
An Application of Formal Methods to Cognitive Radios
∗

Konstantine Arkoudas and Ritu Chadha and Jason Chiang
Telcordia Research
One Telcordia Drive

Piscataway, NJ 08854
{konstantine, chadha, chiang}@research.telcordia.com

ABSTRACT
We discuss the design and implementation of a formal policy
system regulating dynamic spectrum access (DSA) for cog-
nitive radios. DSA policies are represented and manipulated
in a proof framework based on first-order logic with arith-
metic and algebraic data types. Various algebraic operations
combining such policies can be easily implemented in such
a framework. Reasoning about transmission requests is for-
mulated as a satisfiability-modulo-theories (SMT) problem.
Efficient SMT solvers are used to answer the corresponding
queries and also to analyze the policies themselves. Further,
we show how to reason about transmission requests in an op-
timal way by modeling the problem as an SMT instance of
weighted Max-SAT, and we demonstrate that this problem
too can be efficiently solved by cutting-edge SMT solvers.
We also show that additional optimal operations on trans-
mission requests can be cast as classic optimization prob-
lems, and to that end we give an algorithm for minimizing
integer-valued objective functions with a small number of
calls to an oracle SMT solver. We present experimental re-
sults on the performance of our system, and compare it to
previous work in the field.

1. INTRODUCTION
One of the world’s most prized physical resources is the

electromagnetic spectrum, and particularly its radio frequency
(RF) portion, stretching roughly from 10 KHz to 300 GHz.
The RF spectrum is so valuable that its allocation is strictly
regulated by world governments, and these days even small
parts of it can be sold for billions of dollars in spectrum auc-
tions.

∗The research reported in this paper was performed in connection
with contract number W15P7T-08-C-P213 with the U. S. Army
Communications Electronics Research and Development Engineer-
ing Center (CERDEC). The views and conclusions contained in this
document are those of the authors and should not be interpreted as
presenting the official policies or position, either expressed or im-
plied, of the U. S. Army CERDEC, or the U. S. Government unless
so designated by other authorized documents. Citation of manufac-
turers or trade names does not constitute an official endorsement
or approval of the use thereof. The U. S. Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

As wireless devices continue to proliferate, demand for
access to RF spectrum is becoming increasingly pressing,
and increasingly difficult to achieve. After all, the (usable)
spectrum is finite, while the demand for it continues to in-
crease without bounds. However, it has been recognized [13,
14] that problems of spectrum scarcity and overuse arise not
so much from physical shortage of frequencies, but mostly
as a result of the centralized and rigid way in which spectrum
allocation has been managed. Spectrum has been allocated
in a static way: bands of the RF range are statically assigned
to licenced users on a long-term basis, who then have ex-
clusive rights to the corresponding region. Examples here
include the 824–849 MHz, 1.85–1.91 GHz, and 1.930–1.99
GHz frequency bands, which are reserved for FCC-licenced
cellular and personal communications services (PCS). Other
parts of the RF spectrum, by contrast, are unlicensed, and
anyone can transmit in those frequencies as long as their
power does not exceed the regulatory maximum. Conse-
quently, large portions of the RF range remain underutilized
for long periods of time, while other parts—such as the ISM
bands—are overutilized.

Observations like these provided the impetus behind the
NeXt Generation (XG) Communications program, a tech-
nology development program sponsored by DARPA [9], which
proposed opportunistic spectrum access as a means of cop-
ing with spectrum scarcity. The underlying approach has
come to be known as dynamic spectrum access (DSA), and
has evolved into a general methodology for dealing with
spectrum scarcity [17]. The main idea is that a DSA net-
work has two classes of users: primary and secondary. Pri-
mary users are licenced to use a particular spectrum band
and always have full access to that band whenever they need
it. Secondary users are allowed to use such spectrum por-
tions but only as long as their use does not interfere with the
operating needs of the primary users. The secondary users
are typically cognitive radios [4] that can dynamically adjust
their operating characteristics (such as waveform, power, etc.).
Secondary users sense the spectrum for available transmis-
sion opportunities, determine the presence of primary users,
and attempt to use the spectrum in a way that interferes as
little as possible with the activities of the primary users.

Policies are used for specifying how secondary radio nodes

are allowed to behave. Policies consist of declarative state-
ments that dictate what secondary radios may or may not
do, without prescribing how they might do it [18]. Different
policies may be applicable in different regions of the world.
Even in one and the same region there may be multiple poli-
cies in place, reflecting different constraints imposed by dif-
ferent regulatory bodies. Policy systems for cognitive radios
should be able to load new policies on the fly.

There are two key questions in designing such a policy
system, one representational and the other computational:
How should we represent policies, and how can we make ef-
ficient use of them? Policies regulating DSA must be able to
express rules such as the following: “Allow a transmission if
its frequency is in a certain range and the power does not ex-
ceed a certain limit, or if the transmission is an emergency.”
Thus, for representation purposes, we need at least the full
power of propositional logic, as well as numbers (both inte-
gers and reals), and numeric comparison relations. It would
also be helpful to have algebraic datatypes at our disposal,
so that we could, for example, represent the mode of a trans-
mission as one of a finite number of distinct symbolic val-
ues, such as everyDay or emergency. A certain amount of
quantification would also be convenient, so that we could,
e.g., quantify over all possible transmissions. We must also
be able to introduce arbitrary transmission parameters, so a
strong type system, preferrably with subtyping, should be
available. Hence, first-order logic with arithmetic, and per-
haps additional features such as algebraic datatypes and sub-
sorting, would appear to be a natural representation choice,
provided that we can make efficient use of it, a point that we
will address shortly.

So much for representation. What are the main computa-
tional problems that a policy system must solve? The main
problem is this: determine whether an arbitrary transmission
request should be allowed or denied, given the current set of
policies. In fact, if this were all there was to using policies
for spectrum access, things would be relatively simple. But
we usually want the policy engine to do more. For example,
when a transmission request is not permissible, a simple “de-
nied” answer is not very useful. The policy system should
also tell the requesting radio why the request was denied,
and more importantly, what it would take for its request to
be allowed. As a simple example, the system might tell the
radio: “Your request cannot be allowed in its present form,
but it will be allowed if you only change your transmission
power to such-and-such level.” Further, in such cases the
policy system will usually have many choices as to which
parts of the transmission request to modify in order to make
it permissible. We then want it to make an optimal choice,
i.e., a choice that satisfies the original request to the greatest
possible extent.

In this paper we present an implementation of a policy
system in Athena, an interactive proof system for polymor-
phic multi-sorted first-order logic with equality, algebraic
data types, subsorting, and a higher-order functional pro-

gramming language [3]. Athena’s rich logic, sort system,
and programming language significantly facilitated the rep-
resentation and manipulation of policies. Another innova-
tion of our paper is the use of SMT solvers [15] for rea-
soning with and about policies. The problem of determin-
ing whether a transmission request is permissible by a given
policy can be couched as a satisfiability problem, namely,
the problem of determining whether the request is consistent
with the policy. So SAT solving would seem to be a natu-
ral fit for this domain. However, policy rules in this domain
also make heavy use of equality and numeric relations, not to
mention symbolic values such as transmission modes. Thus,
viewed as an abstract syntax tree, the body of a policy rule
has an arbitrarily complicated boolean structure internally,
with relational atoms at the leaves, whose semantics come
from standard theories such as those of arithmetic, equal-
ity, and so on. That is what makes SMT solving an ideal
paradigm for this problem. We will show that the problem
of making optimal adjustments to transmission parameters
can also be formulated quite naturally in this setting as a
weighted Max-SAT problem, many instances of which can
be efficiently solved despite the problem’s high theoretical
complexity. Indeed, competitive SMT solvers such as CVC3
[7] and Yices [6] are highly optimized programs that can
readily decide extremely large formulas. As a quick com-
parison, another recently built policy system for spectrum
access, Bresap, which uses BDDs as its underlying technol-
ogy, cannot handle policies with more than 20 atomic ex-
pressions [1, p. 83]. By contrast, our system can easily han-
dle policies with many thousands of atomic expressions.

The remainder of this paper is structured as follows. The
next section describes the representation of spectrum-access
policies in Athena.1 Section 3 discusses the integration of
SMT solvers with Athena, and shows how to reduce the
problem of reasoning with spectrum-access policies to SMT
solving. In section 4 we model the problem of making opti-
mal changes to transmission requests as a Max-SAT prob-
lem, and we describe how our system models and solves
such problems. We also present an optimizing algorithm
that uses a version of binary search in order to minimize
integer-valued objective functions with very few calls to an
oracle SMT solver (at most log(n) such calls, where n is
the maximum value that can be attained by the objective
function). This algorithm can be used to further optimize
transmissions, e.g., by minimizing the distance between the
values desired by the cognitive radio and the values allowed
by the policy. Section 5 presents results evaluating the per-
formance of our policy engine. Finally, section 6 discusses
related work and concludes.

2. POLICY REPRESENTATION
1While some Athena code is presented, knowledge of the language
is not necessary. Any reader familiar with formal methods and
functional programming languages should be able to follow the
code.

The set of radio transmissions is treated as an abstract data
type with fields such as frequency, power, mode, etc. The
abstract domain of transmissions is introduced in Athena as
follows:

domain Transmission

A transmission field (or “parameter”) can then be introduced
as a function from transmissions to values of some appro-
priate sort. For illustration purposes, we demonstrate the
declaration of the following parameters: frequency, power,
mode, and time. Additional parameters can be introduced as
needed.

d e c l a r e frequency: [Transmission] -> Int
d e c l a r e power: [Transmission] -> Real
d e c l a r e mode: [Transmission] -> Mode
d e c l a r e hours, minutes: [Transmission] -> Int

Here Int and Real are built-in Athena sorts represent-
ing the sets of integers and real numbers, respectively, with
Int a subsort of Real. The sort Mode is a finite algebraic
datatype:

d a t a t y p e Mode := emergency | everyDay | ...

There are two distinguished unary predicates on the set of
all possible transmissions: allow and deny. These predi-
cates are used by policies to specify which transmissions are
considered permissible and which are not. More concretely,
a policy is represented as a pair of sentences: an allow con-
dition and a deny condition. An allow condition (or AC for
short) is of the form: 2

(forall ?x:Transmission. allow ?x <==> · · ·) (1)

while a deny condition (DC) is of the form:

(forall ?x:Transmission. deny ?x <==> · · ·) (2)

Either condition may be absent, i.e., a policy may specify
only an allow condition but no deny condition, or only a
deny condition but no allow condition. An absent condition
is represented by the unit value, (). The constructor for
policies is therefore a procedure that takes two conditions
and simply puts them together in a two-element list:

d e f i n e make-policy :=
lambda (AC DC) [AC DC]

There are two destructor or selector procedures, one for re-
trieving each component of the policy:

d e f i n e [get-AC get-DC] := [first second]

An important operation is the application of a given pol-
icy condition C of the form (1) or (2) to a term t of sort
Transmission. Let body be whatever sentence would
2A more accurate term instead of allow would be “allow provi-
sionally,” because, as we will see, for a transmission request to be
granted, the allow condition must hold and the deny condition must
not hold. With this caveat in mind, we will continue to use the term
allow in the interest of simplicity.

normally be where the ellipses now appear in (1) (or in (2)).
Then the result of the said application is the sentence ob-
tained from body by replacing every free occurrence of the
quantified variable ?x:Transmission by the term t. In
Athena code, this procedure is defined as follows:

d e f i n e apply :=
lambda (C t)

match C {
(forall x ((_ x) <==> body)) =>

(replace-var x t body) }

The built-in ternary Athena procedure replace-var is
such that (replace-var x t p) produces the result ob-
tained from the sentence p by replacing every free occur-
rence of variable x by the term p. As a concrete example,
here is a sample AC:

d e f i n e AC1 :=
(forall ?x .

allow ?x <==>
frequency ?x in [5000 5700] &
power ?x < 30.0 &
mode ?x = everyDay & hours ?x <= 11)

It says that a transmission is (provisionally) permissible iff
its frequency is in the 5000 . . . 5700 MHz range; its power is
less than 30.0 dBm; its mode is everyDay; and the trans-
mission’s time is no later than 11 in the morning. Here in is
a binary procedure defined as follows:

d e f i n e in :=
lambda (x range)

match range {
[a b] => (a <= x & x <= b)}

(Note that variables do not need to be explicitly annotated
with their sorts. Athena has polymorphic sort inference, so
a Hindley-Milner algorithm will recover the most general
possible sorts of all variable occurrences.) We can now con-
struct a policy with the above AC and with no DC as follows:

d e f i n e policy-1 := (make-policy AC1 ())

Our second policy example has both an AC and a DC:

d e f i n e policy-2 :=
(make-policy

(forall ?x .
allow ?x <==> mode ?x = emergency)

(forall ?x .
deny ?x <==> power ?x > 25.0))

A key operation on policies is that of merging. New policies
may be downloaded into the policy database at any given
time. A newly acquired policy must be integrated with the
existing policy that is in place in order to produce a single
merged policy with a new AC and a new DC. Merging is
therefore a binary operation. The current definition of merg-
ing two policies p1 and p2 is simple: it is disjunction on
both the AC and DC. Specifically, the AC of the merged pol-
icy allows a transmission t iff p1 allows t or p2 allows it;
and it denies t iff p1 denies it or p2 denies it. Merging is

implemented as an Athena procedure. Other alternative def-
initions of merging are possible, and these could be straight-
forwardly implemented in the same way. As an example,
here is the result of merging policy-1 and policy-2,
as these were defined above:

d e f i n e merged-policy :=
(merge-policies policy-1 policy-2)

>(get-AC merged-policy)

Sentence:
(forall ?v4:Transmission
(iff (allow ?v4)

(or (and (and (<= 5000
(frequency ?v4))

(<= (frequency ?v4)
5700))

(and (< (power ?v4)
30.0)

(and (= (mode ?v4)
everyDay)

(<= (hours ?v4)
11))))

(= (mode ?v4)
emergency))))

>(get-DC merged-policy)

Sentence: (forall ?v5:Transmission
(iff (deny ?v5)

(> (power ?v5)
25.0)))

(Note that while Athena accepts input in either infix or pre-
fix form, sentences are output in prefix for indentation pur-
poses.)

We define a transmission request as a set of constraints
over some object of sort Transmission, typically just
a free variable ranging over Transmission. These con-
straints, which are usually desired values for some—or all—
of the transmission parameters, can be expressed simply as
a sentence. A sample transmission request:

d e f i n e request-1 := (frequency ?t = 150 &
mode ?t = everyDay &
hours ?t = 16)

This is a conjunction specifying that the frequency of the
desired transmission (represented by the free variable ?t)
should be 150, its mode should be everyDay, and its time
should be between 4:00 and 4:59 (inclusive) in the evening.
A transmission request may be incomplete, i.e., it may not
specify desired values for every transmission parameter. The
preceding request was incomplete, since it did not specify
values for the power and minutes parameters.

3. POLICY REASONING
The main task of the policy system is this: determine

whether the policies currently in place allow or deny a given
transmission request. This is in fact the simplest formula-
tion of the core reasoning problem, in that it only requires

a yes/no answer from the policy system. But in general the
policy system needs to solve more interesting versions of this
problem, namely: If the transmission request is granted, find
appropriate values for any missing parameters, in case the
request was incomplete; if the request is not granted, find ap-
propriate values for the transmission parameters that would
render the transmission permissible. Moreover, in the sec-
ond case, we often want to compute values in a way that is
optimal w.r.t. to the given request, e.g., so that the original
transmission request is disrupted as little as possible. We
discuss such optimality issues in section 4.

The above problems are naturally formulated as satisfia-
bility problems. However, the most appropriate satisfiability
framework here is not that of straight propositional logic, but
rather that of satisfiability modulo theories, or SMT for short
[15]. In the SMT paradigm, the solver is given an arbitrary
formula of first-order logic with equality and its task is to de-
termine whether or not the formula is satisfiable with respect
to certain background theories. Typical background theories
of interest are integer and/or real arithmetic (typically linear,
but not necessarily), inductive data types (free algebras), the
theory of uninterpreted functions, as well as theories of lists,
arrays, bit vectors, etc. Hence, most of the function symbols
and predicates that appear in the input formula have fixed in-
terpretations, given by these background theories. An SMT
solver will not only determine whether a sentence p is satisfi-
able; if it is, it will also provide appropriate satisfying values
for the free variables and/or constants that occur in p.

Athena is integrated with a number of SMT solvers, such
as CVC3 and Yices; the one used for this project is Yices [6],
mostly because it can solve Max-SAT problems. The main
interface is given by a unary Athena procedure smt-solve,
which takes an arbitrary first-order sentence p and attempts
to determine its satisfiability with respect to the appropri-
ate theories. If successful, smt-solve will return a list of
values for all free variables and/or constants that occur in p.
Some examples:

d a t a t y p e Day :=
Mon | Tue | Wed | Thu | Fri | Sat | Sun

>(smt-solve ?x = 2 & ?y = 3.4 |
?x = 5 & ?d = Mon)

List: [(= ?y 3.4) (= ?x 2) (= ?d Mon)]

The input to smt-solve here was a disjunction of two
conjunctions. The free variable ?d ranges over the datatype
Day; while ?x and ?y range over Int and Real, respec-
tively. The output is a list of identities providing values for
each free variable that render the input satisfiable. Because
the argument to smt-solve is a sentence, i.e., a native
Athena data value, this provides a very flexible and high-
bandwidth programmable interface to SMT solvers. This in-
terface proved extremely useful for our system.

The policy reasoning problems described earlier have a
natural formulation in SMT. Specifically, consider an arbi-

trary transmission request tr, i.e., a first-order sentence with
a free variable x ranging over Transmission (there may
be other free variables as well). To determine whether tr
is allowed by the current policy: (1) We construct a longer
request, tr′, which is the conjunction of (a) tr; (b) the appli-
cation of the current policy’s AC to x; and (c) the application
of the negation of the current policy’s DC to x:

tr & (apply (get-total-AC) x) &
˜ (apply (get-total-DC) x)

The procedure get-total-AC returns the AC of the cur-
rent (“total”) policy; likewise for get-total-DC. So tr′

represents all the constraints imposed on the requested trans-
mission, both by the original transmission request, tr, and
by the policy itself, whose AC must hold for the transmis-
sion variable x while its DC must not. (2) We then run
smt-solve on tr’. If the result is a satisfying assignment,
then the request is granted, and all we need to do is report
values for any missing parameters (parameters that did not
figure in the given request). If, by contrast, smt-solve
determines that tr’ is unsatisfiable, then tr in its given form
must be rejected. In that case we make a blank request con-
sisting of the application of the policy’s AC to x conjoined
with the application of the negation of the policy’s DC to
x, and run smt-solve on it. This blank request therefore
imposes no constraints at all on the transmission apart from
those imposed by the policy. If the result is a satisfying as-
signment, we provide it to the user, otherwise we report that
the current policy is unsatisfiable.

The Athena code for this algorithm is expressed in a pro-
cedure evaluate-request, which accepts an arbitrary
request and processes it as described above. Here is the out-
put for the example of the previous section:

>(evaluate-request request-1)

Transmission allowed. Appropriate values
for missing parameters:
[(= (power ?t1) 20.0)]

4. COMPUTING OPTIMAL ADJUSTMENTS
TO TRANSMISSION PARAMETERS

When a transmission request is denied, there are usually
many different ways of modifying it so as to make it per-
missible. For instance, the solver could change the desired
transmission’s time; or it could change its frequency; or it
could change its power and mode; or it could change all of
the above. Some of these actions may be preferable to oth-
ers. For instance, the radio might be less willing to change
the time of the transmission, or its power level, rather than
the frequency. In such cases we want the policy system to
return a satisfying assignment that is optimal in the sense of
respecting as many such preferences of the radio as possible.

Our system achieves this in a flexible way by formulating
the problem as an (SMT) instance of Max-SAT. In its trans-
mission request, the radio can provide a weight wi along

with the desired value vi of each transmission parameter pi.
The weight wi reflects the importance that the radio attaches
to pi taking the value vi. The SMT solver will then try to
find a satisfying assignment for the request that has maxi-
mal total weight. In that case, the request is not just a list
of constraints [c1 · · · cn] but a list of pairs of constraints
and weights [[c1 w1] · · · [cn wn]]. A sample trans-
mission request might then be:

d e f i n e weighted-request :=
[[(frequency ?t = 8000) 10]
[(power ?t = 35.0) 15]
[(hours ?t = 13) 30]]

indicating that the relative importance of the frequency being
8000 is 10, that of the power being 35.0 is 15, and that of
hours being 13 is 30. Suppose further that the policy in
place has no DC and a disjunctive AC:

d e f i n e AC1 :=
(forall ?t . allow ?t <==>

(frequency ?t in [5000 7000] &
power ?t <= 30.0 & hours ?t > 12) |

(frequency ?t in [6000 9000] &
power ?t <= 40.0 & hours ?t <= 8))

d e f i n e policy := (make-policy AC1 ())

Now consider evaluating weighted-request with re-
spect to this policy. Clearly, the request cannot be allowed
as is. We can make it permissible in more than one way:
(a) we could demand a change of frequency and power in
accordance with the values prescribed by the first branch of
AC1, while keeping the hours parameter to the requested
value of 13; or (b) we could demand a change of the hours
parameter only, in accordance with the second disjunctive
branch of AC, while keeping the desired frequency and power
values; or (c) we could demand that all three parameter val-
ues change. From these possibilities, only (a) is optimal, in
that it honors the original request to the greatest extent pos-
sible (as determined by the given weights). Running this
example in our system results in the following output:

>(evaluate-request weighted-request)

The following parts of the request
could not be satisfied:

(= (power ?t) 35.0) (= (frequency ?t) 8000)

Here is a maximally satisfying assignment:

[(= (mode ?t) everyDay)
(= (frequency ?t) 5999)
(= (power ?t) 30) (= (hours ?t) 13)]

By contrast, if we had changed the weight of the hours
parameter from 30 to 20, the result would then change the
hours parameter instead of the frequency and power, since
retaining the values of the two latter parameters would result
in a maximum weight of 25.

Note that weights can be arbitrary integers or a special
“infinite” token, indicating a hard constraint that must be
satisfied. In fact this infinite weight is the one that Athena
attaches to the constraints obtained from the AC (and the
negation of the DC) of the current policy. But radios can
also use infinite weights in their requests.

Occasionally there may be additional requirements on the
assignments returned by the policy system, beyond honor-
ing the original request to the greatest extent possible. For
example, if a parameter value must change, we may want
the new value to be as close as possible to the original re-
quested value. If we are not allowed to transmit at the exact
desired time, for instance, we may want to transmit as close
to it as possible (as can be allowed by the currently installed
policies). To meet such requirements we generally need the
ability to perform optimization by minimizing some objec-
tive function, in this case the absolute difference between de-
sired and permissible parameter values. Most SMT solvers
do not perform optimization (apart from Max-SAT, in the
case of Yices, though see below), but we can efficiently im-
plement an integer optimizer in terms of SMT solving. The
idea is to use binary search in order to discover the opti-
mal cost with as few calls to the SMT solver as possible: at
most O(log n) calls, where n is the maximum value that the
objective function can attain. Specifically, let c be an arbi-
trary constraint that we wish to satisfy in such a way that
the value of some “cost” term t is minimized, where max is
the maximum value that can be attained by the cost function
(represented by t). (Tf this value is not known a priori, it
can be taken to be the greatest positive integer that can be
represented on the computer.) The algorithm is the follow-
ing: We first try to satisfy c conjoined with the constraint
that the cost term t is between 0 and half of the maximum
possible value: 0 ≤ t ≤ (max div 2). If we fail, we recur-
sively call the algorithm and try to satisfy c augmented with
the constraint (max div 2) + 1 ≤ t ≤ max. Whereas, if
we succeed, we recursively call the algorithm and try to sat-
isfy c augmented with the constraint 0 ≤ t ≤ (max div 4).
Some care must be taken to get the bounds right on each
call, but this algorithm is guaranteed to converge to the min-
imum value of t for which c is satisfied, provided of course
that the original constraint c is satisfiable for some value of
t. This algorithm is implemented by a ternary Athena proce-
dure smt-solve-and-minimize, such that

(smt-solve-and-minimize c t max)

returns a satisfying assignment for c that minimizes t (whose
maximum value is max).

For example, suppose that x, y, and z are integer variables
to be solved for:

d e f i n e [x y z] := [?x:Int ?y:Int ?z:Int]

subject to the following disjunctive constraint:

d e f i n e c :=
(x in [10 20] & y in [1 20] &

z in [720 800]) |
(x in [500 600] & y in [30 40] &
z in [920 925])

Suppose also that the desired values are x = 13, y = 15,
z = 922. The task is to find values for these variables that
satisfy c while diverging from the desired values as little as
possible. We can readily model this problem in a form that
is amenable to smt-solve-and-minimize as follows.
First we define the objective-function term t, as the sum of
the three differences:

d e f i n e t := (?d-x:Int + ?d-y:Int + ?d-z:Int)

with the difference terms defined as follows:

d e f i n e d-x-def :=
(ite (x > 13) (?d-x = x - 13)

(?d-x = 13 - x))
d e f i n e d-y-def :=
(ite (y > 15) (?d-y = y - 15)

(?d-y = 15 - y))
d e f i n e d-z-def :=
(ite (z > 922) (?d-z = z - 922)

(?d-z = 922 - z))

Here ite is a simple if-then-else procedure:

d e f i n e ite :=
lambda (c x y) ((c ==> x) & (˜ c ==> y))

Assume that we do not know the exact maximum value that
t can attain, but we know that it cannot be more than 106.
We can then solve the problem with the following call:

d e f i n e diff-clauses :=
(d-x-def & d-y-def & d-z-def)

d e f i n e query := (c & diff-clauses)

>(smt-solve-and-minimize query t 1000000)

List: [(= ?x 13) (= ?y 15) (= ?z 800)
(= ?d-x 0) (= ?d-y 0) (= ?d-z 122)]

This solution was found by a total of 8 calls to the SMT
solver (for a total time of about 100 milliseconds). Why
were only 8 calls required when we started the binary search
with a maximum of 106? One would expect about log 106

calls to the smt solver, i.e., roughly 20 such calls. However,
our implementation uses the information returned by each
call to the SMT solver to speed up the search. That often
results in drastic shortcuts, cutting down the total number of
iterations by more than a factor of 2.

This procedure enables our system to optimize any quan-
tity that can be given an integer metric. Moreover, unlike
independent branch-and-bound algorithms for integer pro-
gramming, it has the advantage that it allows not just for nu-
meric constraints, but for arbitrary boolean structure as well,
along with constraints from other theories such as reals, lists,
arrays, bit vectors, inductive datatypes, etc. While more so-
phisticated approaches to optimization in the SMT paradigm

are beginning to emerge (e.g., [2]), the implementation de-
scribed here has been quite adequate for our purposes.

5. PERFORMANCE
In order to test our system we wrote an Athena program

that generates test instances, with two independently con-
trollable variables: parameter number and policy number.
In particular, we defined a procedure make-policy-set with
two parameters, param-num and policy-num. The output is
a list of policy-num policies, where each policy involves
param-num transmission parameters. The latter came from
a pre-declared pool of 100 transmission parameters, half of
them integer-valued and the other half real-valued. We dis-
tinguished the following types of policies:

• permissive policies, which have only an AC;

• prohibitive policies, which have only a DC and no AC;

• mixed policies, which have both.

• Ordering/N policies. These policies are parameter-
ized over N > 0. Specifically, an ordering/N policy is
one whose AC and/or DC is of the following form:

(forall ?t:Transmission . D ?t <==>

(fi1 ?t R1 ci1) & ... & (fik ?t Rk cik))

where D is either allow or deny, and ∀j ∈ {1, . . . , k}:
fij is a transmission parameter; Rj ∈ {<, >, <=, >=};
and cij is a constant number of the appropriate sort. We
refer to the ordering constraints (fij ?t Rj cij) as
the atoms of the AC (or DC). An ordering/N policy
may be permissive, prohibitive, or mixed, but its total
number of atoms (i.e., the number of the AC’s atoms
plus the number of the DC’s atoms) must equal N .

• Equational/N policies. The AC and/or DC of such a
policy is of the same form as shown above, except that
each Ri is the identity relation. These identities are the
atoms of the condition. The total number of atoms (of
the AC and DC together) must be N .

• Inequational/N policies. Same as above, except that
the relation in question here is inequality.

• Range/N policies. The AC and/or DC of such a policy
is of the same form as that of an ordering/N policy, ex-
cept that each Ri is the relation in, and each constant
ci is a range [a b].

• Disjunctive-Conjunctive/N policies. The AC and/or
DC of such a policy is a disjunction of conjunctions,
where each atom is of the form (fx ?t in [· · ·]).
The number of atoms are required to add up to N .

A call of the form (make-policy-set N P) returns
a list L containing P policies, each of which involves N trans-
mission parameters. This list is roughly equally partitioned

Figure 1: SMT solving times for processing regular
transmission requests.

among all the preceding types. Specifically, 20% of the
policies in L are ordering/N policies. About 1/3 of these
ordering/N policies are permissive, 1/3 are prohibitive, and
1/3 mixed. The next 20% of L consists of equational/N poli-
cies, and these are again evenly split between permissive-,
prohibitive-, and mixed-policy subsets. The third 20% con-
tains inequational/N policies, and so forth. Once a list L of
policies is thereby obtained, we combine them all into a sin-
gle policy by folding the merge-policies operator over
L, with the empty-policy as the identity element. It is
with respect to this merged policy that we tested transmis-
sion requests. The requests were generated randomly.

Figure 1 shows the SMT-solving times for processing plain
transmission requests (i.e., without weights attached to the
various transmission parameters), for various combinations
of policy-set sizes and transmission parameter numbers, where
the policy sets are evenly mixed as described above. Fig-
ure 2 shows the corresponding times for optimal processing
of transmission requests, i.e., requests that attach weights to
each of the transmission parameters and are solved as Max-
SAT problems. In order to stress-test the implementation
further, we repeated the experiments with sets of policies
that were more structurally complex, doing away with sim-
ple ordering, equational, and inequational policies, and us-
ing instead only range and disjunctive-conjunctive policies.
The corresponding results are shown in Figure 3 and in Fig-

Figure 2: Max-SAT SMT solving times for optimized
processing of transmission requests.

Figure 3: Solving times for processing of transmission
requests with structurally complex policies.

ure 4. With these sort of structurally complex policies in
place, the highest increase occurs in optimal processing of
transmission requests with more than 50 policies and param-
eters.

The graphs show only the time spent on SMT solving,
which is the bulk of the work that needs to be done when pro-
cessing transmission requests. We do not include the time
spent on translating from Athena to SMT notation and back.
This translation is a straightforward linear-time algorithm
(linear in the size of the formula to be translated, on average,
since it uses hash tables for the necessary mappings between
Athena and SMT namespaces), and the time spent on it in
most cases is neglibible. For huge policies containing hun-
dreds of thousands of nodes, the translation does take longer,
though still typically a fraction of a second. Virtually all of
the translation cost is incurred when translating the policy,
since the transmission requests are tiny by comparison. Ob-
serve, however, that there is no reason to be translating the
entire policy anew each time the engine needs to process a
new request. Instead, the (merged) policy can be translated
off-line, once, and subsequently cached in SMT notation in
some file. Thus, the translation time is an one-time, off-line
cost.

All experiments were performed on a 2.4 GHz Intel Core
i3-370M dual-core processor with 4GB RAM, running Win-
dows 7. The time command of the Cygwin shell was used

Figure 4: Max-SAT SMT solving times for transmission
requests with structurally complex policies.

to get the timing data. In most cases, the reported system
time (the sys entry of time’s output) was 0.000, i.e., too
small to be reliably measured, and hence the time reported
here is real (wall clock) time, which includes time seg-
ments spent by other processes and times during which the
SMT solver was blocked (e.g., waiting for I/O to complete).
Therefore, the times reported here are overly conservative;
the actual times spent on SMT solving are smaller.

6. RELATED WORK & CONCLUSIONS
We have presented an implementation of a policy system

for dynamic spectrum access. Policies are represented and
manipulated in Athena, a formal proof system for first-order
logic with polymorphism, subsorting, inductive datatypes,
arbitrary computation, and definitional extension. Most of
these features have proven useful in the engine’s implemen-
tation; others would become useful if the engine were to be
extended so that it used, e.g., structured ontologies instead
of flat data types.

Previous work in this area includes BBN’s XGPLF [8] and
SRI’s Coral [10, 11]. XGPLF does not have a formal se-
mantics and is limited in what it can express (it is based on
OWL [19]). Moreover, XGPLF cannot model inheritance.
To the best of our knowledge, the only implementation of
a policy reasoning engine based on XGPLF is the one built
by the Shared Spectrum Company [12]. They used SWI-
Prolog as the underlying reasoning engine. In field tests us-
ing resource-limited radio devices, SSC replaced the Prolog
reasoner with “a simplified reasoner developed in C/C++”
[12, p. 504]; no details are provided regarding the design,
implementation, or correctness of this simplified reasoner.
SSC’s engine can only return yes/no answers to transmission
requests.

Coral (Cognitive Radio Policy Language) is a new lan-
guage specifically designed for expressing policies govern-
ing the behavior of cognitive radios. Like Athena, Coral of-
fers a rich and extensible first-order logical language that
includes arithmetic and allows for the introduction and def-
inition of new function symbols. It also features subtyping
and can therefore express inheritance and ontologies. Some
notable differences from Athena include: (a) Unlike Coral,
Athena has polymorphism. Thus, e.g., it is not necessary
to introduce lists for integers and lists for booleans sepa-
rately; a generic parameterized definition is sufficient. (b)
Athena has automatic sort inference based on the Hindley-
Milner algorithm, which is convenient in practice because
it allows for shorter—and usually cleaner—specifications.
(c) Athena has a general-purpose formally defined program-
ming language that can seamlessly interact with its logical
layer, and which can be used to dynamically construct and
manipulate logical formulas very succinctly. This program-
ming language offers procedural abstraction, as well as side
effects through mutation, including reference cells and vec-
tors, features which are often important for efficiency. The
ability to compute with terms and sentences as primitive data

values was very useful. While Coral can express some com-
putations via universally quantified identities which can then
be interpreted as executable rewrite rules by a tool such as
Maude [16], it does not offer procedural abstraction, i.e., it
is not possible to define arbitrary procedures.

Two policy engines based on Coral have been implemented
[10, 11]. The initial implementation used Prolog as the un-
derlying reasoning engine, and was only able to return yes/no
answers to transmission requests. The second (and current)
implementation uses a custom-made proof system to rea-
son about transmission requests. The system has four kinds
of proof rules: forward chaining, backward chaining, par-
tial evaluation based on conditional rewriting, and constraint
propagation and simplification. The proof system is im-
plemented in the rewriting engine Maude. One issue with
this implementation is that a positive answer is given only
if the transmission request is an exact match of the opera-
tive policy conditions. But that is not likely to be the case
in practice. Most transmission requests are likely to be in-
complete or to diverge from the policy, at least in some small
degree. In such cases, the Coral implementation does not re-
turn values for the relevant transmission parameters. Rather,
it returns an arbitrarily complicated first-order formula rep-
resenting all the possible “opportunity constraints” that the
radio could use to modify its request so as to make it per-
missible. But that is not likely to be of much use to the
requesting party. It is not realistic to require that whoever
made the transmission request should be able to understand
and reason about arbitrarily complicated logical formulas in
order to understand the policy system’s output.

A second issue with this implementation is efficiency. The
Coral team has not published precise benchmarks describing
their engine’s performance for variable numbers and types of
policies (and for variable numbers of transmission parame-
ters), but they have released a demo of their implementation
that can be used to evaluate transmission requests with re-
spect to policies that have a fixed set of transmission param-
eters, namely: location (latitude and longitude); time (hours,
minutes, and seconds); sensed power; emissions; network
id; and role (slave/master). Even with this fairly small set of
transmission parameters, and with only 11 active policies in
place, it has been reported [1, p. 18] that evaluating a sin-
gle transmission request took the Coral engine 58 seconds,
and resulted in an output formula comprising 75 constraints.
In the preceding section we saw that our implementation can
evaluate transmission requests with several dozens of param-
eters and with over 50 complex policies in place in a fraction
of a second; this is so even when the requests are processed
optimally. Moreover, the Coral engine has no notion of opti-
mality. It does not allow the requesting party to specify that
some parameters are more important than others, or to ask
that the request should be satisfied to the greatest extent pos-
sible, or with as little divergence from the requested values
as possible.

Another policy engine for spectrum access is Bresap, a

system that was recently implemented at Virginia Tech [1,
5]. Unlike the other systems discussed above, Bresap is lim-
ited to policies that can be adequately represented as finite
Boolean functions, which it encodes as binary decision di-
agrams (BDDs). Therefore, unlike Coral and our system,
Bresap is not suitable as an expressive language for specify-
ing policies. For instance, it has no facilities for introducing
new policy concepts and/or rules. Indeed, Bresap is not a
language. It is a system that reads certain types of policies
expressed in XML and converts them to BDDs. This is done
by assigning a distinct Boolean variable to each atomic ex-
pression that appears in the policy. For instance, a policy
such as “allow transmission in the frequency range a . . . b
if the power does not exceed m” would result in the intro-
duction of two distinct Boolean variables x1 and x2, with
x1 corresponding to the atom a ≤ f ≤ b (where f stands
for the transmission’s frequency); and with x2 correspond-
ing to the atomic expression p ≤ m (where p stands for the
transmission’s power). The accepting condition could then
be represented by the boolean function x1 ∧ x2. Graph al-
gorithms are used to merge different policy BDDs. With a
single BDD in place representing the result of merging all
active policies, Bresap can then accept an incoming trans-
mission request and evaluate it. A transmission request must
be an attribute-value list of the form a1 = v1, . . . , an = vn,
where ai is a transmission parameter (such as mode or fre-
quency) and vi is the corresponding desired value. Notably,
Bresap is capable of handling underspecified (incomplete)
requests. It is also capable of attaching costs to transmission
parameters (where a given cost indicates the penalty paid for
changing the value of that parameter), and then modifying
the parameter values of a transmission request in a way that
minimizes the overall cost.

A drawback of Bresap is that the underlying policy repre-
sentation framework, that of BDDs (or propositional logic,
more generally), lacks semantics for the numeric constraints
that pervade spectrum access policies. To put it simply, BDDs
do not know arithmetic, and thus do not have the where-
withal to “understand” that < is transitive, that 1 + x is
greater than x, that 10 and 14 − 4 are the same object, and
so on. Whereas an SMT solver immediately realizes that
f < 10 conjoined with f ≥ 30 is contradictory, because
it uses a dedicated reasoning procedure for arithmetic, in
the approach of Bresap these two atoms would result in the
introduction of two Boolean variables, x1 and x2, the for-
mer representing f < 10 and the latter representing f ≥
30. Thus, the conjunction of x1 and x2 is represented by
the innocuous-looking Boolean function x1 ∧ x2, a perfectly
consistent condition. To represent the fact that in the present
context this is actually inconsistent, one has to append to it
ad hoc clauses such as C = (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2). This
extra information, C, conjoined with x1 ∧ x2, would then al-
low us to conclude that the condition is unsatisfiable. That is,
in fact, what Bresap does: It “semantically analyzes” the var-
ious atomic expressions in the policy in order to generate ad-

ditional constraints—so-called “auxiliary rules” [1, section
3.5]—that prevent the engine from taking “illogical” paths
in the BDD. This approach has some disadvantages.3 First,
it is an essentially ad hoc encoding of arithmetic facts, the
generation of which should not be part of the policy engine’s
trusted computing base. Second, the additional encoded in-
formation, even if it is polynomial in size, can significantly
blow up the resulting BDD. Other efficiency issues in Bre-
sap include the conversion algorithm that produces the BDD
from the atomic Boolean expressions of the policy. This al-
gorithm has exponential time complexity in the number of
expression variables. As a result, Bresap is not currently
able to handle policies with more than 20 atomic Boolean
expressions [1, p. 83].

In conclusion, we believe that the combination of a pro-
grammable and expressive formal framework such as Athena
with an efficient SMT solver is a highly suitable implemen-
tation vehicle for spectrum access policy engines. It com-
bines rich expressivity with efficient performance, a consid-
eration that is likely to be crucial for cognitive radios. To
the best of our knowledge, SMT solvers have not been used
before for reasoning about policies, although we believe that
they are ideal for this task. Indeed, we believe that there
is not much that is special about spectrum access, and that
the same approach we have introduced here could be used to
represent and reason about policies in other domains.

7. REFERENCES
[1] A. A. Deshpande.

Policy Reasoning for Spectrum Agile Radios. Masters
thesis, Electrical and Computer Engineering
Department, Virginia Tech, 2010.

[2] A. Cimatti and A. Franzn and A. Griggio and R.
Sebastiani and C. Stenico. Satisfiability Modulo the
Theory of Costs: Foundations and Applications. In
TACAS 2010, pages 99–113, 2010.

[3] K. Arkoudas. Athena.
http://www.pac.csail.mit.edu/athena.

[4] B. A. Fette. Cognitive Radio Technology. Academic
Press, 2nd edition, 2009.

[5] B. Bahrak and A. A. Deshpande and M. Whitaker and
J. M. Park. BRESAP: A Policy Reasoner for
Processing Spectrum Access Policies Represented by
Binary Decision Diagrams. In New Frontiers in
Dynamic Spectrum, 2010 IEEE Symposium on, pages
1 –12, April 2010.

[6] B. Dutertre and L. de Moura. The Yices SMT Solver.
Tool paper, available online from
yices.csl.sri.com/tool-paper.pdf.

[7] C. Barrett and C. Tinelli. CVC3. In W. Damm and
H. Hermanns, editors, Proceedings of the 19th

International Conference on Computer Aided
3Note that this criticism is not peculiar to Bresap. It applies to all
policy engines that represent semantically rich policies (requiring
at least linear arithmetic) as Boolean functions.

Verification (CAV ’07), volume 4590 of Lecture Notes
in Computer Science, pages 298–302.
Springer-Verlag, 2007. Berlin, Germany.

[8] BBN Technologies. XG Working Group, XG Policy
Language Framework, Request for Comments, version
1.0. www.ir.bbn.com/projects/xmac/pollang.html,
2004.

[9] Darpa. News Release for Next Generation (XG)
Communications Program Request for Comments.
www.darpa.mil/news/2004/xg_jun_04.pdf.

[10] G. Denker, D. Elenius, R. Senanayake, M.-O. Stehr,
and D. Wilkins. A Policy Engine for Spectrum
Sharing. In New Frontiers in Dynamic Spectrum
Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium on, pages 55 –65, April
2007.

[11] D. Elenius, G. Denker, M. O. Stehr, R. Senanayake,
C. Talcott, and D. Wilkins. CoRaL–Policy Language
and Reasoning Techniques for Spectrum Policies.
Policies for Distributed Systems and Networks, IEEE
International Workshop on, pages 261–265, 2007.

[12] F. Perich. Policy-Based Network Management for
NeXt Generation Spectrum Access Control. In New
Frontiers in Dynamic Spectrum Access Networks,
2007. DySPAN 2007. 2nd IEEE International
Symposium on, pages 496 –506, April 2007.

[13] FCC Spectrum Policy Task Force. Report of the
spectrum efficiency working group. Available from
www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf.

[14] I. F. Akyildiz and W.-Y. Lee and M. C. Vuran and S.
Mohanty. NeXt Generation / Dynamic Spectrum
Access / Cognitive Radio Wireless Networks: A
Survey. Computer Networks Journal (Elsevier),
50:2127–2159, September 2006.

[15] L. de Moura and B. Dutertre and N. Shankar. A
Tutorial on Satisfiability Modulo Theories. In
Computer Aided Verification, volume 4590 of LNCS,
pages 20–36. Springer, 2007.

[16] M. Clavel and F. Durán and S. Eker and P. Lincoln and
N. Martı́-Oliet and J. Meseguer and C. Talcott. The
Maude 2.0 System. In R. Nieuwenhuis, editor,
Rewriting Techniques and Applications (RTA 2003),
number 2706 in LNCS, pages 76–87. Springer, 2003.

[17] Q. Zhao. A Survey of Dynamic Spectrum Access.
IEEE Signal Processing Magazine, 24(3):79–89,
2007.

[18] R. Chadha and L. Kant. Policy-Driven Mobile Ad hoc
Network Management. Wiley-IEEE Press, 2007.

[19] World Wide Web Consortium. OWL 2 Web Ontology
Language Document Overview. Available from
www.w3.org/TR/owl2-overview/, 2009.

	Introduction
	Policy representation
	Policy reasoning
	Computing optimal adjustments to transmission parameters
	Performance
	Related Work & Conclusions
	References

