
Social Semantic Web Access Control?

Serena Villata, Nicolas Delaforge, Fabien Gandon, Amelie Gyrard

INRIA Sophia Antipolis {firstname.lastname}@inria.fr

Abstract. In the Social Web, the users are invited to publish a lot
of personal information. These information can be easily retrieved, and
sometimes reused, without providing the users with fine-grained access
control mechanisms able to restrict the access to their profiles, and re-
sources. In this paper, we present an access control model for the Social
Semantic Web. Our model is grounded on the Social Semantic SPARQL
Security for Access Control Ontology. This ontology can be used by the
users to define, thanks to an Access Control Manager, their own terms
of access to the data. Moreover, the Access Control Manager allows to
check, after a query, to which extent the data is available, depending on
the user’s profile. The evaluation of the access conditions is related to
di↵erent features, such as social tags, contextual information, being part
of a group, and relationships with the data provider.

1 Introduction

One of the key features of Social Web is the ability to publish, and thus find a
lot of personal and professional information about people. With the advent of
Social Semantic Web, this is more evident, as underlined by Breslin et al. [2]. This
availability of personal data of the users has both positive and negative sides. On
the one hand, this allows people to share their data, e.g., photos, videos, posts,
with their friends and the persons they know. On the other hand, semantic forms
of the users’ profiles can be reused elsewhere, e.g., what happened with FOAF
search engines and aggregators as Plink, or FoaFSpace. This leads to the need
of mechanisms whereby users can restrict the access to their data.

In this paper, we address the research question: How to define an access
control model for the Social Semantic Web? This question has to deal with
di↵erent aspects that need to be taken into account when designing a model of
access control for the Social Web. First of all, we avoid the usual access control
lists, often maintained by a sole authority, because we cannot specify the access
restrictions to any particular user, in a context where the user information is so
dynamic as in the Social Web. Second, we rely on the social tags assigned to the
users and their data. Moreover, the contextual information are considered in this
model, i.e., time constraints, geo-localization information, maximum of accesses
to a resource. Finally, the model supports a user friendly interface allowing both
expert, and non expert users to define their own terms of access.

? The authors acknowledge support of the projects ISICIL ANR-08-CORD-011 and
DataLift ANR-10-CORD-09 funded by the French National Research Agency.

We define the Social Semantic SPARQL Security for Access Control vocabu-
lary (S4AC), a lightweight ontology which allows the users to specify fine-grained
access control policies for their RDF data (Figure 1). At the core of S4AC is the
Access Condition which is a SPARQL 1.1. ASK clause that specifies the condition
to be satisfied in order to grant the access to a resource. Moreover, the users
can define Access Conditions based on tags which restrain the conditions to the
resources tagged with such tags, e.g., resources tagged “friends”, “amici”, “ami”.
The conditions can be bound to specific values to provide an Access Evaluation
Context, e.g., <‘‘?user’’, <http://myExample.net#sery>> where the URI of
the user is bound to <http://myExample.net#sery>. Finally, the Access Con-
dition is associated with a temporal and spatial validity. The Access Privilege,
instead, defines which kind of privilege is granted to the user satisfying the Ac-
cess Conditions and the contextual constraints, e.g., s4ac:Read grants the user
the privilege to read the requested data. Moreover, we introduce the Access Con-
trol Manager letting the users in the Social Semantic Web to (i) define the access
conditions for their RDF data, e.g., their FOAF profile, and (ii) filter the RDF
data depending on the access conditions the user who wants to access satisfies.

Condition

AccessConditionSet

subClassOf

AccessCondition

DisjunctiveACS ConjunctiveACS

subClassOf subClassOf

subClassOf

AccessTag

AccessTagging
Rule

hasTag

AccessEvaluationContext

hasAccessEvaluationContext

hasAccessConditionSet

hasAccessCondition

AccessPrivilege

hasAccessPrivilege

TemporalEntity

hasValidity

SpatialThing

hasSpatialValidity

Fig. 1. An overview of the S4AC Ontology.

A key feature of our approach is to rely only on Semantic Web languages.
As a consequence, our access control model is platform independent, and can be
used by any kind of system based on those languages. In particular, the semantics
of our policies is grounded in SPARQL 1.11 ASK queries. Relying on SPARQL
semantics, our model allows the user to submit arbitrary queries while enforcing
fine-grained access rules on the results he will receive. If the result of the ASK

query is true, then the user is provided with the information he requires. If the
result is false, then the model returns to the user a denial coupled with one or
more rule labels explaining the reasons of the denial.

The reminder of the paper is organized as follows: Section 2 provides a de-
scription of the S4AC ontology and the kind of policies which can be defined
using such ontology, and Section 3 presents the access control model and de-
scribes the developed prototype. Related work and conclusions end the paper.

1 http://www.w3.org/TR/sparql11-query/

2 Social Semantic SPARQL Security for Access Control
Ontology

The Social Semantic SPARQL Security for Access Control Ontology (S4AC),
online at http://ns.inria.fr/s4ac/v1#, is detailed in Figure 2. One of the
key features of our access control approach is to be integrated with the models
adopted in the fields of the Social Web, and of the Web of Data. In particular,
S4AC reuses concepts from SIOC2, SCOT3, NiceTag4, WAC, TIME5, GEO6, and
the access control model as a whole is grounded on further existing ontologies,
as FOAF7, Dublin Core8, and RELATIONSHIPS9.

s4ac:Condition

s4ac:AccessConditionSet

rdfs:subClassOf
s4ac:AccessCondition

s4ac:hasAccessCondition

s4ac:Disjunctive
AccessConditionSet

s4ac:Conjunctive
AccessConditionSet

rdfs:subClassOf rdfs:subClassOf

sioc:Item

rdfs:subClassOf

rdfs:subClassOf

s4ac:isAccessConditionOf

s4ac:AccessTag scot:Tagrdfs:subClassOf

rdfs:Literal

s4ac:hasQueryAsk

s4ac:AccessTaggingRule

s4ac:hasAccessConditionSet

s4ac:hasTag

s4ac:AccessEvaluationContext

s4ac:hasAccessEvaluationContext

s4ac:hasVariable

s4ac:hasValue

time:TemporalEntity

s4ac:hasValidity

s4ac:AccessPrivilege

s4ac:Read

s4ac:Update

s4ac:Delete

s4ac:Create

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

acl:Readowl:equivalentClass

acl:Appendowl:equivalentClass

s4ac:hasAccessPrivilege

skos:PrefLabel

s4ac:hasCategoryLabel

rdfs:subClassOf

s4ac:MaxResource

s4ac:hasMaxResource

geo:SpatialThing

s4ac:hasSpatialValidity

s4ac:Variable

s4ac:hasParameter

s4ac:hasComment

s4ac:hasName

Fig. 2. The S4AC Ontology.

The main class of the S4AC ontology is the class AccessCondition, which is
a subclass of the class Condition, itself a subclass of sioc:Item.

Definition 1. An Access Condition (AC) is a SPARQL 1.1 ASK query. If a
solution exists, the ASK query returns true, and the Access Condition is said
to be verified. If no solution exists the ASK query returns false, and the Access
Condition is said not to be verified.

2 http://rdfs.org/sioc/spec/
3 http://scot-project.net/
4 http://ns.inria.fr/nicetag/2010/09/09/voc.html
5 http://www.w3.org/TR/2006/WD-owl-time-20060927/
6 http://www.w3.org/2003/01/geo/wgs84 pos
7 http://xmlns.com/foaf/spec/
8 http://dublincore.org/documents/dcmi-terms/
9 http://vocab.org/relationship/.html

The Access Condition grants or restricts the access to the data. If the ASK re-
turns true, the access is granted to the user. In order to return the user a more
informative answer if the access is denied, we introduce the property hasCat-
egoryLabel. This property allows to associate to each AC one or more natural
language labels which “identify” the access condition, and they are returned to
the user to provide him the reasons of the denial. We cannot return the user all
the access conditions, because this would make him aware of the policies of the
provider. If it is the case that only some results are filtered, it is a matter of the
access control model whether to communicate or not, thanks to the hasCategory-
Label property, that an access restriction has been applied. The AccessCondition
defines two properties of the access polices: hasValidity, and hasSpatialValidity.
They allow to define the validity of an Access Condition. Thanks to the use
of the concept time:TemporalEntity, the validity can be expressed in various
ways: valid from/through a specific date/time, or valid in a specific time interval.
hasSpatialValidity, instead, deals with the spatial localization of the user at the
moment of trying to access the data. We use the concept geo:SpatialThing

in order to express the spatial constraints. These properties are used to express
policies in which not only the identity of the user requesting the data is checked,
but also the contextual information related to the time and place in which the
request is performed. A further class is MaxResource which defines the num-
ber of times the user can access all or a specified resource. We introduce also
the property hasParameter which provides for each variable used in the ACs,
a comment in natural language explaining the meaning of the variable. This is
introduced with the aim to explain to the user how the variables are used in
the access policies he is adopting, e.g., “?date” has the associated comment “the
date of creation of the resource”.

Definition 2. An Access Evaluation Context (AEC) is a list L of predetermined
bound variables of the form L = (hvar1, val1i, hvar2, val2i, . . . , hvarn, valni) that
is turned into a SPARQL 1.1 Binding Clause to constrain the ASK query evalu-
ation when verifying the Access Conditions.

The AEC is represented in the ontology as the class AccessEvaluationCon-
text which has two properties, hasVariable and hasValue, which are respec-
tively the variable, and the value to which the variable is bound. It is used
to provide a standard evaluation context to the access conditions, e.g., request-
ing user, resource provider. Consider the following example: L=(<‘‘?resource’’,
‘‘<http://MyExample.net#doc>’’>,<‘‘?user’’,‘‘<http://MyExample.net#sery>’’>).
This list can be used to generate an additional SPARQL 1.1 Binding Clause for
the access conditions of the form: BINDINGS ?resource ?user

{(<http://MyExample.net#doc>, <http://MyExample.net#sery>)}.

Definition 3. An Access Condition Set (ACS) is a set of Access Conditions.

The AccessConditionSet class has a property hasAccessCondition which iden-
tifies which Access Conditions form the ACS. Two subclasses of AccessCondi-
tionSet are introduced: conjunctive, and disjunctive ACS.

Definition 4. A Conjunctive Access Condition Set (CACS) is a logical con-
junction of Access Conditions of the form CACS = AC1 ^AC2 ^ . . . ^AC

n

. A
CACS is verified if and only if every access conditions it contains is verified.

Definition 5. A Disjunctive Access Condition Set (DACS) is a logical dis-
junction of Access Conditions of the form DACS = AC1 _AC2 _ . . . _AC

n

. A
DACS is verified if and only if at least one of the access conditions it contains
is verified.

Definition 6. An Access Tagging Rule (ATR) is a triple R = hACS, TagSet,

Bindingsi where ACS is an Access Condition Set, TagSet is a set of tags {tag1,
tag2, . . . , tagm}, and Bindings is an Access Evaluation Context. An ATR is ver-
ified for a resource tagged with one or more tags from TagSet if and only if the
ACS is verified for that resource. The ACS may be reduced to a single access
condition. In this case, the ATR is said to be verified if and only if the single
access condition is verified. The TagSet may be empty, in which case the ATR

applies to any named graph.

An ATR declares that the access conditions in the ACS applies to any RDF
graph tagged with one or more tags from TagSet. The class AccessTaggingRule
has three properties: hasAccessConditionSet, associating an ACS to the ATR,
hasTag, providing a set of tags to the ATR, and hasAccessEvaluationContext,
associating to the ATR the AEC, i.e., the bindings applied to the rule. Moreover,
it has the property hasAccessPrivilege which defines the access privilege the user
is granted to: Read, Create, Update, Delete. We expand the acl:Write class,
which is used for every kind of modification on the content, and we allow fine-
grained access control privileges. The class AccessTag, used to define the set of
tags, is a sub-class of scot:Tag.

ISICIL - URI of the resource

ASK { ?resource dcterms:creator ?provider .
 ?provider rel:hasColleague ?user }

ASK { GRAPH ?g { ?resource nicetag:hasCommunitySign ?tag }.
 ?g sioc:has_creator ?provider }

BINDINGS ?resource {(<http://MyExample.net#wiki>)}< ?tag, "science">

∧

if TRUE
then s4ac:Update

if FALSE
then "colleague"

Fig. 3. An example of access policy.

We show now in detail which kind of access control policies are enabled
by the proposed access control model. Consider the policy defined below: the
data provider defines an access policy such that only his resources tagged with
tag “family” are constrained by the access condition which grants the access
to those users which have a hasParent relationship with the data provider, i.e.,

the parents of the provider. The Access Condition Set is composed only by one
access condition, thus this is the only one which needs to be evaluated. The
access privilege is Read. Thus, given a SELECT query of the user, if he is granted
with the access, then he is allowed to Read the requested data. The use can
access the data from December 31th at 23:59. If the user is not granted with the
access then the label the system returns him together with the failure message
is “parents”, to explain that the reasons of the failure have to be associated to
the fact that the user is not a parent of the provider; we choose not to send any
message if some results are filtered.

<http://MyExample.net/expolicies>
 a s4ac:AccessTaggingRule;
 s4ac:hasAccessConditionSet [
 s4ac:hasAccessCondition [
 s4ac:hasValidity [
 time:hasBeginning [
 time:inXSDDateTime 2011-12-31T23:59:00
];
];
 s4ac:hasCategoryLabel ’’parents’’@en;
 s4ac:hasQueryAsk ''
 ASK { ?resource dcterms:creator ?provider .
 ?provider rel:hasParent ?user }''
];
];
 s4ac:hasAccessPrivilege s4ac:Read;
 s4ac:hasTag ’’family’’@en.

The table below presents some examples of the ASK queries which may be
associated with the access conditions. Cond1 grants the access to those users
who have a relationship of kind “colleagues” with the provider. Cond2 grants
the access to the friends of the provider, and Cond3 extends this access condition
also to the friends of friends. Cond4 is more complicated10. It grants the access
to those users that are marked with a specified tag. For specifying the tag, we
use the NiceTag ontology which allows to specify the relationship among the
resources and the tags for each tagging action. Also negative access conditions
are allowed, where we specify which specific user cannot access the data. This
is expressed, as shown in Cond5, by means of the FILTER clause, and the access
is granted to every user except sery. Cond6 expresses an access condition where
the user can access the data only if he is a minimum lucky, e.g., one chance out
of two. Cond7 provides a positive exception where only a specific user can access
the data, it is the contrary of Cond5. Cond8 grants the access to those users who
are members of a particular group, to which the provides belongs too. Finally,
Cond9 ensures the access to all the resources tagged with ?tag.

An example of conjunctive ACS is as follows: CACS

friends�but�sery

= Cond2^
Cond5, where the access is granted to the users who are friends of the provider,
but the user <http:MyExample.net#sery>, even if she is a friend of the provider,
cannot access the data. An example of disjunctive ACS is

10 The GRAPH keyword is used to match patterns against named graphs.

ASK { ?resource dcterms:creator ?provider .
 ?provider rel:hasColleague ?user }

ASK { ?resource dcterms:creator ?provider .
 ?provider rel:hasFriend ?user }

ASK { ?resource dcterms:creator ?provider .
 ?provider rel:hasFriend{1,2} ?user }

ASK { ?resource dcterms:creator ?provider .
 ?provider dcterms:creator ?g .
 GRAPH ?g { ?user nicetag:hasCommunitySign ?tag }}

ASK { FILTER(! (?user= <http://MyExample.net#sery>))}

ASK { FILTER(random()>0.5) }

ASK { ?resource dcterms:creator ?provider .
 ?provider sioc:member_of ?g .
 ?user sioc:member_of ?g }

cond1

cond3

cond2

cond6

cond4

cond5

cond7

cond8

ASK {
 GRAPH ?g { ?resource nicetag:hasCommunitySign ?tag }
 ?g sioc:has_creator ?provider }

ASK { FILTER(?user= <http://MyExample.net#sery>)}

cond9

DACS

colleagues�or�friends

= Cond1 _Cond2, where it is ensured that the users
who are colleagues or friends of the provider are allowed to access the data.

The ATR detailed above can be constrained to a wider set of tags such as
ATR

parents

= hCond, {00parent00,00 parents00,00 family

00
,

00
relatives

00}, ;i where no
AEC is provided. Further examples of ATRs are: (i)
ATR

friends

= hCond2, {00friends00,00 amici

00
,

00
ami

00}, ;i where the access con-
dition constrains the access to friends, and three tags are provided without an
AEC; (ii) ATR

group

= hCond7, {00common

00
,

00
group

00
,

00
close

00}, ;i is the same for
the belonging to the group of the provider; (iii)
ATR

hiking

= hCond4, ;, h00?tag00,00 hiking00ii where the user can access the data
if he is tagged with tag “hiking” in the graph created by the provider; (iv)
ATR

fun

= hDACS

colleagues�or�friends

, {00fun00
,

00
funny

00
,

00 : �)00}, ;i where the
user can access the data if the disjunctive ACS above is satisfied on the named
graphs tagged with these three tags.

3 Access control for the Social Semantic Web

3.1 The ISICIL use case

The challenge of the ISICIL11 project is to reconcile new web applications with
formal representations and processes to integrate them into corporate practices
for technological, and scientific monitoring. More specifically, ISICIL proposes
to study and to experiment with the usage of new tools for assisting corporate
intelligence tasks. These tools rely on Web 2.0 advanced interfaces, e.g., blog,
wiki, social bookmarking, for interactions, and on semantic web technologies for
interoperability and information processing.

11 http://isicil.inria.fr/v2/index.php

In this context, the users can create webmarks, resources, e.g., wiki pages, and
personal information, e.g., social relationships represented through an activity
stream. All these data cannot be fully accessible by any other user on the Web.
The idea is that the users should be allowed to define their own policies in order
to grant the access to their data only to those users who have the features they
require. In particular, the access control model has to consider the social dimen-
sion in which it is inserted. This leads to the need of defining a model where the
users can easily define their access policies, e.g., by using tags, and the relation
among them. The access control model has to rely on a vocabulary like S4AC
able to define the fine-grained properties the user must satisfy to access the data.
For instance, the WAC vocabulary12 allows the user to specify access control
lists (ACL). The ACL are of the form [acl:accessTo <card.rdf>; acl:mode

acl:Read, acl:Write; acl:agentClass <groups/fam#group>], which means
that anyone in the group <http://example.net/groups/fam#group> may read
and write card.rdf, but a drawback of this vocabulary is that it grants the
access to a whole RDF document, e.g., card.rdf.

3.2 The Access Control Manager

The Access Control Manager (ACM), visualized in Figure 4, is the core module
which allows the user to define, and check the access conditions.

First, the ACM provides a mean to the user (userA in Figure 4) to define
its own access policies. The user accesses the ACM through the user interface
which considers two kinds of users: the expert users, and the non expert ones.
The expert users we consider are those users who are able to define their own ac-
cess conditions directly writing the SPARQL 1.1 ASK queries. Non expert users,
instead, are those users who need to be guided through the interface during the
policies definition, as shown in Figure 5, and they can reuse and edit the policies
defined by other users clarified by using the hasParameter property to explain
the variables. The definition of the access policies includes in particular the def-
inition of the Access Tagging Rules, such as (i) the set of access conditions, and
the way they have to be evaluated, i.e., conjunctively or disjunctively, (ii) the set
of tags the resources have to be associated with in order to apply these access
conditions, and (iii) the binding to constrain the variables of the access condi-
tions. After the definition of the policies, the user is allowed to see through the
interface a preview of the result of the restrictions resulting from the application
of the policies. In this way, the user can verify whether the result is the expected
one, or not, and he can decide eventually to reformulate the policies.

Second, consider another user, (userB in Figure 4), who wants to access the
data of userA. The request to access the data is first filtered by the ACM which
will allow userB to access only the data he is granted access to. The ACM re-
ceives the query of the userB. Once the request of the userB is received, the
ACM selects, by means of the module called Access Control Policies Selector

12 http://www.w3.org/wiki/WebAccessControl

user
A

S4AC
ACCESS CONTROL

POLICIES
SELECTOR

CONTEXTUAL
INFORMATION

ACCESS
CONTROLLER

Access Control Manager

USER INTERFACE

ACCESS GRANTED
RDF DATA

ACCESS DENIED
CATEGORIES

POLICIES
CREATOR

! ! !

!

! ! !

! ! !
!

! ! !

! ! !

!

! ! !

! ! ! !"!#!$%&!'()*+,-.)'&"/+,'-.0&!'-/1*,-.)'&-2*)312&#)++3'.-./4&)(&!'-/55.1/'0/&)'$.'/& ! ! !
&

! ! ! !

!

!

! ! !

! ! !
!

! ! !

! ! !

!

! ! !

! ! ! & ! ! !
!

"#!$%&!'"(&)*+,!$"")!-./0!123*+&33!-45%*$&5$!#4"'!/60!05%&&4!$"!$%&!#)&7*8*)*$9!:+(!$%&!
+$&4:5$;*$9!"#!-./0!123*+&33!<28)*3%&4!#4"'!/60!05%&&4!=#"4!$%&!>28)*5:$*"+!"#!:!?&8!
>"4$:)! "#! >4"5&33&3@! :+(! A+B:>! #4"'! C"'*:! =#"4! $%&! :+*':$*"+! "#! $%&3&! >4"5&33&3@D!
E*,24&!F!>4&3&+$3!$%&!:45%*$&5$24&!"#!$%&!>4">"3&(!3")2$*"+D!
G%&!"8H&5$*;&3!"#!$%&!"+)*+&!>28)*5:$*"+!$%:+I3!$"!-./0!123*+&33!<28)*3%&4!:4&J!

!! $%&!>4&3&+$:$*"+!"#!$%&!'"(&)3!$"!$%&!K%")&!/0/L/M!5"''2+*$9N!!

!! $%&!5"+$4*82$*"+!"#!$%&!/0/L/M!'&'8&43!89!$%&!3%:4*+,!:+(!5"''2+*5:$*"+!8:3&(!"+!
$%&3&!'"(&)3N!!

!! $%&!;:)*(:$*"+!"#!$%&!'"(&)3!:+(!2+(&4)9*+,!:+:)93&3D!
!
.&,:4(*+,! $%&! 3*'2):$*"+! "#! $%&3&! '"(&)3N! 3"'&! $"")3! :))"K! $%&! 54&:$*"+! "#! :+!

&4,"+"'*5! &7>4&33*"+! "#! $%&! >4"5&33&3! :+(! $%&*4! :33"5*:$&(! '*54"OK"4)(D! G%&! A+B:>!
02*$&! #4"'! $%&! &(*$"4! C"'*:! *3! "+&! "#! $%&3&! 3")2$*"+3D! /$! #:5*)*$:$&3! $%&! $&:'3P!
5"''2+*5:$*"+!:+(!5"">&4:$*"+D!G%&!4&)&;:+5&!"#!$%&!>4"5&33&3!4&>4&3&+$:$*"+!:3!35&+&3!
*+3$&:(! "#! $%&*4! 4&>4&3&+$:$*"+! :3! (*:,4:'3! %:3! 8&&+! &3$:8)*3%&(D! G%&3&! :+*':$*"+3!
#:5*)*$:$&! $%&! '&'"4*Q:$*"+! :+(! $%&! 2+(&43$:+(*+,D! G%&9! *))23$4:$&! $%&! 23:,&3! "#! $%&!
3$2(*&(!&5"393$&'!:+(!$%&9!%&)>!23!;:)*(:$&!$%&!>4"5&33&3!#2+5$*"+*+,D!G%&4&#"4&!$%&9!:4&!
:!23)!$"")!#"4!$%&!/0/L/M!:>>4">4*:$*"+!:+(!;:)*(:$*"+!"#!$%&!'"(&)3D!

!"#$%&'(! -45%*$&5$24&J! #4"'! >4"5&33&3! '"(&)*+,! $"! >4"5&33&3! >28)*5:$*"+! :+(! 3*'2):$*"+! R!
:+*':$*"+!

!
E*+:))9N!*$!*3!"#$&+!+&5&33:49!*+!(:$:!':+:,&'&+$!:>>)*5:$*"+3!$"!5"+$4")!$%&!K:93!*+!

K%*5%! (:$:! *3! :55&33&(N! '"(*#*&(! :+(! $4:+3#"4'&(D! ?%&+! (:$:! *3! 2+(&4! 5&+$4:)*Q&(!
5"+$4")N! :48*$4:4*)9! 5"'>)&7! 4&3$4*5$*"+! 35&+:4*"3! 5:+! 8&! :5$*;&)9! &+#"45&(! *+3*(&! $%&!
8"2+(:4*&3! "#! $%&! "K+&4D! -))! $%*3! 8&5"'&3!'25%! %:4(&4! K%&+! (:$:! 5:++"$! 8&! :5$*;&)9!
5"+$4"))&(!:+(!'"+*$"4&(N!#"4!*+3$:+5&!K%&+!*$!*3!3%:4&(!*+!:!(*3$4*82$&(!:+(!">&+!5"+$&7$!
325%!:3!):4,&!3"5*:)!+&$K"4I3!#"4!*+#"4':$*"+!:+(!I+"K)&(,&!3%:4*+,D!G%&!':+:,&'&+$!
"#! 423! :+(! >4*;:59! *3! 8&5"'*+,! 5425*:)! *+! ':+9! :>>)*5:$*"+3N!)*I&! 5")):8"4:$*;&!
>28)*3%*+,! "#! *+#"4':$*"+! =?*I*>&(*:N! ">&+! 3"#$K:4&! 5"''2+*$*&3N! &O8:9@! "4! 3"5*:)!

!"#$%&"'

(&")*+'
,"-./&+'01'
123'4556'
'

7&)'899/:.-;:#<'
1&"=&"'

>?/-;>'
(-;-'

@&9#%:;#"*'

A1B'C'1&"=/&;%'

8@D1'
(-;-)-%&'
1&"=&"' 9E%F'

8@D1'
!E%:<&%%'
1&"=&"'

8@D1'
!E%:<&%%'
8".F:;&.;'

,<0-9'

,<0-9'
(-;-)-%&'

B"#.&%%&%'
0#G&/:<H'

'

B"#.&%%&%'
,</:<&'

BE)/:.-;:#<'

B"#.&%%&%'
8<:I-;:#<'

'

' Webmarks

Resources

Personal
information

Define own
access conditions

user
B

Access request

Grant / Deny access

Fig. 4. The Access Control Manager.

(ACPS), which policy applies, depending on the requested operation. For in-
stance, if the user uses a SELECT query, then the ACPS identifies all the policies
which apply, and concern a Read access privilege. The ACPS performs two kinds
of operations: (i) it checks the S4AC module which contains all the access con-
ditions provided by userA to protect his data, in order to identify which access
conditions apply, and (ii) it checks whether the contextual information, e.g., the
temporal or spatial validity of the selected policies is satisfied. Note that we
check whether the contextual constraints hold before checking the reminder of
the policy. If the contextual constraints are not satisfied, then we already know
that the access will not be granted. After the identification of the policies, and
a positive checking of the contextual constraints, the Access Controller module
matches the policies according to the userB’s profile to identify what he can ac-
cess. The Access Controller addresses a SPARQL ASK query which returns true
if the access to the data is granted to userB. Note that userB will receive only
the data he can access, and he does not know that there may be other data to
which his query was addressed and that he cannot access. If the answer is false,
then the Access Controller returns a failure, coupled with the categories causing
the failure. The categories are natural language labels that are used to explain
to the the user the reasons behind the failure of his query. These categories are
provided to the Access Controller by the ACPS when it checks the ontology.
An example of access policy composed by two access conditions that have to be
conjunctively evaluated, a Bindings clause, and a Tag Set is visualized in Fig-
ure 3. The two ACs constrain the access to all the users who are colleagues of
the data provider, and to all the resources tagged with ?tag, respectively. More-
over, the ACs are applied only to those named graphs tagged with “science”,

and to the resource identified by the URI <http://MyExample.net#wiki>. If
the conjunction is positively evaluated, then the access is granted with the priv-
ilege s4ac:Update. Otherwise, the access is denied, and the label “colleagues”
is returned.

The developed prototype provides a user interface implemented in HTML 5,
as visualized in Figure 5. It relies on the SPARQL query engine
KGRAM/CORESE13. Briefly, the system uses the Binding SPARQL 1.1 to sub-
stitute the variable ?resource with the URI of the resource to be accessed. The
query is executed to obtain all the ATRs associated with the resource, and the
data provider. CORESE returns these ATRs which contain the ACS. The ASK

queries inside the single AC are executed on CORESE, and the returned booleans
are conjunctively or disjunctively evaluated to grant or deny the access.

Fig. 5. The non-expert user interface for creating the access policies.

4 Related work

Sacco and Passant [8] present a Privacy Preference Ontology (PPO), built on top
of WAC, in order to express fine-grained access control policies to an RDF file.
They also specify the access queries with a SPARQL ASK, but their vocabulary
does not consider the temporal and spatial validity of the privacy preferences,
and the maximum number of accesses allowed. They rely entirely on the WAC
vocabulary without distinguishing the Write actions. Their model does not allow
to specify set of tags to limit the application of the policies to the resources

13 http://www-sop.inria.fr/edelweiss/software/corese/

marked with those tags, and to specify conjunctive and disjunctive sets of privacy
preferences.

Giunchiglia et al. [6] propose a Relation Based Access Control model (Rel-
BAC), providing a formal model of permissions based on description logics. They
require to specify who can access the data, while in our model and in [8] the
provider can specify the attributes the user must satisfy.

The Access Management Ontology (AMO) [3] defines a role-based access
control model. The AMO ontology consists of a set of classes and properties
dedicated to the annotation of the resources, and a base of inference rules mod-
eling the access strategy to carry out. This model again needs to specify who
can access the data.

Abel et al. [1] present a model of context-dependent access control at triple
level, where also contextual predicates are allowed, e.g., related to time, loca-
tion, credentials. The policies are not expressed using Web languages, but they
introduce an high level syntax then mapped to existing policy languages.

Hollenbach and Presbrey [7] present a system where the users can define
access control on RDF documents, and these access controls are expressed using
the WAC. Our model extends WAC for allowing the construction of more fine-
grained access control policies.

Carminati et al. [4] propose a fine-grained on-line social network access con-
trol model based on semantic web technologies. The access control policies are
encoded as SWRL14 rules. This approach is also based on the specification of
who can access the resources, i.e., the access request is a triple (u, p, URI), where
the user u requests to execute privilege p on the resource located at URI.

Stroka et al. [9] present a preliminary proposal about securing the collabora-
tive content on the platform KiWi. They consider global permissions, individual
content item permissions, and RDF type based permission management. They
do not specify the kind of access polices they can define.

Finin at al. [5] study how to represent RBAC using the OWL language. The
authors show also the representation of policies based on general attributes of
an action, similarly to what we present in this paper. The di↵erence is that we
specify the policies using SPARQL 1.1 ASK queries, where the Bindings clause is
used to specify the values of the variables, and temporal and spatial constraints
may be expressed too.

5 Conclusions

In this paper, we have introduced a fine-grained access control model for the
social semantic web. This model is grounded on the S4AC ontology which allows
the users of the social networks to define the access conditions for their data. In
particular, these access conditions have the form of SPARQL 1.1 ASK queries,
and they can be either conjunctively or disjunctively evaluated. Moreover, the
access policies can be constrained w.r.t. the set of tags the resources are tagged

14 http://www.w3.org/Submission/SWRL/

with, and an access evaluation context providing the bindings can be specified
too. We have presented our Access Control Manager, in the context of the ISICIL
platform. The manager has the aim to grant or deny the access to the users.
Through a user interface which allows also non-expert users to interact with
the system, the users can specify the access policies to protect their data. The
manager looks for the policies which apply to the resource, and after checking
the contextual constraints and the features of the user trying to access, it states
whether the access is granted or not.

There are several lines to follow for future work. First of all, in this paper
we assume that the user’s information are trustworthy. Since this assumption
is not always verified, we will investigate the adoption of methodologies able to
assess the trustworthiness of the users. Second, a prototype of the Manager has
been developed in the ISICIL platform. We aim at providing a more e�cient
implementation of the Manager, in order to fully integrate it into the platform.

References

1. Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel Krause,
and Daniel Olmedilla. Enabling advanced and context-dependent access control
in rdf stores. In Proceedings of the 6th International Semantic Web Conference
(ISWC-2007), LNCS 4825, pages 1–14, 2007.

2. John Breslin, Alexandre Passant, and Stefan Decker. The Social Semantic Web.
Springer-Verlag, Heidelberg, 2009.

3. Michel Bu↵a, Catherine Faron-Zucker, and Anna Kolomoyskaya. Gestion
sémantique des droits d’accès au contenu : l’ontologie AMO. In Sadok Ben Yahia
and Jean-Marc Petit, editors, EGC, volume RNTI-E-19 of Revue des Nouvelles
Technologies de l’Information, pages 471–482. Cépaduès-Éditions, 2010.

4. Barbara Carminati, Elena Ferrari, Raymond Heatherly, Murat Kantarcioglu, and
Bhavani M. Thuraisingham. Semantic web-based social network access control.
Computers & Security, 30(2-3):108–115, 2011.

5. Timothy W. Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi S. Sandhu,
William H. Winsborough, and Bhavani M. Thuraisingham. ROWLBAC: represent-
ing role based access control in OWL. In Indrakshi Ray and Ninghui Li, editors,
SACMAT, pages 73–82. ACM, 2008.

6. Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Ontology driven community
access control. In Proceedings of the 1st Workshop on Trust and Privacy on the
Social and Semantic Web (SPOT-2009), 2009.

7. James Hollenbach, Joe Presbrey, and Tim Berners-Lee. Using RDF Metadata To
Enable Access Control on the Social Semantic Web. In Proceedings of the Workshop
on Collaborative Construction, Management and Linking of Structured Knowledge
(CK-2009), 2009.

8. Owen Sacco and Alexandre Passant. A Privacy Preference Ontology (PPO) for
Linked Data. In Proceedings of the 4th Workshop about Linked Data on the Web
(LDOW-2011), 2011.

9. Stephanie Stroka, Sebastian Scha↵ert, and Tobias Burger. Access Control in the
Social Semantic Web - Extending the idea of FOAF+SSL in KiWi. In Proceed-
ings of the 2nd Workshop on Trust and Privacy on the Social and Semantic Web
(SPOT2010), 2010.

