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Abstract

Bounded Model Checking (BMC) is a symbolic
model checking technique in which the existence
of a counterexample of a bounded length is rep-
resented by the satisfiability of a propositional
logic formula. Although solving a single instance
of the satisfiability problem (SAT) is sufficient to
decide on the existence of a counterexample for
any arbitrary bound typically one starts from
bound zero and solves the sequence of formu-
las for all consecutive bounds until a satisfiable
formula is found. This is especially efficient in
the presence of incremental SAT-solvers, which
solve sequences of incrementally encoded formu-
las. In this article we analyze empirical results
that demonstrate the difference in run time be-
havior between incremental and non-incremental
SAT-solvers. We show a relation between the ob-
served run time behavior and the way in which
the activity of variables inside the solver propa-
gates across bounds. This observation has not
been previously presented and is particularly
useful for designing solving strategies for paral-
lelized model checkers.
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1 Introduction

Model checking is a formal verification technique
revolving around proving temporal properties of
systems modelled as finite state machines. A
property holds for the model if it holds in all pos-
sible execution paths. If the property does not
hold this can be witnessed by a counterexample,
which is a valid execution path for the model in
which the property does not hold. Because the
model has a finite number of states any infinite
execution of the system includes a loop, and can
thus be represented by a finite sequence of exe-
cution steps. Bounded Model Checking (BMC)
[1] is a symbolic model checking technique in
which the existence of a counterexample con-
sisting of a bounded number of execution steps
is represented by the satisfiability of a proposi-
tional logic formula. It thus allows the use of
decision procedures for the propositional satisfi-
ability problem (SAT) for model checking. De-
spite the theoretical hardness of SAT [7] such de-
cision procedures, called SAT-solvers [9, 14, 17],
have become extremely efficient. BMC is pop-
ular as a technique for refuting properties, and
although BMC based techniques can be used for
proving properties we do not consider such tech-
niques here.

A typical BMC encoding will have semantics
such that if there exists a counterexample of



length k then there also exists a counterexam-
ple of any length greater than k. Thus in prin-
ciple solving a single propositional logic formula
is sufficient to decide on the existence of a coun-
terexample for any arbitrary finite bound. How-
ever, one typically starts to solve the formula
corresponding to bound zero and then solves se-
quentially each consecutive bound until a coun-
terexample is found. We will refer to this as the
standard sequential search strategy. This strat-
egy has the nice property that it always finds a
counterexample of minimal length. As with ev-
ery bound the representing formula grows larger
it also avoids solving unnecessarily large formu-
las. Importantly, the performance of this strat-
egy benefits greatly from the availability of incre-
mental SAT-solvers. Incremental SAT-solvers
can solve sequences of formulas that share large
parts in common efficiently in a single solver pro-
cess, allowing reuse of information between for-
mulas.

2 Motivation

Automated SAT based planning is a problem
closely related to BMC. It deals with the same
sequences of parameterized formulas, except
that the satisfiability of a formula now corre-
sponds to the existence of a plan of a bounded
length. In [15] evaluation strategies for plan-
ning were suggested that are more opportunis-
tic than the standard sequential search strategy.
They suggest to spend some amount of the to-
tal solving effort at attempting to solve formu-
las for bounds ahead of the currently smallest
unsolved one. It was inspired by the empirical
observation that if a plan exists then amongst
the smallest satisfiable formulas in the sequence
there are typically formulas that are much eas-

ier to solve than the largest unsatisfiable ones.
A more opportunistic search strategy may re-
duce the total time required to find a satisfiable
formula by skipping over hard instances. Such
strategies are natural for environments in which
multiple computing nodes are available in paral-
lel, where one may define some nodes to use a
more opportunistic strategy than others.

The observation on the empirical hardness of
the smallest satisfiable formulas compared to the
largest unsatisfiable ones can also be made for
BMC. We attempted to implement opportunis-
tic strategies in our parallelized BMC framework
Tarmo [18]. This however turned out to be less
efficient then we would have expected, with per-
formance degrading for many benchmarks. In
this article we evaluate the performance of the
incremental solver and compare it against that
of solving each bound separately. The purpose
of this study is not to illustrate that incremen-
tal solvers are more effective for BMC than non-
incremental ones, as that is well known, but to
understand when and how opportunistic strate-
gies can be applied. This is done by compar-
ing against non-incremental solver run times be-
cause solvers applying opportunistic strategies
benefit less from the incremental interface of the
solver, as the problem is no longer introduced
one bound at a time.

3 Preliminaries

The majority of modern SAT-solvers are based
on the Davis Putnam Logemann Loveland
(DPLL) procedure [8]. The DPLL-procedure is
a backtracking search procedure for SAT that
builds a partial assignment by iteratively decid-
ing on a branching variable to be assigned a
value in the partial assignment. When the par-



tition of the search space defined by the partial
assignment is without solutions the algorithm
backtracks. In addition to this modern SAT-
solvers typically employ conflict clause learning
[17]. Such solvers record a new conflict clause
whenever they are forced to backtrack. They
then backtrack non-chronologically to a decision
point at which the conflict clause was still satis-
fied.

The performance of the DPLL-procedure de-
pends heavily on its branching variable decisions.
A commonly used decision heuristic for clause
learning SAT-solvers is the Variable State Inde-
pendent Decaying Sum (VSIDS) heuristic first
presented in the solver Chaff [14]. The idea of
the heuristic is to favor variables that are in-
cluded in recently derived conflict clauses. For
each variable an initially zero value called the ac-
tivity is maintained. Whenever a conflict clause
is learnt the activity of all variables that occur in
the clause is increased. Periodically the activity
of all variables is divided by a constant.

All results presented in this article were ob-
tained using the SAT-solver MiniSAT 2.2.0 [9]1.
The solver core was not modified but a num-
ber of small modifications2 were made in aux-
iliary routines such as the file parser in order
to read incremental SAT sequences from disk.
When employing BMC typically the SAT-solver
will not read the formula sequence from disk but
it will rather be integrated into a BMC engine
that is generating formulas for new bounds on
the fly. We use sequences stored on disk as this
is convenient for testing the performance of the
SAT-solver independently. As our sequences are
streamable one can also use them as an interface
between a BMC engine and a SAT-solver with-

1Available from http://www.minisat.se
2Available from http://users.ics.tkk.fi/swiering

out the need for integrating them into one appli-
cation. The input sequences used were the same
as the benchmarks used for experimental results
presented in [18]. These sequences were gener-
ated with the current state-of-the-art encoding
for model checking of linear time temporal logic
properties with past (PLTL) [2] as implemented
in the model checker NuSMV 2.4.3 [6].

4 Run time

In our experiments we have studied the behav-
ior of SAT-solvers on problem sequences from
BMC regarding both the run time and variable
activity. A selection of the results is presented in
the figures in this article. For each benchmark
there are two subfigures, a run time graph la-
beled (a) and a variable activity graph labeled
(b). In this section we will focus only on the run
time graphs, which have bounds on the x-axis
and time on the y-axis. For each bound a ver-
tical bar displays the time it took to solve the
formula corresponding to that single bound us-
ing the SAT-solver in non-incremental fashion.
If the solver found unsatisfiable a solid red bar
is drawn, if the solver found satisfiable only the
outline of the bar is drawn in green.

The incremental solver solves using the stan-
dard sequential strategy and whenever it com-
pletes a bound it reports the run time up to
that point. The points in the graphs marked
with crosses (x) and connected by the thick line
represent these run times.

The thin dotted line connecting the plusses
(+) is representing the cumulative run time of
the non-incremental solver, i.e. for each bound
k the value displayed is the sum of all run times
of the non-incremental solver tests from bound
0 to k. This demonstrates the time required
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Figure 1: Benchmark irst.dme6 from [3]
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Figure 2: Benchmark bc57sensors.p2neg from [3]
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Figure 3: Benchmark eijk.S1238.S from [3]



for the standard sequential strategy using a non-
incremental solver. This line is intentionally not
influencing the range of the y-axis, as it typically
grows so large that it would make the other re-
sults hard to see.

From Fig. 1(a) it can be seen that the shortest
counterexample for benchmark irst.dme6 is of
length 53. The run times of the non-incremental
SAT-solver clearly show the behavior that in-
spired the opportunistic strategies of [15], i.e.
the run time of the non-incremental solver for
small satisfiable formulas is much smaller than
that of the largest unsatisfiable ones. It may
be observed from Fig. 2(a) that for benchmark
bc57sensors.p2neg the run times for the two
smallest satisfiable formulas corresponding to
bounds 104 and 105 are relatively large. An easy
satisfiable formula can however be found a little
further ahead at bound 106, thus the use of an
opportunistic strategy could possibly be benefi-
cial.

Note that all results presented in this arti-
cle demonstrate that the use of the incremental
solver is crucial when performing the standard
sequential strategy. Fig. 3(a) presents run time
behavior for the benchmark eijk.S1238.S which
is the encoding of model checking a property that
holds on all execution paths of the model. This
implies that the formulas are unsatisfiable for all
bounds. Here, the crucial role that incremen-
tal SAT solving often plays in solving BMC is
even clearer. Whereas a non-incremental solver
would take about 100 seconds to find that bound
150 alone is unsatisfiable, the incremental solver
finds this result for all bounds from 0 to 150 se-
quentially in half that time. This is typical be-
havior for many benchmarks corresponding to
model checking a property that holds. It seems
that in these cases the solver learns that the
property holds for all short execution paths in

a way that is easy to update when the bound on
the length of the execution paths is extended.
The solver can be thought of as having tuned it-
self towards verifying the property holds in the
exact same way over and over.

Another way to look at the result presented in
Fig. 3(a) is that by using the standard sequen-
tial strategy we are aiding the solver in proving
the unsatisfiability of the formula corresponding
to the counterexample of length 150, the largest
bound tested here. By forcing it through the se-
quence of formulas we force a direction on the
search that is natural to our problem descrip-
tion, and apparently this is helpful for the SAT-
solver. For benchmarks with this kind of run
time behavior there is clearly no hope for any
opportunistic strategies.

An incremental solver can be started from
any arbitrary bound, and it is possible to pro-
ceed by increasing the bound by more than one
every time a formula is solved. Using bound
increments larger than one is one of the sim-
ple strategies we have tried in our experiments.
This strategy should still be considered oppor-
tunistic because of the “missing information” it
causes for the solver, leading it further away from
the efficiency of incremental solving, and further
towards non-incremental behavior. Given the
small margin of error available for opportunis-
tic approaches for satisfiable benchmarks, and
no chance of any performance improvement for
many unsatisfiable benchmarks, we need to be
careful when applying these approaches. They
are however amongst the most natural ways of
diversifying search strategies amongst nodes in
an environment with parallel computation re-
sources.



5 Parallel SAT solving

There are two common architectures for parallel
SAT-solvers [11]. The first is the classic divide-
and-conquer approach in which the formula is
split into multiple disjoint subformulas each of
which are then solved on a different comput-
ing node [4, 19]. The second approach is the
so called portfolio approach [10]. The basic idea
is that every computing node is running a SAT-
solver that is attempting to solve the same for-
mula. As modern SAT-solvers make some deci-
sions randomly their run time varies greatly be-
tween runs. This makes the portfolio approach
surprisingly efficient as it is able to decide the
satisfiability of the formula as soon as the fastest
solver finishes. Further diversification may be
achieved by using different parameters on differ-
ent computation nodes. Obviously opportunistic
search strategies provide means for diversifica-
tion when we are considering solving incremen-
tally encoded SAT formulas in a parallel envi-
ronment.

The current implementation of our paral-
lelized BMC framework Tarmo can be seen as
a parallelized incremental SAT-solver using the
portfolio approach. Each computing node is run-
ning an incremental SAT-solver in the conven-
tional sequential fashion. The novelty of Tarmo
is that it allows sharing of conflict clauses be-
tween SAT-solvers even if they are working on
different bounds. The solvers operate otherwise
independently, i.e. if one solver solves a formula
this does not stop the other solvers from at-
tempting to solve that same formula. This choice
was made after observing that interrupting a
solver to make it “catch-up” with another breaks
its ability to benefit from incremental SAT to the
full extent. As we made this observation in an
environment where clause sharing takes place it

seems that the interrupted solver is missing more
information than just conflict clauses. This was
one of the reasons to look at the way the activ-
ity of variables propagates across bounds on the
incremental SAT-solver runs.

6 Variable activity

To obtain data on the activity of variables the
SAT-solver was modified to print the activity of
all variables after each bound it completed. For
each bound we are interested in which variables
are the most active, and especially in whether
this activity remains high across several bounds.
We consider a variable hyperactive if its activity
is within the highest 2% of variables with non-
zero activity.

The graphs labeled (b) in this article visual-
ize the hyperactive variables. All variables that
are hyperactive for at least one bound are rep-
resented by an integer value on the y-axis of the
graph. The variables are sorted on the y-axis
by their index such that if we define y(v) as the
integer on the y-axis corresponding to the vari-
able with index v then for any v′ > v we have
y(v′) > y(v).

Just like in the run time graphs the values on
the x-axis of the graph represent bounds. If a
variable was hyperactive starting from bound k
up to but not including bound k′ > k then a hor-
izontal line was drawn in the graph from bound
k to k′ at the y position corresponding to that
variable. In other words for all variables v and all
bound intervals [k, k′) on which v is hyperactive
a line was drawn from (k, y(v)) to (k′, y(v)).

One may observe that generally variables with
larger indices become active later. This is be-
cause in the solver each newly introduced vari-
able is given a larger index than all existing vari-
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Figure 4: Benchmark abp4.ptimoneg from [2]

ables, and for each bound a set of new variables is
created. For each bound a subset of the new vari-
ables becomes hyperactive quickly, as the solver
runs into conflicts on the newly added clauses.

The hyperactive variables in the satisfiable
benchmarks irst.dme6 and bc57sensors.p2neg
are displayed in Fig. 1(b) and Fig. 2(b). Note
that although for each bound some of the new
variables become hyperactive all these vari-
ables tend to remain hyperactive throughout the
whole process. This means that whenever a
bound is added the solver still runs into new con-
flicts regarding variables that represent the state
at smaller timepoints. We say that the activity
of variables is bound global.

For the benchmark eijk.S1238.S the activity
graph looks very different. For each bound the
solver creates conflict clauses including the new
variables, thus creating a new set of hyperactive
variables, but there are only very few variables
for which hyperactivity is maintained. This is in
line with observation on the run time behavior of
this benchmark which also indicate that hardly
any work has to be performed to find unsatisfi-
ability. We say that the activity of variables is

bound local.

We have generated graphs like the ones pre-
sented in this paper for a large set of bench-
marks3. We observe that on benchmarks with
a bound global variable activity the run time of
the non-incremental SAT-solver for the largest
bound solved is smaller than the time spent for
the incremental solver to get to the same bound
and solve it. For benchmarks with a bound lo-
cal variable activity this is never the case and
thus a opportunistic heuristic will not improve
performance.

Although we expect all hard satisfiable bench-
marks to have a bound global variable activity it
is not the case that all unsatisfiable benchmarks
have a bound local variable activity. The bench-
mark abp4.ptimoneg represented in Fig. 6 is an
example of an unsatisfiable benchmark with a
bound global variable activity. Apparently the
correctness of the property is not implied within
a short number of execution steps here, and the
incremental solver needs to evaluate large por-
tions of the search space for every bound. Note
also that for this benchmark an opportunistic ap-

3Available from http://users.ics.tkk.fi/swiering



proach may help to find unsatisfiable formulas at
larger bounds faster.

7 Conclusions

In this article we have shown a relation between
the run time of the standard sequential strat-
egy for bounded model checking and the activ-
ity of decision variables in solvers employing this
strategy. We can use this observation in a SAT-
solver to predict during the search whether a
more opportunistic strategy could be beneficial
for the search. This is especially useful for par-
allel solvers in which different threads may be
executing different strategies.

It is also easy to envision how these techniques
could be useful for model checkers that use a
combination of truly different model checking
techniques such as PdTrav [5]. One could eas-
ily engineer a system which would do BMC for
some amount of time, after which the variable
activity could play a role in the decision on how
to continue. If the variable activity appears to
be bound local then the property is likely to hold
for the model and thus we may want to start do-
ing a complete model checking technique based
on for example k-induction [16], Craig interpola-
tion [13] or BDDs [12] to prove this.

Another observation we made is that for de-
ciding the satisfiability of the last formula in an
incrementally encoded sequence of formulas it
can sometimes be faster to solve all formulas in
the sequence. This raises the question whether
other applications of SAT solving that currently
rely on solving a single SAT formula could ben-
efit from the use of incremental problem encod-
ings. Such encodings allow enforcing a search
direction on the SAT-solver that is natural to
the application and therefore possibly beneficial

to the solver. Tolerance to bad choices for such
an incremental encoding could be achieved by
doing this in a parallel environment with some
opportunistic nodes.
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