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Abstract—This paper studies the performance of sparse-
matrix-based data structures to represent clock zones (con-
vex sets of clock values) in an on-the-fly predicate equation
system model checker for timed automata. We analyze the
impact of replacing the dense difference bound matrix
(DBM) with both the linked-list CRDZone and array-list
CRDArray data structure. From analysis on the paired-
example-by-example differences in time performance, we
infer the DBM is either competitive with or slightly faster
than the CRDZone, and both perform faster than the
CRDArray. Using similar analysis on space performance,
we infer the CRDZone takes the least space, and the DBM
takes less space than the CRDArray.

I. INTRODUCTION

Automatic verification of real-time systems is under-
taken using notations for verifiable programs and check-
able specifications (see [1]–[6]). One common program
notation is timed automata [7]. There are specification
notations such as timed computation tree logic (TCTL)
[1], [8] and timed extensions of a modal mu-calculus,
including one in [3] and another given in [5]. Specifica-
tions in a timed modal mu-calculus can be written as lists
of equations, known as timed modal equation systems
[5], [6], [9]. For information on the untimed modal-mu
calculi, see [10]–[12], and see [10], [11] for information
on modal equation systems.

One approach to model checking timed automata
with timed modal mu-calculus specifications is to use
predicate equation systems (PES), which were invented
independently by Groote and Willemse (as parameter-
ized boolean equation systems) [13] and by Zhang and
Cleaveland [6], [9]. Predicate equation systems provide
a general framework for program models including para-
metric timed automata [6] and Presburger systems [14].
They also admit a natural on-the-fly approach to model
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checking based on proof search: a formula correspond-
ing to the assertion that a timed automaton satisfies a
mu-calculus property can be checked in a goal-driven
fashion to determine its truth. Zhang and Cleaveland [6]
demonstrated the efficiency of this approach vis à vis
other real-time model-checking approaches.

In this paper we consider the special model check-
ing case of timed automata and timed modal equation
systems representing safety properties (also studied in
[6]), for which there are still many opportunities for
performance improvements. One component of such a
model checker that has a noticeable influence on perfor-
mance is the data structure for the sets of clock values.
When analyzing safety properties, each desired set of
clock values forms a convex set of clock values, or clock
zone (see Definition 3). The conventional way to store
a clock zone is as a difference bound matrix (DBM)
(see Definition 4) [15], which stores the constraints as
a matrix. This approach is used by UPPAAL [16] and
described in [17]. To potentially save space and time,
instead of representing the set of constraints as a matrix,
one can represent the set as an ordered linked path of
constraints where any clock difference not on the path
has the implicit constraint < ∞. If we generalize this
to allow for a union of zones to be represented by a
directed graph of constraints (representing a tree of paths
as opposed to a single path), we get a clock restriction
diagram (CRD) [18]. If we compress the nodes to have
them represent upper and lower bound constraints as well
as explicitly encoding both valid and invalid paths, we
get a clock difference diagram (CDD) [2]. These two
structures are extensions of binary decision diagrams
(BDDs) (see [19] for information).

To improve performance, we take the above idea of
a linked implementation and incorporate the sparseness
of the implementation of CRDs while simplifying (or
shrinking) the structure to only support a single clock



zone (CRDs and CDDs in general can encode unions of
clock zones). This simplified structure is a sparse sorted
linked-list implementation of a DBM, the CRDZone (see
Definition 5). We also implement an array-list version
of the CRDZone, the CRDArray (see Definition 6). A
CRDZone may be seen as a sparse sorted linked-list
implementation of a DBM, and the CRDArray a sparse
array-list implementation of the CRDZone. We examine
the time and space performance of all three clock zone
implementations: the matrix DBM, linked-list CRDZone
and array-list CRDArray.

The contributions of this paper are:
• We run experiments comparing time and space

performance of a model checker (on safety (reach-
ability) properties) with the DBM, CRDZone and
CRDArray data structure implementations.

• We formalize and extend the analysis style per-
formed in the model checking experiments of [2],
[6], [9], [18], [20], [21] by utilizing paired data
(each implementation checked the same examples)
and applying descriptive statistics on the paired
example-by-example differences on time and space
consumption. See Section VI for details on the
statistics and Section VI-B for the analysis.

After analyzing the experimental results, for time per-
formance we infer the DBM is either competitive with or
slightly faster than the CRDZone and both perform faster
than the CRDArray for the examples in this experiment.
In terms of space, we infer the CRDZone takes up the
least space, and the DBM and takes less space than the
CRDArray for the examples in this experiment.

II. PROGRAM MODEL AND SPECIFICATIONS

A. Timed Automata

A timed automaton encodes the behavior of a real-time
system [7], [22].

Definition 1 (Clock constraint φ ∈ Φ(CX)). Given a set
of clocks CX , a clock constraint φ is constructed with
the following grammar, where xi is a clock and c ∈ Z:

φ ::= xi < c | xi ≤ c | xi > c | xi ≥ c | φ ∧ φ

Φ(CX) is the set of all possible clock constraints.

Definition 2 (Timed automaton). A timed automaton
TA = (L,L0,Σ, CX, I, E) is a tuple where:
• L is a finite set of locations with the initial set of

locations L0 ⊆ L.
• Σ is the set of actions and CX is the set of clocks.

• I : L −→ Φ(CX) gives a clock constraint for each
location l. I(l) is called the invariant of l.

• E ⊆ L×Σ×Φ(CX)×2CX×L is the set of edges.
In an edge e = (l, a, φ, Y, l′) from l to l′ with action
a, φ ∈ Φ(CX) is the guard of e, and Y represents
the set of clocks to reset to 0.

Some sources [6], [23] and our PES checker allow
clock assignments (x1 := x2) in addition to clock resets
on edges, other sources [17] allow constraints on clock
differences and other sources [1] allow states to be
labelled with atomic propositions that each state satisfies.

Timed automata use clock valuations ν ∈ V (V =
CX −→ R≥0 is the set of all clock valuations), which
at any moment stores a non-negative real value for each
clock x ∈ CX . The semantics of a timed automaton are
described as an infinite-state machine, where each state
is a location-valuation pair (l, ν). Transitions represent
either time advances or edge executions (performing an
action). For a formal definition of the semantics of a
timed automaton, see [7].

Example 1 (Example of a timed automaton). Consider
the timed automaton in Figure 1, which models a train
in the generalized railroad crossing (GRC) protocol.

Real-Time Model Checking 

2 

TCTL (Invalid):  AF<∞[near ∨ in] 

0: far 1: near 
x1 < 4 

2: in 
x1 < 15 in, x1 = 4, 

x1 := 0 
approach, x1 := 0 

exit, x1 > 1 

TCTL (Valid):  AG<∞[near ! AF!TP+TDU[far]] 
Fig. 1. Timed automaton TA1, a model of a train in the generalized
railroad crossing (GRC) protocol.

There are three locations—0: far (initial location),
1: near and 2: in, with one clock x1. There are the actions
approach, in and exit in Σ. Here, location 1 has the
invariant x1 ≤ 4 while 0 has no invariant. The edge
(1: near, in, x1 = 4, {x1},2: in) has the guard x1 = 4
and resets x1 to 0.

B. Modal Equation Systems (MES)

We use a modal equation system (MES) to represent
real-time temporal properties that timed automata can
possess. A MES is an ordered list of equations with
variables on the left hand side and basic timed temporal
logical formulae on the right. Each equation involves a
variable X , a basic formula φ and a greatest fixpoint (ν)
or a least fixpoint (µ), and the equation is labeled with
the fixpoint (X ν

= φ or X
µ
= φ). For a formal definition

of MES syntax and semantics, see [6], [9].



Example 2 (Continuation of Example 1). Again consider
the timed automaton in Figure 1. The MES

X1
ν
= far ∧ ∀([− ](X1)) (1)

represents the safety property “the train is always in
state 0: far”, read as “the variable X1 is the greatest
fixpoint of being in state 0: far and for all time advances
(∀), for all next actions ([ − ]), X1 is true.” This is an
invalid specification for the timed automaton because the
execution

(0: far, [xi = 0])
2.5−→ (0: far, [xi = 2.5])

approach−→ (1: near, [xi = 0])
2−→ . . . (2)

reaches location 1: near and thus violates the property.

III. DATA STRUCTURES FOR CLOCK VALUE SETS

A. Clock Zones

This definition of a clock zone is taken from [7], [19].

Definition 3 (Clock zone). A clock zone is a convex
combination of single-clock inequalities. Each clock
zone can be constructed using the following grammar,
where xi and xj are arbitrary clocks and c ∈ Z:

Z ::= xi < c | xi ≤ c | xi > c | xi ≥ c
| xi − xj < c | xi − xj ≤ c | Z ∧ Z (3)

Clock zones extend clock constraints with inequalities
of clock differences. These inequalities are used for
model checking even though clock difference inequali-
ties are not used in timed automata. Moreover, in general,
the representation of a clock zone is not unique.

Example 3. Let z = 1 ≤ x1 < 3 ∧ 0 ≤ x2 ≤ 5.
There is the implicitly encoded constraint x2 − x1 ≤ 4.
To see this, consider the longer path of constraints (x0
is a dummy clock that always has value 0):

x2 − x0 ≤ 5 (x2 ≤ 5)
+ x0 − x1 ≤ −1 (1 ≤ x1)

x2 − x1 ≤ 4

To provide a standardized, or canonical, form for clock
zone representations, we use shortest path closure [17].
This form makes every implicit constraint explicit. This
can be implemented in O(n3) time using Floyd-Warshall
all-pairs shortest path algorithm, described in [24], [25].
Other standard forms exist [18], [20].

While converting to a canonical form takes a consid-
erable amount of time, it is needed to simplify and stan-
dardize the algorithms for the zone operations includ-
ing time successor (succ(z)) computations and subset
checks. For time successor, having the zone in canonical
form allows the time elapse operation to simply set all
single-clock upper bound constraints to <∞.

B. Clock Zone Data Structures: Difference Bound Ma-
trix (DBM), CRDZone and CRDArray

One way to represent a clock zone is a difference
bound matrix (DBM), described in Definition 4. See [15],
[17] for a more thorough description.

Definition 4 (Difference bound matrix (DBM)). Let
n − 1 be the number of clocks. A DBM is an n × n
matrix where entry (i, j) is the upper bound of the clock
constraint xi − xj , represented as xi − xj ≤ uij or
xi − xj < uij . The 0th index is reserved for a dummy
clock x0, which is always 0, allowing bounds on single
clocks to be represented by the clock differences xi−x0
and x0 − xj . See Figure 2 for a picture of the DBM
structure and Example 4 for a concrete example.

Definition 5 (CRDZone). A CRDZone is a sparse sorted
linked-list representation of a clock zone. Each constraint
is encoded like a constraint in a DBM, as an upper bound
constraint on xi − xj , labeled as (i, j), with x0 always
being 0. The CRDZone has these properties:

1) Nodes are in lexicographical order of clock con-
straint: (i1, j1) ≺ (i2, j2) iff i1 < i2 or (i1 = i2
and j1 < j2).

2) The (0, 0) node is always given to ensure a univer-
sal head node with an initial value of x0−x0 ≤ 0.

3) If a CRDZone node (i, j) is missing then the zone
has an implicit constraint: (i, i) : xi − xi ≤ 0 and
(i, j), i 6= j : xi − xj <∞.

See Figure 3 for a picture of the CRDZone structure
and Example 4 for a concrete example.

This lexicographical ordering is the same ordering
used in CDDs and CRDs [2], [18]. While the ordering

i

{ j︷ ︸︸ ︷. . . . . . . . .
. . . . . . . . .
. . . . . . xi − xj ≤ uij


Fig. 2. DBM: a matrix with constraint xi−xj ≤ uij in entry (i, j).



is conjectured to influence performance, this is the only
ordering we implemented. Likewise, having different
implicit constraints, such as making xi − x0 ≤ 0 (for
all i) implicit, is conjectured to influence performance.

Definition 6 (CRDArray). The CRDArray is an array list
implementation of the CRDZone. Thus, instead of using
linked nodes, we use an array to store the nodes with
the 0th element being the head. We statically allocate
the array to hold the maximum number of elements and
store a back-pointer to the back of the array list. See
Figure 4 for a picture of the CRDArray structure and
Example 4 for a concrete example.

Using a dynamic allocation instead of our static allo-
cation for the CRDArray array list is conjectured to save
space at the expense of time.

Example 4 (Clock zone in various representations).
Consider the clock zone from Example 3, which is
z = 1 ≤ x1 < 3 ∧ 0 ≤ x2 ≤ 5 ∧ x2 − x1 ≤ 4.

DBM representation of z:x0 − x0 ≤ 0 x0 − x1 ≤ −1 x0 − x2 ≤ 0
x1 − x0 < 3 x1 − x1 ≤ 0 x1 − x2 <∞
x2 − x0 ≤ 5 x2 − x1 ≤ 4 x2 − x2 ≤ 0


CRDZone representation of z:

x0 − x0 ≤ 0 −→ x0 − x1 ≤ −1 −→ x0 − x2 ≤ 0

−→ x1 − x0 < 3 −→ x2 − x0 ≤ 5 −→ x2 − x1 ≤ 4

CRDArray representation of z:

[x0 − x0 ≤ 0|x0 − x1 ≤ −1|x0 − x2 ≤ 0
|x1 − x0 < 3|x2 − x0 ≤ 5|x2 − x1 ≤ 4]

Remark 1 (On DBM vs. CRDZone and CRDArray
methods). Due to the sparse implementation and removal
of implicit nodes, the CRDZone and CRDArray can
improve time by reducing the number of nodes, and thus

−→ . . . −→ xi − xj ≤ uij −→ . . .

Fig. 3. CRDZone: A linked list with nodes in lexicographical order
of constraint xi − xj ≤ uij .

[ | | . . . |xi − xj ≤ uij | . . .]

Fig. 4. CRDArray: An array list with nodes in lexicographical order
of constraint xi − xj ≤ uij .

the number of nodes looked at during a full traversal.
This can speed up traversal-based algorithms such as
intersect and subset check. However, algorithms like
clock reset, emptiness check and canonical form use
O(1) access of middle nodes in DBMs (the CRDZone
and CRDArray do not have O(1) access for all nodes),
resulting in a performance slowdown for those CRDZone
and CRDArray methods. For space, the CRDZone and
CRDArray can store fewer nodes but must store the
explicit indices, resulting in more space per node.

IV. ON-THE-FLY MODEL CHECKING: CONVERTING

TO A PES AND PROOF SEARCH

Our model checker takes in a predicate equation
system (PES) (taken from [9], [13]), which is a general
framework representing logical expressions that involve
fixpoints and first order quantifiers. We take a timed
automaton and a MES and convert it to a PES. Currently
the PES model checker can only check safety properties,
which involve only greatest fixpoints in both the PES
and the input MES. For more information on a PES,
including its syntax, semantics and how to convert a
timed automaton and a MES to a PES, see [6], [9].

The model checker takes the conclusion sequent (the
sequent we wish to prove) and applies proof rules in
a recursive goal-driven tree-like fashion on the premise
sequents, trying to prove each premise sequent until it
reaches a proof rule with no premise (called a leaf) or
a circularity (a previously seen premise sequent). When
checking a proof, we will often encounter circularity.
In general, when the circularity reached is a greatest
fixpoint, we can stop and declare the proof branch valid.
For the formal conditions for circularity and the proof
rules, see [6], [9].

V. EXPERIMENTS: VARIOUS DATA STRUCTURE

IMPLEMENTATIONS

We compare the DBM implementation to the CRD-
Zone and CRDArray implementations. Each implemen-
tation uses shortest path closure to compute canonical
form. The only difference in the DBM, CRDZone and
CRDArray versions is the data structure implementation.

Remark 2 (On our analysis approach). We ask: what does
it mean for an implementation to perform better than
another? We consider consider better to be measured
in the number (or percentage) of examples that one
system outperforms another in. The larger aim is for
any implementation, if we were to know all the examples
that it would run (including and beyond the experiment
examples), we would like one implementation to perform



(strictly) better for at least 51% of this hypothetical set.
This influences our analysis.

Given our meaning of better in Remark 2, we con-
sider the median, 25% and 75% percentile values as
insights into typical examples and use the histograms
to get a bigger picture of the sample distribution of the
performance differences for the experiment, and weigh
these more heavily than the mean and standard deviation
values. The mean and the standard deviation provide us
with an alternative picture of the overall performance and
give hints of either a unusual sample distribution (since
in a symmetric distribution the mean equals the median)
or the presence of potential outliers.

The benchmark choice was modeled off of [6], with
the addition of a model of the generalized railroad
crossing (GRC) protocol [26]. We also used all the
protocols in [6], which are the Carrier Sense, Multi-
ple Access with Collision Detection (CSMA/CD), the
Fiber Distributed Data Interface (FDDI), Fischer’s Mu-
tual Exclusion (FISCHER), the Leader Election protocol
(LEADER and LBOUND) and the PATHO Operating
System (PATHOS) protocol, where each of these proto-
cols is described some in [6]. There are 53 benchmarks
that ran on each implementation.

Experiments were run on a Linux machine with a
3.4 GHz Intel Pentium 4 Dual Processor (each a single
core) with 4 GB RAM. Time and space measurements
(maximum space used) were made using the memtime
(http://www.update.uu.se/∼johanb/memtime/) tool (using
time elapsed and Max VSize). The data tables are
in the Appendix.

VI. STATISTICS, ANALYSIS AND DISCUSSION

A. Histograms and Descriptive Statistics

Running the different data structure implementations
with the same examples yields paired data. Hence,
we can take the two implementations and pair them
example-by-example on their time and space differences
to analyze their performance. When we pair the DBM −
CRDZone samples, we take the DBM measurement and
subtract the CRDZone measurement for the same exam-
ple to get a DBM − CRDZone paired data point. For
instance, the MUX-5-a paired point is -0.92s, 1.94MB,
since the DBM point is 1.22s, 14.67MB, and the CRD-
Zone point is 2.14s, 12.73MB. Pairings are likewise done
to obtain the paired samples for DBM − CRDArray and
CRDZone − CRDArray. For more information, see a
Statistics text such as [27].

Tables I, II and III contain descriptive statistics on the
paired difference in example-by-example performance of

TABLE I
DESCRIPTIVE STATISTICS FOR PAIRED DBM − (MINUS)
CRDZONE EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic DBM − CRD-
Zone (Time)

DBM − CRD-
Zone (Space)

Mean -67.55 34.96
Standard Deviation 428.35 212.65
25% Percentile -1.24 0.00
Median 0.00 1.85
75% Percentile 0.06 25.70

TABLE II
DESCRIPTIVE STATISTICS FOR PAIRED DBM − (MINUS)
CRDARRAY EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic DBM − CRDAr-
ray (Time)

DBM − CRDAr-
ray (Space)

Mean -112.95 -47.75
Standard Deviation 655.65 235.63
25% Percentile -3.16 -20.54
Median -0.29 -2.81
75% Percentile 0.00 -0.01

TABLE III
DESCRIPTIVE STATISTICS FOR PAIRED CRDZONE − (MINUS)

CRDARRAY EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic CRDZone − CR-
DArray (Time)

CRDZone − CR-
DArray (Space)

Mean -45.40 -82.71
Standard Deviation 229.06 160.91
25% Percentile -2.02 -52.67
Median -0.21 -19.35
75% Percentile -0.03 -1.63

the DBM, CRDZone and CRDArray. Figures 5, 6 and
7 have histograms that plot the overall time and space
differences between the DBM, CRDZone and CRDArray
implementations. Bin colors and are changed to help
more easily find the -0.001 to 0.001 (equal performance,
since our measurement precision is 0.01 units), and -0.25
to -0.001 and 0.001 to 0.25 bins (slight differences).

We do not use 95% confidence intervals, paired two-
sample hypothesis (z) tests or ANOVA (Analysis of
Variance) because the independence assumption of the
samples (the example benchmarks) does not hold. Fur-
thermore, we do not use a Wilcoxon signed-rank test
for the median because the symmetry assumption of the
distribution is not believed to hold, and thus we cannot
analyze the hypothetical benchmark distribution referred
to in Remark 2. We do use paired sampling since we have
its only requirement—perfect correlation of the samples.
More information is in [27].



0	
 1	
 2	


8	


3	

6	


4	


15	


6	


2	

5	


1	
 0	
 0	
 0	

0	

2	

4	

6	

8	


10	

12	

14	

16	


Up T
o 

-5
00

0	


-5
00

0 T
o 

-5
00
	


-5
00

 To
 -1

00
	


-1
00

 To
 -1

0	


-1
0 T

o 
-1
	


-1
 To

 -0
.25
	


-0
.25

 To
 -0

.00
1	


-0
.00

1 T
o 

0.0
01
	


0.0
01

 To
 0.

25
	


0.2
5 T

o 
1	


1 T
o 

10
	


10
 To

 10
0	


10
0 T

o 
50

0	


50
0 T

o 
50

00
	


Mor
e	


C
o

u
n

t	


DBM – CRDZone Time (s)	


0	

1	
 1	


4	

5	


0	


12	


0	
 0	

2	


11	

10	


2	


5	


0	

0	

2	

4	

6	

8	


10	

12	


Up T
o 

-2
04

8	


-2
04

8 T
o 

-2
56
	


-2
56

 To
 -1

24
	


-1
24

 To
 -1

6	


-1
6 T

o 
-1
	


-1
 To

 -0
.25
	


-0
.25

 To
 -0

.00
1	


-0
.00

1 T
o 

0.0
01
	


0.0
01

 To
 0.

25
	


0.2
5 T

o 
1	


1 T
o 

16
	


16
 To

 12
4	


12
4 T

o 
25

6	


25
6 T

o 
20

48
	


Mor
e	


C
o

u
n

t	


DBM – CRDZone Space (MB)	


Fig. 5. Histograms comparing the DBM − (minus) CRDZone time
(s) (top) and space (MB) (bottom) differences.
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Fig. 6. Histograms comparing the DBM − (minus) CRDArray time
(s) (top) and space (MB) (bottom) differences.

B. Analysis of Results

1) DBM vs. CRDZone: The CRDZone performs
slower for 45% of the tested examples (at least as slow
for 74%) with a median difference of 0.00s slower, while
the CRDZone has a mean difference of 67.55s slower.
Thus, we infer the CRDZone is either slightly slower or
competitive to the DBM for this benchmark, but due
to insufficient evidence (45% of the examples is not
enough) do not infer that the DBM performs strictly
faster than the CRDZone.

The CRDZone takes less space for 57% of the tested
examples (at most as much space for 57%) with a median
amount of 1.85MB less space and a mean amount
of 34.96MB less space. The CRDZone takes at least
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Fig. 7. Histograms comparing the CRDZone − (minus) CRDArray
time (s) (top) and space (MB) (bottom) differences.

0.25MB less space for 28 such examples and more than
0.25MB space for only 11 examples. Thus (even though
57% is not a large majority), we infer the CRDZone
takes less space overall for this benchmark.

2) DBM vs. CRDArray: The CRDArray performs
slower for 64% of the tested examples (at least as slow
for 89%) with a median difference of 0.29s slower and
a mean difference of 112.95s slower. Thus we infer the
CRDArray performs slower overall for this benchmark.

The CRDArray takes more space for 77% (at least as
much space for 77%) of the examples with a median
amount of 2.81MB more space and mean amount of
47.75MB more. Thus we infer the CRDArray takes more
space overall for this benchmark.

3) CRDZone vs. CRDArray: The CRDArray performs
slower for 77% of the tested examples (at least as slow
for 100%) with a median difference of 0.21s slower and
a mean difference of 45.40s slower. Thus we infer the
CRDArray is slower overall for this benchmark.

The CRDArray takes more space for 100% of the
examples with a median amount of 19.35MB more space
and a mean amount of 82.71MB more. Thus we infer the
CRDArray takes more space overall for this benchmark.

C. Discussion of Results

The CRDZone and CRDArray method that converts
zones to canonical form was implemented using array-
based algorithms, where it temporarily converts the clock
zone to and from a matrix (the algorithm is similar to
a DBM algorithm for those methods). It is possible that
performance can be improved by trying an algorithm that



does not require copying to and from a matrix. All time
vs. space tradeoffs were taken to save time.

Furthermore, we ran a CRDZone execution twice (first
execution reported) and compared the distribution of
their differences to get an idea of noise and/or mea-
surement error. The differences in the histograms are
larger than the differences of the noisy implementation,
so thus we suspect the differences in performances are
due to more than just uncertain measurement/noisy data.
However, slight differences (≤ 0.25s or ≤ 0.25MB)
may be due to execution noise or examples that require
very little time and/or space. The PATHOS-7-b is one
such resource-light example, taking at most 0.10s and
2.89MB for each implementation. In contrast, the MUX-
7-a example is resource-heavy, being the only example
to takes more than 2000s for each implementation.

When profiling the implementations using gprof
(http://www.gnu.org/s/binutils/), CRDZones take more
time than DBMs for clock resets and emptiness checks,
but the invariant checking method (mostly clock zone
intersections) takes less time for CRDZones than DBMs.

From the data (see the Appendix), we notice that the
data structure implementation choice has a noticeable
influence on model checking performance for specific
examples. To see this, consider the examples MUX-7-a,
where the DBM finished 3118.94 seconds earlier than the
CRDZone, and LEADER-100-c, where the CRDZone
checked the example in 55% of the time required for
the DBM. There are also noticeable differences relative
to the CRDArray.

D. Related Work

A different way of modeling programs using discrete-
time is discussed in [4]. PES are in [9], and they have
been used to model check various systems in [6], [9],
[14]. Difference bound matrices originated from [15]
and are used in various studies such as in those in [17],
[23]. Other tools that can model check timed automata
(safety and liveness properties) include KRONOS [23],
UPPAAL [16], RED [18] and Rabbit [28]. We built
upon Zhang’s implementation using predicate equation
systems in [6], [9], which supports safety properties. A
similar experiment involving using a reduced canonical
form is in [20], which focuses on the influence of
different standard clock zone forms instead of comparing
list vs. array implementations.

A remark on a sparse DBM representation saving
space, with neither a mention on time nor experimental
data, is given in [17]. There is an experiment comparing
CDDs to another BDD-like structure used by Rabbit in

[21], but this experiment compares data structures for
non-convex sets of clock valuations (unions of clock
zones), and the comparison is across different tools with
different model checking approaches, and not the same
tool with different data structures.

VII. CONCLUSIONS AND FUTURE WORK

Here are our conclusions from the experiment:
1) Time: (DBM ≤t CRDZone) <t CRDArray). For

this benchmark, we infer that the DBM is either
competitive with or slightly faster than the CRD-
Zone and both perform faster than the CRDArray.
There is insufficient evidence to conclude that the
DBM is strictly faster.

2) Space: (CRDZone <s DBM) <s CRDArray. For
this benchmark, we infer that the CRDZone takes
the least amount of space and the DBM takes less
space than the CRDArray for this experiment.

For potential reasons for performance differences and
analysis of some theoretical differences, see Remark 1.

Future work is to model check least fixpoint (µ)
equations, to implement all of the proof rules given in
[6], [9] and to model check any PES. Comparing lists of
DBMs to a CRD or CDD to improve the performance of
the expanded implementation is future work, as well as
comparing different kinds of standard forms and different
CRDZone node orderings.
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TABLE IV
EXPERIMENT RESULTS—A EXAMPLES—TIME (S): CORRECT

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-3-a 0.10 0.20 (200%) 0.20 (200%)
CSMACD-4-a 3.16 4.48 (142%) 6.50 (206%)
FDDI-20-a 2.04 3.03 (149%) 4.66 (228%)
FDDI-40-a 58.49 79.2 (135%) 126.82 (217%)
FDDI-50-a 169.66 230.7 (136%) 370.71 (219%)
MUX-5-a 1.22 2.14 (175%) 2.75 (225%)
MUX-6-a 35.49 74.44 (210%) 98.08 (276%)
MUX-7-a 2623.61 5742.55 (219%) 7383.73 (281%)
LEADER-6-a 0.41 0.71 (173%) 0.92 (224%)
LEADER-7-a 12.99 25.89 (199%) 34.22 (263%)
LBOUND-6-a 0.51 1.02 (200%) 1.32 (259%)
LBOUND-7-a 17.36 37.07 (214%) 49.64 (286%)
PATHOS-4-a 13.7 35.23 (257%) 50.58 (369%)
GRC-3-a 0.92 1.63 (177%) 2.12 (230%)
GRC-4-a 252.05 431.63 (171%) 748.01 (297%)

TABLE V
EXPERIMENT RESULTS—A EXAMPLES—SPACE (MB): CORRECT

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-3-a 2.88 7.55 (262%) 11.02 (382%)
CSMACD-4-a 209.97 104.47 (50%) 179.53 (86%)
FDDI-20-a 5.96 9.00 (151%) 13.57 (227%)
FDDI-40-a 27.55 57.24 (208%) 100.30 (364%)
FDDI-50-a 53.91 116.79 (217%) 209.29 (388%)
MUX-5-a 14.57 12.73 (87%) 18.55 (127%)
MUX-6-a 84.05 116.35 (138%) 168.38 (200%)
MUX-7-a 625.42 1667.94 (267%) 2302.39 (368%)
LEADER-6-a 3.57 6.59 (185%) 7.82 (219%)
LEADER-7-a 20.98 104.02 (496%) 133.39 (636%)
LBOUND-6-a 3.93 8.66 (220%) 10.39 (264%)
LBOUND-7-a 27.89 157.54 (565%) 199.99 (717%)
PATHOS-4-a 40.73 38.11 (94%) 57.45 (141%)
GRC-3-a 10.48 7.87 (75%) 11.23 (107%)
GRC-4-a 318.22 220.64 (69%) 355.02 (112%)

APPENDIX

EXPERIMENTAL DATA

For the experiments, we use three kinds of examples:
• Valid A Examples (in Tables IV and V): Correct

system implementations with valid safety specifica-
tions.

• Invalid B Examples (in Tables VI and VII): A
examples with invalid specifications.

• Invalid C Examples (in Tables VIII and IX):
A examples with buggy implementations of the
systems that do not satisfy the A specifications.



TABLE VI
EXPERIMENT RESULTS—B EXAMPLES—TIME (S): CORRECT

SYSTEM, INVALID SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-4-b 0.10 0.10 (100%) 0.20 (200%)
CSMACD-5-b 0.51 0.51 (100%) 0.71 (139%)
CSMACD-6-b 3.35 2.73 (81%) 3.97 (119%)
FDDI-30-b 1.53 1.53 (100%) 2.23 (146%)
FDDI-40-b 4.66 4.58 (98%) 6.60 (142%)
FDDI-60-b 8.64 5.07 (59%) 5.48 (63%)
MUX-20-b 0.41 0.41 (100%) 0.51 (124%)
MUX-30-b 0.92 0.91 (99%) 1.21 (132%)
MUX-40-b 1.93 1.73 (90%) 2.23 (116%)
LEADER-10-b 0.10 0.10 (100%) 0.10 (100%)
LEADER-20-b 0.10 0.20 (200%) 0.20 (200%)
LBOUND-10-b 0.10 0.10 (100%) 0.20 (200%)
LBOUND-40-b 6.82 17.46 (256%) 29.54 (433%)
PATHOS-7-b 0.10 0.10 (100%) 0.10 (100%)
PATHOS-8-b 0.10 0.10 (100%) 0.10 (100%)
PATHOS-9-b 0.10 0.10 (100%) 0.10 (100%)
GRC-3-b 0.10 0.10 (100%) 0.10 (100%)
GRC-4-b 0.51 0.61 (120%) 0.82 (161%)
GRC-5-b 9.75 13.4 (137%) 19 (195%)

TABLE VII
EXPERIMENT RESULTS—B EXAMPLES—SPACE (MB): CORRECT

SYSTEM, INVALID SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-4-b 2.88 2.89 (100%) 13.67 (474%)
CSMACD-5-b 144.14 72.38 (50%) 123.52 (86%)
CSMACD-6-b 1134.30 553.21 (49%) 961.90 (85%)
FDDI-30-b 9.60 9.06 (94%) 19.08 (199%)
FDDI-40-b 17.19 16.03 (93%) 39.00 (227%)
FDDI-60-b 27.85 14.53 (52%) 63.52 (228%)
MUX-20-b 19.37 11.15 (58%) 16.96 (88%)
MUX-30-b 28.28 16.87 (60%) 28.58 (101%)
MUX-40-b 43.01 21.85 (51%) 42.81 (100%)
LEADER-10-b 2.88 2.89 (100%) 2.89 (100%)
LEADER-20-b 2.88 4.59 (159%) 5.69 (197%)
LBOUND-10-b 2.88 2.89 (100%) 3.38 (117%)
LBOUND-40-b 18.29 15.23 (83%) 30.73 (168%)
PATHOS-7-b 2.88 2.89 (100%) 2.89 (100%)
PATHOS-8-b 2.88 2.89 (100%) 2.89 (100%)
PATHOS-9-b 2.88 2.89 (100%) 2.89 (100%)
GRC-3-b 2.88 2.89 (100%) 2.89 (100%)
GRC-4-b 58.74 32.08 (55%) 53.42 (91%)
GRC-5-b 717.21 379.44 (53%) 648.00 (90%)

The experimental data for the 53 example benchmarks
is provided in Tables IV, V, VI, VII, VIII and IX,
with the best entry(ies) in each row bolded and per-
centage change relative to the DBM, to the nearest %,

TABLE VIII
EXPERIMENT RESULTS—C EXAMPLES—TIME (S): BUGGY

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-6-c 0.51 0.41 (80%) 0.51 (100%)
CSMACD-7-c 2.03 1.82 (90%) 2.03 (100%)
CSMACD-8-c 9.55 8.42 (88%) 9.55 (100%)
FDDI-30-c 0.51 0.41 (80%) 0.41 (80%)
FDDI-40-c 1.52 0.92 (61%) 1.01 (66%)
FDDI-60-c 6.71 3.98 (59%) 4.17 (62%)
MUX-6-c 139.02 258.32 (186%) 401.84 (289%)
LEADER-60-c 6.81 3.96 (58%) 4.06 (60%)
LEADER-70-c 14.42 8.12 (56%) 8.13 (56%)
LEADER-100-c 82.94 45.78 (55%) 45.88 (55%)
LBOUND-6-c 0.10 0.10 (100%) 0.20 (200%)
LBOUND-7-c 0.61 0.81 (133%) 1.12 (184%)
LBOUND-8-c 12.48 32.00 (256%) 52.9 (424%)
PATHOS-5-c 0.10 0.10 (100%) 0.10 (100%)
PATHOS-6-c 0.10 0.10 (100%) 0.10 (100%)
PATHOS-7-c 0.10 0.10 (100%) 0.10 (100%)
GRC-3-c 0.10 0.10 (100%) 0.10 (100%)
GRC-4-c 0.51 0.81 (159%) 1.02 (200%)
GRC-5-c 9.65 13.31 (138%) 18.88 (196%)

TABLE IX
EXPERIMENT RESULTS—C EXAMPLES—SPACE (MB): BUGGY

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-6-c 85.32 18.53 (22%) 79.30 (93%)
CSMACD-7-c 337.43 191.84 (57%) 320.89 (95%)
CSMACD-8-c 1369.07 787.75 (58%) 1338.62 (98%)
FDDI-30-c 4.88 4.60 (94%) 9.93 (203%)
FDDI-40-c 9.55 6.41 (67%) 19.63 (206%)
FDDI-60-c 24.07 14.24 (59%) 55.57 (231%)
MUX-6-c 1607.73 1047.64 (65%) 1723.25 (107%)
LEADER-60-c 29.24 10.79 (37%) 63.66 (218%)
LEADER-70-c 51.18 15.30 (30%) 108.80 (213%)
LEADER-100-c 203.89 40.65 (20%) 431.71 (212%)
LBOUND-6-c 2.88 2.89 (100%) 4.48 (155%)
LBOUND-7-c 12.52 10.34 (83%) 14.42 (115%)
LBOUND-8-c 75.66 59.23 (78%) 90.48 (120%)
PATHOS-5-c 2.88 2.89 (100%) 2.89 (100%)
PATHOS-6-c 2.88 2.89 (100%) 2.89 (100%)
PATHOS-7-c 2.88 2.89 (100%) 2.89 (100%)
GRC-3-c 2.88 2.89 (100%) 2.89 (100%)
GRC-4-c 58.74 35.94 (61%) 59.47 (101%)
GRC-5-c 717.29 379.35 (53%) 647.94 (90%)

in parenthesis. Time data is given to the nearest 0.01s
(second) and space data is given to the nearest 0.01MB
(Megabyte). Given the percentage rounding, sometimes
an example with slightly different performance may still
have a 100% value.


