is in fact a record of the events generated by the interaction of users with depots: each time a 

user picked or dropped a bike, the visited depot station generated an event with information about who 

was generating the event; where this event was coming from, the type of action (picking or dropping) and 

a timestamp.  

Once reorganized as user streams, each stream contained only the sequence of events of one user. 

After that, a clean-up process was done for removing noises and outliers, for instance removing user 

streams with low amounts of events. The reason we removed users with low usage of bikes is because 

when our approach mines the patterns, they don't provide any valuable information but they still count 

when estimating the support, decreasing it and hindering the selection of a proper threshold. Finally, 260 

user streams with at least 150 events each one remained. The information about the visited depot stations 

was included so the time event streams represent ordered sequences in time of the visited stations. This 

means that the predictions done at this point concerns the future depot stations a user will visit, leaving 

for future woks the inclusion of time and action of those predictions. 

4.2   Scenarios 

To compare the effectiveness of our approach we have prepared a set of four scenarios. In Scenario 0, or 

baseline scenario, predictions are performed using statistical information from the original data. Scenarios 

1 to 3 use our approach, and the difference among them is the way the original data is divided. All 

scenarios are run under the same configuration while mining patterns: the minimum support for a 

sequence to become a pattern is 10% of their sequences. 

 

Scenario 0 (Baseline). The worst case scenario would be to predict randomly any other station as future 

prediction. 

 

Scenario 1. In this scenario we want to check the possibility of generating prediction for each user only 

with their individual information, this means that when a prediction for a user is requested only the 

patterns found in his data are used and only his past information is reused for the prediction (see Figure 

3.top).  

 

Figure 2 Simple example of Prefixspan. The toy stream set ABBA / ABCA / CAAB is used 

to mine patters with a minimum support of 2/3. Gray nodes are explored but since they don't 

have minimum support the branch is pruned. 



Scenario 2. This scenario complements the previous one. In this case instead of using only the 

information of each user for his prediction now we mine the patterns for each single user and combine 

them in order to create a common pattern case-base for the CBR (see Figure 3.middle). 

With this configuration we check how useful can be sharing the patterns. For instance, if a user starts a 

new behavior, predictions could fail in the previous scenario, since it is a new pattern that does not exist 

in his past information. But sharing the patterns another user could already have this pattern and 

therefore, with the unified pattern case-base, be predicted as well. 

 

Scenario 3. The latest scenario, the set of all user streams feeds the sequential pattern learning instead of 

using independent sets of patterns mined from the users (see Figure 3.bottom). 

Now, using all the user streams as cases for the pattern discovery, we check if the global trends of the 

system are also useful to make individual predictions. 

4.3 Experimentation sets 

Original data has been split into training and test sets. To avoid biased results, we have generated 100 

experimentation sets randomly, with 20% and 80% of test and train cases correspondingly. The final 

results are the mean amount of times a user finally uses the predicted station. This means that the 

prediction can be few events in the future, not exactly the next one. 

Concerning test streams, they have been modified to map as closely as possible how the real system 

process the events. That is, given a test stream S
t
 = < s

t
1,…, s

t
k >, k test are performed: < s

t
1>, < s

t
1, s

t
2>, 

… < s
t
1,…, s

t
k >., starting with a single event stream  and increasing the number of events in it until the 

total stream length. Thus, prediction results depend on the on the amount of events (stream length) 

registered by a user in the system.  

Figure 3 Top figure represents Scenario 1, where independent predictions for each user 

are generated. Middle figure represents Scenario 2, where users share the same pattern case-

base for the generation. Bottom figure is Scenario 3, where whole user streams are used to 

generate the patterns case-base. 



4.4   Results 

Figure 4 shows the results obtained, except for Scenario 0. This baseline scenario has been created to 

compare the results and it is based on the fact that the system has 296 stations, so the odds of randomly 

choose correctly the next station to be visited by the user is 100* (1/296) ≈ 0,338%. If we try to improve 

this result using some knowledge from the data, we could recommend only the stations that are within a 

k-radius. We have estimated that the mean trip time is 14min 47sec. Using a sensible biking speed of 12 

Km/h (note that bikes ride in urban environments with pedestrians and cars in the way) we have that the 

mean distance traveled is approx. 2,597 Km. With this information we have estimated that the mean 

amount of stations within this 2,597-radius from any station is 124. So the probabilities of predicting a 

station now is 100* 1/124 ≈ 0,806%. This result is outperformed by the other scenarios and if they were 

represented in Figure 4 they would look like a flat line so close to zero that they would collapse to the x-

axis in that figure. 

Scenario 1 can be seen in Figure 4. Streams with length 1 have an approximated 60% of success but it 

descends until almost 30% with lengths 8 and 9. When historic information is too large (more than 19 

events or 4 days of information approx.) predictions drops their success rate drastically. 

The zigzagging shape is due to the domain, since users alternate piking and dropping bikes. X-axis 

represents the stream length used to perform the prediction. When the system is predicting with a stream 

of length one, the single event in the stream represents the first action of a user recorded, which can only 

be picking a bike. Therefore, the second event represents the event which records where the user dropped 

the bike and so on. Using this reasoning, Scenario 1 in Figure 4 exhibits a better performance predicting 

the following depot stations visited when the user has just picked a bike (and so there will be a closer 

dropping action). Also, it is interesting to observe that in the long run, using a bigger amount of 

background information does not improve the performance. It is easily seen how the prediction fails after 

more than 19 events of historic data. But this can also be caused because there are too few day streams 

with this length, what directly affects the amount of support and prevents a pattern to be discovered. 

Scenario 2 presents similar results than Scenario 1 but an approximately 10% worst. The exception 

would be when predictions are done with around 21 events of information. In this case, the zigzagging 

Figure 4 Mean success rate (y-axis) according to the stream length (x-axis) in Scenarios 1 to 3. 

Baseline Scenario 0 has not been represented due its poor success ratio would be a flat line colapsing with 

the x-axis. 



prediction according if the user is taking or dropping a bike disappears. Also, with big amounts of 

background information in stream predictions tend to fail always. It was sensible to think that this 

scenario should outperform the previous one, but the combination of patterns from different users in this 

case provides to the CBR case-base more noise than useful information. Huge amounts of slightly 

different patters can be selected, confusing the system. 

Finally, Scenario3 shows better results than the previous ones. In this case, the prediction success rate 

slowly decreases from an almost 90% using around 25-length streams until an almost 50% when length is 

around 150. Neither can be the zigzagging appreciated, but this time, after 200 length the prediction, 

success rate becomes erratic. This could be a combination of two symptoms: the first one is the same one 

that happened in the previous scenarios when finding patterns within the longest streams. The existing 

patterns at the end of the longest streams have problems to be detected, hindering the prediction at this 

point. The second symptom can be a side effect of our distance algorithm. It represents an exponential 

sum and when an event from a pattern is not found in the user stream it receives a 2
|S|

 penalty, where |S| 

represents the total length of the stream. In this scenario there are user streams longer than 300, hereby 

2
300

, what makes the process lose a lot of precision. 

5   Conclusions 

In this paper we have presented a sequence discovery and recognition method specifically designed for 

event-oriented domains that register the activity of actors. Event streams are mined to extract the most 

important information as sequence patterns. Such sequence patterns represent the discovered behavior of 

the actors. Then, the system recognizes current event information thanks to a CBR approach, in which 

cases are the learnt sequence patterns. Thanks to the recognition, a prediction of future events can be 

performed. Such prediction can benefit the overall system to anticipate undesirable future system 

situations (fire alarms, resource unavailability). 

We have tested our methodology in a public bike hiring system. Experiments have been performed 

with isolated and global actor information, obtaining better predictions in the latter case. Thus, in the lack 

of information for making predictions for a user, using information from similar users helps. 

Nevertheless, results drop when there is a lot of historical information involved. This should be a 

matter of research in  future works in which we analyze which is the adequate time window needed to 

make predictions, conversely, to establish the adequate forgetting mechanism. 

Moreover, we need to include time interval durations within the events in order to generate more 

precise predictions. The current predicted events are carried out by actors but not necessarily right away, 

they can occur several events forward. We need to extend our sequence representation from < si, sj > to < 

si time_dur sj, > which poses new challenges to the pattern learning step, in which other works like [12] or 

[13] could be an starting point. 
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