
metaSMT: Focus On Your Application Not On
Solver Integration

Finn Haedicke Stefan Frehse Görschwin Fey Daniel Große Rolf Drechsler
Institute of Computer Science

University of Bremen, 28359 Bremen, Germany
{finn,sfrehse,fey,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Decision procedures are used as core tech-
nique in many applications today. In this context, auto-
mated reasoning based on Satisfiability Modulo Theories
(SMT) is very effective. However, developers have to decide
which concrete engine to use and how to integrate the
engine into the application. Even if file formats like SMT-
LIB standardize the input of many engines, advanced
features remain unused and the integration of the engine
is left to the programmer.

This work presents metaSMT, a framework that inte-
grates advanced reasoning engines into the program code
of the respective application. metaSMT provides an easy to
use language that allows engine independent programming
while gaining from high performance reasoning engines.

State-of-the-art solvers for satisfiability and other theo-
ries are available for the user via metaSMT with minimal
programming effort. For two examples we show how
metaSMT is used in current research projects.

I. INTRODUCTION

In recent years, formal methods have become attractive
to solve complex computational hard problems. Decision
procedures are applied in many applications, like e.g.,
Model Checking [1], [2], Synthesis [3], [4] and, Automatic
Test Pattern Generation (ATPG) [5].

Despite the successful research and application of
decision procedures, the increasing complexity of soft-
ware and hardware systems demands for more effective
reasoning engines to overcome complexity issues. In
the last years, solvers for Satisfiability Modulo Theo-
ries (SMT) have been developed. Different theories are
combined to formulate the problem. Various works gave
empirical evidence that SMT reasoning engines increase
the efficiency of formal methods [6], [7], [8].

The performance of SMT reasoning engines remains an
active research topic. Annual SMT competitions [9], [10]
show their advances. However, SMT reasoning engines
have different strengths on different problem instances.
Therefore, evaluating different engines with respect to a
given problem instance allows to find the best performing
engine.

When using SMT in a concrete algorithm, the most
common way is to generate a problem instance in
SMT-LIB format [11]. Taking a user created SMT-
LIB file as input, an SMT solver decides whether the
instance is satisfiable or unsatisfiable. However, many
solvers additionally have custom native interfaces. These
interfaces are used to pass the instance to the engine and

This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project SANITAS
under contract no. 01M3088.

check for satisfiability. Furthermore, advanced features
are available, e.g., computing interpolants which are
utilized in SAT-based Model Checking [2]. Moreover
learnt information generated while reasoning can be
reused very efficiently in consecutive reasoning processes
to prune the search space [12]. Usually this can only be
done by calling native functions which access the learnt
information.

This work presents metaSMT a publicly available, easy
to use and powerful tool1 which provides an integration
of the native Application Programming Interface (API) of
modern reasoning engines into C++ code. The advantages
of metaSMT are: (1) engine independence through effi-
cient abstraction layers (2) simple use of various decision
procedures (3) extensibility in terms of input language
and reasoning engines (4) customizability in terms of
optimization and infrastructure (5) translation of the input
language into native engine calls at compile time.

The remaining work is structured as follows: Section II
gives a basic introduction into SMT and the programming
methods used in metaSMT . Afterwards an example
of a metaSMT-based application is given before in
Section IV the architecture of metaSMT is described.
Section V describes how this architecture is implemented
in metaSMT and Section VI gives an empirical evaluation
of metaSMT including its use in current research projects.
The work closes with conclusions.

II. PRELIMINARIES

This section provides background information. How-
ever, basic knowledge of C++ is assumed.

A. Satisfiability Modulo Theories
Boolean satisfiability is a decision problem, also known

as the SAT problem. The problem asks whether there
exists an assignment of Boolean variables such that the
Boolean function evaluates to true. The problem has
been proven NP-complete [13]. In spite of the huge
complexity of the problem, sophisticated algorithms
and clever heuristics help to solve instances with many
thousands variables and clauses very efficiently. Usually,
SAT solvers work on a Conjunctive Normal Form (CNF)
of a Boolean function that is a disjunction of conjunctions
of literals, where each literal is variable or its negation.

Satisfiability Modulo Theories is also a decision
problem but with more complex theories rather than
only propositional logic. A detailed introduction is given

1Available online at http://www.informatik.uni-bremen.de/agra/eng/
metasmt.php

Listing 1. SMT instance for a · b = 21466342967
(benchmark factorization.smt

:logic QF_BV
:extrafuns ((a BitVec[32]))
:extrafuns ((b BitVec[32]))

:assumption (not (= a bv1[32]))
:assumption (not (= b bv1[32]))

:formula (=
bv21466342967[64]
(bvmul
(zero_extend[32] a)
(zero_extend[32] b)

))
)

in [14]. Already available SMT-solvers handle complex
formulas. In addition to the logics the SMT-LIB standard
also specifies a textual format that is commonly used for
input files of the solvers. Listing 1 shows an example of
such an SMT file: Two variables, a, b are declared as bit-
vectors and constrained to be the two factors of a product
resulting in the 64 bit number 21, 466, 342, 967. When
called with this input, an SMT-QF BV solver outputs
satisfiable and e.g., the assignment a = 740, 218, 723 and
b = 29.

Moreover, in addition to the SMT-LIB format many
solvers provide an Application Programming Inter-
face (API) that exposes features like incremental solving,
where the SMT instance can be changed after the
satisfiability check. Learnt information about the instance
is kept and reused. Consequently, using the API may
increase the overall performance.

An SMT solver can be utilized within an application in
different ways. Each of the following options has certain
advantages and disadvantages:

1) Generate an instance file according to SMT-LIB spec-
ification and call the solver. Different SMT solvers
can easily be evaluated. However, the instance
generation and result retrieval requires handling of
files and text within the application.

2) Use the solver specific API to call an SMT solver’s
functions directly. In particular, incremental satis-
fiability can be exploited. But the application is
restricted to a specific solver.

3) Introduce an abstraction layer specific to the appli-
cation. This technique combines high performance
using incremental satisfiability with the ability to
evaluate different solvers. However a custom layer
is not portable to different applications.

This work separates the programming model from
the reasoning engine. With metaSMT the application
specifies the instance in a simple, common notation. Many
reasoning engines are available without modifications of
the algorithm.

The Java package jSMTLIB [15] provides an interface
for the usage of different SMT solvers. The package reads,
checks and generates SMT-LIB files and executes the
respective SMT-solver executables. However, jSMTLIB
currently does not provide an embedded language for
instance generation directly from the application.

B. Boost.Proto
The Boost project [16] is a collection of libraries that

cover many features not included in the C++ standard
library. In particular, Boost.Proto [17] provides tools to
integrate Domain Specific Embedded Languages (DSEL)
into C++. Given a programming language, a DSEL in
that language is dedicated to a domain, e.g., parsing [18]
or vector arithmetic [19]. The DSEL provides a syntax
designed for this domain and, therefore, is easier to handle
than the original language. Due to space constraints an
in-depth description of Boost.Proto is omitted, the reader
is referred to the Boost documentation.

Technically, this work uses Boost.Proto to implement
a domain specific language for SMT logics in metaSMT .

III. MOTIVATING EXAMPLE

Before the subsequent sections give a complete descrip-
tion of metaSMT this section demonstrates how metaSMT
is used in a complete example application.

The usual integration of reasoning engines iteratively
calls API functions to construct the problem instance.
However, this reduces the readability of the source code
and makes it difficult to understand the program. A typical
example can be constructed using the Boolector API for
the C programming language. Figure 1 (a) shows the
code to construct the simple constraint c = a · b using the
Boolector C API (not including memory management).
The same expression, written quite concise in the SMT-
LIB format is shown in Figure 1 (b). The goal of metaSMT
is to allow this compact syntax to be used in C++
programs. Due to the limitations of C++ this requires
adaptions. Most notably, the expressions cannot easily be
written in a symbolic expression (S-expression) syntax as
in the SMT-LIB format, where each function is enclosed
in parenthesis. The syntax for calling functions is used
instead. Moreover, the solver is passed into the expression
using the context e.g., as btor_ctx in Figure 1 (c).

In order to illustrate the programming interface of
metaSMT an example written in C++ code is presented
in Listing 2. The listing shows the factorization of an
integer into two integers. More precisely, given an integer
in bit-vector representation ~c ∈ B2n, compute two integers
~a,~b ∈ Bn, such that ~a ·~b = ~c. To enforce non-trivial
factorization, both integers a and b may not be 1. As
the bit-vectors ~a and ~b are zero-extended, no overflows
are possible and as a result a valid assignment to the
constraint either gives a valid factorization of ~c or proves
that it is prime. The integer value of ~c is randomly
chosen and changed in each iteration of a loop for
10,000 iterations. A similar example is reconsidered in
the empirical evaluation.

The first line in Listing 2 defines the solver context,
which is not explained here but described later in this
work. The context specifies which reasoning engine to use
and how the input is handled by metaSMT . The next line
is a user parameter, which defines the bit-vector width of
the operands. The algorithm is therefore scalable to an
abitrary bit-width. In lines 4-6 the bit-vectors a, b and
c are declared and initialized.

Lines 8 and 9 constrain the operands to be different
from 1 in bit-vector representation. In line 11 the

boolector_assume(btor,
boolector_eq(btor, c,
boolector_mult(btor, a, b)

))
(a) Boolector API calls

:assumption
(= c (bvmul a b))

(b) SMT-Lib format

assumption(btor_ctx,
equal(c, bvmul(a, b)))

(c) metaSMT C++ Code

Fig. 1. Examples for c = a · b

Listing 2. metaSMT factorization and prime test
1 Context ctx;
2 const unsigned width = <parameter>;
3
4 bitvector a = new_bitvector(width);
5 bitvector b = new_bitvector(width);
6 bitvector c = new_bitvector(width);
7
8 assertion(ctx, nequal(a, bvuint(1,width)));
9 assertion(ctx, nequal(b, bvuint(1,width)));

10
11 assertion(ctx, equal(zero_extend(width, c)

, bvmul(zero_extend(width, a),
zero_extend(width, b))));

12
13 for (unsigned i=0; i < 10000; ++i) {
14 unsigned r = random_number (2, 2ˆwidth -

1);
15 assumption(ctx, equal(c, bvuint(r, 2*

width)));
16
17 if(solve(ctx)) {
18 unsigned a_value = read_value(ctx, a);
19 unsigned b_value = read_value(ctx, b);
20
21 printf("factorized %d into %d * %d\n", r

, a_value, b_value);
22 } else {
23 printf("%d is prime.", r);
24 }
25 }

multiplication ~a · ~b = ~c is constrained. However the
multiplication is done in double width to avoid overflows.

These constraints are identical for each iteration of
the loop starting in line 13, therefore they are declared
outside the loop as an assertion, which is permanent.

Inside the loop, in lines 14-15 c is set equal to a random
number from 2 to 2width − 1 using an assumption,
which is only valid for the next satisfiability check of the
solver, i.e., for one loop iteration.

After setting up the SMT instance, the satisfiability
check is performed in line 17. If the instance is sat-
isfiable, the values of a and b are determined using
read_value. Both operands are printed out in line 21.
Otherwise the instance is unsatisfiable, the else branch
is executed, which outputs c is prime.

IV. ARCHITECTURE

In the following sections the architecture of metaSMT
is described. At first the basic layers are introduced. Then
each layer is described in detail. The terms frontend for
the input languages, middle-end for the intermediate layer
and backend for the solvers are taken from compiler
design to denote the metaSMT layers.
A. metaSMT Layers

metaSMT consists of three basic layers depicted in
Figure 2. The frontend layer provides primitives of

FRONTEND (C++)
QF BV Core Array

MIDDLE-END

DirectSolver GraphSolverBitBlast

SAT Clause SAT Aiger Groups

BACKEND

SWORD Z3

Boolector

CUDD

AIGER

MiniSAT

PicoSAT

Solver API

Fig. 2. metaSMT layer Architecture

the input languages, defined in the SMT-LIB format
(e.g., Core Boolean logic, QF BV). The middle-end
layer provides translations, intermediate representation
and optimizations of the input expressions. Optionally,
expressions can directly be passed to the the backend
layer where the solvers are integrated via their native API.
Various configurations of middle-ends with backends are
possible. The frontends allow to combine each translation
middle-end with any compatible backend. However, not
every backend supports every logic. Therefore, some
middle-ends supply emulation or translations to other
logics, e.g, a bit-vector expression can be translated into
a set of Boolean expressions.

The frontends are independent from the underlying
two layers and have no semantics attached. To evaluate
frontend expressions, a context is used that defines their
meaning. The context is the combination of at least
one middle-end and one backend, where the middle-end
defines how the input language is mapped to function
calls of the backend.

B. Frontends
The frontends define the input languages for metaSMT .

This includes Core Boolean logic and SMT QF BV as
well as a version of Array logic over bit-vectors. Each
frontend defines its own set of available functions as well
as public datatypes.

The Core Boolean logic defines the public datatype
predicate which describes propositional variables.

Furthermore, Boolean constants are available, i.e., true
and false. This logic also defines primitive Boolean
functions, e.g., Or, And. The frontend creates a static
syntax tree for the expression described in the code. This
syntax tree is passed to the middle-end.
C. Middle-ends

The core of metaSMT are basic optimizations and
translations from the frontend to the backend. While the
frontends provide languages and the backends provide
solver integrations, the middle-ends allow the user to
customize metaSMT , i.e., on how the input language is
mapped to the backend. Even in the middle-end itself,
several modules can be combined.

1) DirectSolver: To enable a low-overhead translation
from a frontend to a backend the DirectSolver
is provided. All the elements of the input expression
are directly evaluated in the backend. Variables are
guaranteed to be constructed only once and are stored
in a lookup table. For example, given a multiplication
operation in QF BV logic directly corresponds to a
multiplication operation in the SMT solver Boolector.

The direct middle-end is very lightweight and allows
the compiler to inline all function calls. For a modern
compiler the resulting executable should perform equally
well to a hand-written application using the same backend.

2) GraphSolver: Instead of adding the frontend ex-
pressions directly to the solver, they are first inserted
into a directed graph. The graph models the explicit
syntax tree of the expression as a Directed Acyclic
Graph (DAG). Formally a node in the graph is a tuple
(Operation,Static Arguments) where the SMT command
and its static arguments are captured (e.g. extract and
the range to extract). The edges point from an operation
to the SMT expressions used in this command. A label
on the edges stores the position of the subexpression in
the command. Each time a new expression is evaluated
it is first searched in a lookup table before a new node is
created, when the node is not found. When the instance
is checked for satisfiability, the graph is traversed and
evaluated in the backend.

The graph-based translation provides a way to auto-
matically detect common subexpressions and efficiently
handle them to create smaller SMT instances which po-
tentially increases performance of the reasoning process.
This is especially useful if the user wants to automate this
process, but either does not want to manually optimize the
SMT instance or does not know the instance in advance
because it is created dynamically inside the program.

3) Groups: This middle-end provides an interface and
implementation of constraint groups for solvers that do
not have native support for groups. A group is a set
of constraints that belong together. The user can create
groups, add expressions to them and delete them at any
time. The solver will then disable all expressions in
the group. Groups are emulated using guard variables
and temporary assumptions, e.g., the expression x ∧ y
in group 1 is transformed to g1 → (x ∧ y) using the
guard variable g1 and an implication. Depending on the
solver deleting a group can either lead to the removal
of the constraints or to the constraint just being disabled
permanently.

4) BitBlast: This emulation of a QF BV bit-vector
backend uses only Core Boolean logic operations to allow
the transparent use of SAT or BDD solvers with bit-vector
expressions. The translation is performed in a standard
way: Given only the Core Boolean logic, each bit-vector
is transformed into a vector of Boolean variables. The
bitwise operations can be applied easily, e.g., an exclusive-
or over two bit-vectors is a bitwise exclusive-or for
each pair of Boolean variables. The bit-vector predicates
(equal, less-than, etc.) are mapped to a sequence
of Boolean predicates, e.g., a conjunction of exclusive-
nors for equal. Arithmetic operations are reduced to an
equivalent Boolean expression.
D. Backends

The respective solvers and other constraint solving
techniques are integrated as backends. For each reasoning
engine a dedicated backend is created that maps from the
internal metaSMT API to the API of the engine. Backends
do not have an explicit interface to inherit from. They
implement the required methods for the languages they
support using C++ template mechanisms to integrate
them into a context. This allows the compiler to optimize
the code and, in the case of DirectSolver, produces
code that is close to a hand-coded implementation using
the same API.

This section gives an overview of the backends inte-
grated into metaSMT . They are grouped by the input
language they support. The compatibility of the solvers
is also summarized in Table I.

1) Core Boolean logic backends: Several core logic
backends as well as higher level backends are available.
Core logic is directly supported by backends that accept
all common Boolean operations. For example, the Binary
Decision Diagram (BDD) package CUDD [20] supports
all Boolean operations and is integrated in metaSMT .
Furthermore, with some minor transformations based on
De-Morgan And-Inverter-Graphs (AIGs) are also able to
handle Boolean operations. Those AIGs are internally
represented by the AIGER package [21]. SAT solvers
can receive Boolean logic expressions either via the
SAT Clause adapter that creates one or more clauses
per logic operation or via the SAT Aiger adapter, that
builds an AIG for the expression using the AIGER
backend. Afterwards, the AIG is translated into a set
of clauses. This infrastructure allow the usage of any
SAT solver supporting CNF as input language either by
an API or externally through files. PicoSAT [22] as well
as MiniSAT [23] are directly supported as Core logic
backends via their APIs. Other solvers are supported by
generating CNF files and calling the executable of the
SAT solvers.

Furthermore, all SMT QF BV backends natively sup-
port Core logic as a subset of the language.

2) SMT QF BV backends: Native SMT bit-vector
solvers like Boolector [24], SWORD [25] and Z3 [26]
are directly connected through their API for QF BV
support. Furthermore, the BitBlast middle-end provides an
emulation for QF BV using only basic logic operations.
This emulation permits using QF BV expressions in
solvers that do not support them natively but support
Core Boolean logic e.g., CUDD or SAT-solvers.

TABLE I
BACKEND COMPATIBILITY

BACKEND CORE QF BV ARRAY (BV) SAT
AIGER [21] yes emulated no no
Boolector [24] yes yes yes no
CUDD [20] yes emulated no no
MiniSAT [23] emulated emulated no yes
PicoSAT [22] emulated emulated no yes
SWORD [25] yes yes no no
Z3 [26] yes yes yes no
BitBlast yes yes no no
SAT Aiger yes emulated no no
SAT Clause yes emulated no no

equal

qf_bv_var&
{c,width} bvmul

qf_bv_var&
{a,width}

qf_bv_var&
{b,width}

Fig. 3. Syntax Tree for equal(c, bvmul(a, b)).

3) SMT QF ABV backends: In addition to Core
Boolean logic and bit-vector logic the Boolector and
Z3 backends also support arrays in the form of QF QBV
logic. Therefore metaSMT supports declaring and work-
ing with arrays over bit-vectors.

V. IMPLEMENTATION

This section describes how the architecture is imple-
mented in metaSMT and how metaSMT is integrated in
C++ programs.

A. Syntax and Semantics
For the evaluation of metaSMT expressions a context

is used which defines syntax and semantics. The context
concept and different kinds of contexts are described in
this section.

The syntax component is provided by Boost.Proto. An
expression like equal(c, bvmul(a, b)) is created
from the custom Boost.Proto functions equal and
bvmul as well as the variables a, b and c. From the
expression the syntax tree in Figure 3 is created. The
nodes are labeled with the C++ type and strings inside
the curly braces denote the content of the respective
nodes. For metaSMT the tree is used as static type of the
expression. The expression and the syntax tree are data,
i.e., they neither have semantics attached nor trigger any
actions.

The semantics for the expression is introduced by
the metaSMT context, that defines how the syntax tree
is evaluated and transformed for a specific solver. The
evaluation of Boost.Proto-based expressions is performed
in the metaSMT translation middle-end (e.g., GraphSolver
or DirectSolver) so that the backends do not need to
handle Boost.Proto expressions directly. This reduces the
overhead to implement new backends.

DirectSolver Boolector

GraphSolver Boolector

DirectSolver BitBlast SAT Clause MiniSAT

GraphSolver BitBlast SAT Aiger MiniSAT

Fig. 4. Data flow in different contexts

Listing 3. metaSMT command grammar
command ::= assert_cmd | assume_cmd

| eval_cmd
| solve_cmd | result_cmd

assert_cmd ::= ’assertion(’ context ’,’
expression ’);’

assume_cmd ::= ’assumption(’ context ’,’
expression ’);’

eval_cmd ::= ’evaluate(’ context ’,’
expression ’);’

solve_cmd ::= ’solve(’ context ’);’
result_cmd ::= ’read_value(’ context ’,’

variable ’);’
variable ::= boolean_variable

| bitvector_variable
expression ::= <expression in metaSMT DSEL>

Figure 4 gives some example contexts and visualizes
the data flow inside. This illustrates how different
contexts can change the evaluation of a constraint. The
first context defines a solver using Boolector without
intermediate representation (DirectSolver). The context
directly supports Core Boolean logic and QF BV. In
contrast, in the last example, MiniSAT is used. QF BV
as well as Core Boolean logic are emulated for this clause
based backend. Furthermore this context uses a graph
and an AIG as intermediate representations.

The GraphSolver-based and AIGER-based context first
create an internal representation and pass the complete ex-
pression directly before solving. When using approaches
without intermediate representation, the requests are
forwarded to the next layer until they reach the backend.
Only explicit transformations are applied before passing
the expression (e.g., BitBlast, SAT Clause).

B. Usage and API

The example from Listing 2 contains most of the
core commands of metaSMT . These are summarized in
Listing 3.

Listing 4. Programmatic constraint construction using temporary
Variables
1 bitvector x = new_bitvector(8);
2 for(...) {
3 bitvector tmp = x;
4 x = new_bitvector(8);
5 assertion(ctx, equal(x, bvmul(tmp, ...)));
6 }
7 ...
8 solve(ctx)

The first three functions accept frontend expressions,
however they have different effects. The functions
assertion and assumption create the constraint
instance where the first adds a constraint permanently to
the (incremental) solver context while the latter adds the
constraint for the next call of the solver only. In both
cases the expression needs to have a Boolean result. The
third function evaluate does not change the instance
but returns a context specific representation of the input
expression only.

To query a context for satisfiability, the solve
function is provided. The result is a Boolean value directly
representing SAT (true) or UNSAT (false). After a call to
solve the assumptions are discarded while the assertions
are still valid for the subsequent calls.

Getting a SAT result for solve(ctx), i.e., the
instance is satisfiable, a model is generated. The model
can be retrieved with the read_value function. The
function takes a context and a variable and returns the
assignment of this variable in the given context. The
result of read_value is automatically convertible to
many C++ datatypes, including strings, bit-vectors (vector
of bool, tribool, bitset) or integers.

In addition to these core commands, custom middle-
ends may provide additional extensions. The Group
middle-end for example provides functions to add groups,
change the active group and delete groups. These func-
tions cannot be used in any other context.

C. Expression Creation
Typically it is necessary to create the metaSMT ex-

pression at run time, e.g., in a loop. As metaSMT syntax
trees are statically typed, an extension of the syntax tree
is not possible. To work around this limitation, metaSMT
provides two options. The first option is to create a partial
expression and constrain equality to a temporary variable
that is later reused to create the complete expression.
This would allow strict grammar checking but introduces
a temporary variable and a constraint, see Listing 4.

The second option is the use of the evaluate(Ctx,
Expr) function and the context’s result_type. The
function takes a context and a frontend expression
and returns the context specific representation of the
expression. The result of the evaluation is of the backend
specific type Ctx::result_type. This expression
can be stored and later be used in other expressions.
Note however that the return value is solver specific and
therefore not portable or reusable in other contexts, not
even contexts of the same type.

A powerful exception to this rule is the
result_type of a GraphSolver-based context,
where the result is a node in the internal graph.

Listing 5. Using a shared graph for different contexts
1 GraphSolver_Context<SWORD> sword;
2 GraphSolver_Context<Boolector> btor(sword);
3
4 GraphSolver_Context<SWORD>::result_type x =

evaluate(sword, bvuint(0, 8));
5
6 for(...) {
7 x = evaluate(sword, equal(x, bvmul(x,

...)));
8 }
9 assertion(sword, x);

10 assertion(btor, x);
11 solve(sword) == solve(btor);

When a GraphSolver is constructed using the copy
constructor, a shared graph is internally used by the
contexts. The newly created solver also copies all
assertions and assumptions, so that both solvers have
the same internal state. In this setup the results of
evaluate can be shared among the solvers. Each
backend will only evaluate the parts of the graph that
are required as parts of assertions or assumptions. The
application of evaluate is demonstrated in Listing 5.
This can be used for example when building multiple
instances from the same base. At a specific point the
context can be copied and from there both contexts can
diverge into seperate instances.

VI. EMPERICAL EVALUATION

This section presents two different applications of
metaSMT . Furthermore, a comparison of metaSMT with
the native API of an SMT solver is presented. The
experiments have been performed on a system with AMD
Opteron 2222 SE processor, 32 GB RAM and a Linux
operating system. In the following, the run times are
always given in CPU seconds.

A. Exact Synthesis
This section presents examples from exact synthesis of

reversible circuits [28], [29]. A reversible circuit computes
a bijective function, i.e., there is a unique input and output
mapping. Those circuits purely consist of reversible gates
– here, the universal Toffoli gate and basic quantum gates
are considered. The synthesis problem searches for a
reversible circuit consisting of reversible gates which
computes the function specified by a truth table. There
are several exact approaches to synthesize those circuits.
We considered the approach from [28], which translates
the problem into a decision problem and asks for a circuit
realization for a given number of gates. The size of the
problem instances grows exponentially with number of
input variables, because the entire truth table has to be
taken into account. This usually results in hard problem
instances even for small truth tables.

The underlying problem formulation has been encoded
in QF BV and an incremental algorithm searches for
a valid circuit implementation. Using metaSMT six-
teen different configurations have been evaluated. The
configurations consist of four internal API backend
solvers, i.e. Boolector, Z3, MiniSAT, and PicoSAT.
Additionally, metaSMT is used to generated CNF files
to run the external solvers PicoSAT, MiniSAT, Pre-
coSAT, and Plingeling [30]. All eight backends are used

 0.1

 1

 10

 100

 1000

 10000

decod24-v0_incomplete_15

peres_complete_4

toffoli_complete_1

4mod5-v0_incomplete_8

graycode6_complete_19

fredkin_complete_3

alu-v0_incomplete_10

graycode6_complete_19

miller_complete_5

toffoli_double_complete_2

hwb4_complete_20

ti
m

e
[s

]
Direct<Boolector>

Direct<Z3>

Graph<Boolector>

Graph<Z3>

Dir<MiniSAT>

Dir<PicoSAT>

Graph<MiniSAT>

Graph<PicoSAT>

Direct<Plingeling*>

Graph<Plingeling*>

Direct<MiniSAT*>

Graph<MiniSAT*>

Direct<PicoSAT*>

Graph<PicoSAT*>

Direct<PreoSAT*>

Graph<PicoSAT*>

Fig. 5. Run times of reversible circuit synthesis for hard instances using a metaSMT-based version of RevKit [27]

with the DirectSolver middle-end as well as the
GraphSolver middle-end.

For the synthesis 11 specifications were used which are
publicly available from [31]. A timeout of 3,600 seconds
was applied. The results are presented in Figure 5. On
the x-axis the respective benchmark is shown, whereas
the y-axis denotes the run time in seconds for each
configuration in logarithmic scale. Externally called
solvers are marked with ∗.

From Figure 5 it is clear that no single solver
dominates the benchmarks. For example, for the
benchmarks from decode24-v0_incomple_5 to
graycode6_complete_19 Boolector performs much
better than any other solver. But for the benchmarks from
miller_complete_5, Boolector is outperformed by
the SAT solvers. MiniSAT as well as PicoSAT are evalu-
ated as internal and external versions. The accumulated
run times of the solvers MiniSAT and PicoSAT over all
benchmarks are 18,790 seconds for the internal version
and 8,989 seconds for the external version. Surprisingly,
the externally called solvers are much better here than the
internal called solvers, though the internal solvers may
benefit from learnt information. Overall, the externally
called PrecoSAT solver needs 326.24 seconds over all
benchmarks and Boolector needs 3,285.05 seconds.

To summarize, all the presented results can be achieved
very easily by using metaSMT . Only one parameter needs
to be switched to run a different solver.

B. Mutation Testing
Given a program, by mutation several faulty variants

of the program are created and combined into a single
program called meta-mutant. Using metaSMT the meta-
mutant is encoded into a set of constraints. Each satisfying
assignment yields a test case that discovers at least one
fault. Experiments of [32] where executed on a set of
metaSMT contexts. The results are shown in Table II.
Comparing the Boolector backend with the MiniSAT
backend using DirectSolver as well as GraphSolver
middle-ends.

The results significantly vary with the difficulty of
the instance. For easy instances the directly connected

TABLE II
RESULT FOR MUTATION TESTING USING DIFFERENT CONTEXTS

Name Time [s]
Direct Graph Direct Graph

Boolector Boolector MiniSAT MiniSAT
isl 0.05 0.22 0.34 0.47
min 0.34 0.48 0.82 0.65
mid 4.73 5.07 7.87 4.36
fmin3 5.02 5.85 4.45 2.55
fmin5 21.08 25.96 14.92 9.56
fmin10 310.52 260.38 997.65 550.94
tri 207.69 193.99 1596.99 652.64

Boolector contexts and the graph-based MiniSAT perform
better. However, for difficult instances with a run time
over 1 minute, the graph-based Boolector context is
fastest while MiniSAT-based contexts require significantly
more time. For these harder instances the GraphSolver
middle-end outperforms the direct variant of the same
backend. This effect is most likely due to the removal
of redundancies in the graph. For MiniSAT this amounts
to run time reductions of around 50%. With metaSMT
as abstraction layer it is easy to evaluate the effects of
different contexts or optimizations. When changes are
only in the abstraction layer no application code needs
to be changed and only little effort is required.

C. Comparison with direct API

For the factorization algorithm from Listing 2 a hand
coded implementation using the Boolector C API is com-
pared to a metaSMT DirectSolver-based implementation
with the Boolector backend. The resulting application is
available as part of the metaSMT package.

The experiment has the following setup: The algorithm
from Listing 2 was changed to work on sequences instead
of generating random numbers. A sequence of 10,000
random 64 bit numbers is generated and the algorithm it
applied to it 10 times. The same sequence is used for both
the hand coded and the metaSMT-based implementation
of the algorithm. The complete experiment was repeated 5
times with Boolector being executed first and 5 times with
metaSMT being executed first. Altogether each solver was
forced to solve 1,000,000 constraints of 64 bit numbers
factorized into two 32 bit numbers.

The results showed no significant difference caused by
the metaSMT abstraction layer: 1, 736s for plain Boolec-
tor compared to 1, 729s for metaSMT with Boolector,
i.e., 1.7 seconds for 10,000 factorizations.

D. Other applications
In addition to the aforementioned projects metaSMT is

also used in a Constraint Random Stimuli generation Li-
brary. In the library elements of the SystemC Verification
Library [33] and techniques from [34] are combined.

VII. CONCLUSIONS

metaSMT is a library that abstracts details of reasoning
engines. Based on metaSMT very little programming
effort is required to integrate formal methods into a user‘s
application. Once this has been done, a wide range of
solvers as well as optimization techniques can be selected.

Various research projects already integrate metaSMT .
Future work on metaSMT includes the development
of the following features: New frontend logics will
complete the support for SMT logics (e.g. uninterpreted
functions, integer arithmetic), while new middle-ends
will increase solving performance (e.g. portfolio or multi-
threaded contexts) and new backends will provide access
to additional SMT solvers.

VIII. ACKNOWLEDGMENTS

We would like to thank Hoang M. Le, Heinz Riener
and Fereshta Yazdani for the helpful discussions, their
proposals for improvements, testing and contributions to
metaSMT .

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, vol. 1579.
Springer Verlag, 1999, pp. 193–207.

[2] K. McMillan, “Interpolation and SAT-based model checking,”
in Computer Aided Verification, ser. LNCS. Springer Berlin /
Heidelberg, 2003, vol. 2725, pp. 1–13.

[3] E. Arbel, O. Rokhlenko, and K. Yorav, “SAT-based synthesis
of clock gating functions using 3-valued abstraction,” in Formal
Methods in Computer-Aided Design, 2009, 2009, pp. 198 –204.

[4] F. Haedicke, B. Alizadeh, G. Fey, M. Fujita, and R. Drechsler,
“Polynomial datapath optimization using constraint solving and
formal modelling,” in Computer-Aided Design (ICCAD), 2010
IEEE/ACM International Conference on, 2010, pp. 756 –761.

[5] R. Drechsler, S. Eggersgluss, G. Fey, A. Glowatz, F. Hapke,
J. Schloeffel, and D. Tille, “On acceleration of SAT-based ATPG
for industrial designs,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 27, no. 7, pp.
1329 –1333, 2008.

[6] M. K. Ganai and A. Gupta, “Accelerating high-level bounded
model checking,” in International Conference on Computer-
aided design. New York, NY, USA: ACM, 2006, pp. 794–801.

[7] P. Bjesse, “A practical approach to word level model checking
of industrial netlists,” in International Conference on Computer
Aided Verification, 2008, pp. 446–458.

[8] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
Int. J. Softw. Tools Technol. Transf., vol. 11, pp. 69–83, 2009.

[9] “SMT-COMP 2009,” http://www.smtcomp.org/2009, 2009.
[10] “SMT-COMP 2010,” http://www.smtcomp.org/2010, 2010.

[11] S. Ranise and C. Tinelli, “The Satisfiability Modulo Theories
Library (SMT-LIB),” http://www.smtlib.org, 2006.

[12] O. Shtrichman, “Pruning techniques for the SAT-based bounded
model checking problem,” in CHARME, ser. LNCS, vol. 2144,
2001, pp. 58–70.

[13] S. Cook, “The complexity of theorem proving procedures,” in 3.
ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[14] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, Satisfia-
bility Modulo Theories, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009, vol. 185, ch. 26,
pp. 825–885.

[15] D. R. Cok, “jSMTLIB: Tutorial, validation and adapter tools
for smt-libv2,” in NASA Formal Methods, ser. LNCS, 2011, vol.
6617, pp. 480–486.

[16] “Boost C++ libraries,” http://www.boost.org/.
[17] E. Niebler, “Proto: A compiler construction toolkit for DSELs,”

in Proceedings of the 2007 Symposium on Library-Centric
Software Design, ser. LCSD ’07. New York, NY, USA: ACM,
2007, pp. 42–51.

[18] J. de Guzman and D. Nuffer, “The Spirit library: Inline parsing
in C++,” C/C++ User Journal, vol. 21, no. 9, 2003.

[19] T. L. Veldhuizen, “Arrays in Blitz++,” in Proceedings of the
Second International Symposium on Computing in Object-
Oriented Parallel Environments, 1998, pp. 223–230.

[20] F. Somenzi, CUDD: CU Decision Diagram Package Release
2.4.1. University of Colorado at Boulder, 2009.

[21] “Aiger,” http://fmv.jku.at/aiger/.
[22] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97,

2008.
[23] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT,

ser. LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919.
Springer, 2003, pp. 502–518.

[24] R. Brummayer and A. Biere, “Boolector: An efficient SMT
solver for bit-vectors and arrays,” in Tools and Algorithms for
the Construction and Analysis of Systems, 2009, pp. 174–177.

[25] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler,
“Sword: A SAT like prover using word level information,” in
VLSI of System-on-Chip, 2007, pp. 88–93.

[26] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,”
in TACAS, ser. LNCS, C. R. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Springer, 2008, pp. 337–340.

[27] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A
toolkit for reversible circuit design,” in Workshop on Reversible
Computation, 2010, pp. 69 – 72.

[28] D. Große, R. Wille, G. Dueck, and R. Drechsler, “Exact
multiple-control toffoli network synthesis with SAT techniques,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, no. 5, pp. 703 –715, May 2009.

[29] R. Wille, D. Große, M. Soeken, and R. Drechler, “Using higher
levels of abstraction for solving optimization problems by
boolean satisfiability,” in Symposium on VLSI, 2008. ISVLSI

’08. IEEE Computer Society Annual, 2008, pp. 411 –416.
[30] A. Biere, “Lingeling, plingeling, picosat and precosat at

SAT race 2010,” Tech. Rep., 2010. [Online]. Available:
http://fmv.jku.at/papers/Biere-FMV-TR-10-1.pdf

[31] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drech-
sler, “RevLib: An online resource for reversible functions and
reversible circuits,” in Int’l Symp. on Multi-Valued Logic, 2008,
pp. 220–225, RevLib is available at http://www.revlib.org.

[32] H. Riener, R. Bloem, and G. Fey, “Test case generation from
mutants using model checking techniques,” in International
Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 388 – 397.

[33] SystemC Verification Standard Specification Version 1.0e, Sys-
temC Verification Working Group.

[34] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-
based stimuli generation in the SystemC verification library,”
in Advances in Design Methods from Modeling Languages
for Embedded Systems and SoC’s: Selected Contributions on
Specification, Design, and Verification from FDL 2009, ser.
Lecture Notes in Electrical Engineering, D. Borrione, Ed.
Springer Netherlands, 2010, vol. 63, pp. 227–244.

